REDBELLY

Beyond Marketing: What is Real TPS?

Vincent Gramoli (Redbelly Network / University of Sydney / EPFL)

Blockchains are Fast

2

🗹 Go to Avalanche

Search for articles...

AVALANCHE

Bld

All Collections > Blockchain Basics > Protocol > What is transactional throughput (TPS)?

What is transactional throughput (TPS)?

Written by **Rocky Rock** Updated over a week ago

Transaction throughput is the rate at which valid transactions are committed by a blockchain in a defined time period. The throughput of a given blockchain is defined by the number of transactions per second (tps). Some of the notable blockchains and their throughput are: Bitcoin can support 7 tps, Ethereum can support 14 tps, and Avalanche can support 4500+ tps.

For any additional questions, please visit our <u>knowledge base</u> or contact a support team member via the chat button at support.avax.network.

Chat with Ava Labs | Use Apps on Avalanche | Validate on Avalanche

Build on Avalancho

Algorand 2021 Performance By Silvio Micali rage of 500,000 transactions per day are posted on age ou sour, our uransactions per usy are posted of a re busy developing applications on Algorand. are ousy oeveroping applications on Augoratio, 1 smart contracts and the other functionalities that ^I smart commence and the commencements of the second se w functionalities to Algorand, we are improving he it takes observers to become aware of ne needed to ensure that a new block is 5,000 to 25,000 transactions.) o 2.5 seconds. 000 ing.) ralized, public, permissionless nance drawbacks of firste fundamental principles in provement and all future 3

Blockchains are Fast

Blockchain	Claimed TPS
Algorand	1000, 46000
Avalanche	4500
Solana	200,000

Blockchains are Fast...?

Blockchain	Claimed TPS	Observed TPS
Algorand	1000, 46000	885
Avalanche	4500	323
Solana	200,000	8845

Content

- Definitions
- Impression vs. reality
- Why so much difference?
- Benchmarking
- Conclusion

Definitions

<u>TPS</u> (<u>Transactions Per Second</u>): a unit to measure the number of transactions per unit of time.

Definitions

<u>TPS</u> (<u>Transactions Per Second</u>): a unit to measure the number of transactions per unit of time

Definitions

<u>TPS</u> (<u>Transactions Per Second</u>): a unit to measure the number of transactions per unit of time.

<u>Throughput</u>: the amount of transactions committed per unit of time

<u>TPS</u> (<u>Transactions Per Second</u>): a unit to measure the number of transactions per unit of time.

<u>Throughput</u>: the amount of transactions committed per unit of time <u>Latency</u>: the time needed to commit a transaction

<u>TPS</u> (<u>Transactions Per Second</u>): a unit to measure the number of transactions per unit of time.

<u>Throughput:</u> the amount of transactions committed per unit of time <u>Latency</u>: the time needed to commit a transaction

Impression vs Reality

Impression vs. Reality

Blockchain		Claimed results
	throughput	latency
Algorand	1K-46K TPS [26]	2.5–4.5 s [26]
Avalanche	4.5K TPS [29]	2 s [8]
Solana	200K TPS [34]	<1 s [43]

Impression vs. Reality

Blockchain		Claimed results	
	throughput	latency	setup
Algorand	1K-46K TPS [26]	2.5–4.5 s [26]	?
Avalanche	4.5K TPS [29]	2 s [8]	?
Solana	200K TPS [34]	<1 s [43]	150 nodes

Impression vs. Reality

Blockchain		Claimed results		Observed results							
	throughput	throughput latency		throughput	latency	setup					
Algorand	1K-46K TPS [26]	2.5–4.5 s [26]	?	885 TPS	8.5 s	testnet					
Avalanche	4.5K TPS [29]	2 s [8]	?	323 TPS	49 s	datacenter					
Solana	200K TPS [34]	<1 s [43]	150 nodes	8845 TPS	12 s	datacenter					

Why so much difference?

Synthetic vs. Realistic Workload

- Synthetic workloads are often expressed in fixed rate
- The rate does not represent variations (e.g., bursts)
- This hides the impact of congestion (e.g., slowdown, crash)
- It is better to evaluate throughput with latency

Experimental Setup

- Simulated networks (artificial networks)
- Emulated networks (artificial delays)
- vCPUs: amount of computational power per node
- Memory: amount of memory available to each node
- Hardware optimizations: special instructions, GPUs, etc.

Distribution

- Most blockchains do not scale well, they accept O(1) transactions independently of the number of validators
- Their performance do not increase with the system size
- But one cannot reasonably test a blockchain on a single node
- Rare blockchains combine proposed blocks into a superblock

Benchmarking

Related Work

- Hyperledger Caliper has synthetic workloads
 https://hyperledger.github.io/caliper/
- Blockbench features YCSB and SmallBank but no real traces Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing. Private Blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data. 1085–1100
- Stellar was evaluated worldwide but with a focus on latencies Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. 2019. Fast and Secure Global Payments with Stellar. In SOSP'19
- Algorand was evaluated across the US country. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, Nickolai Zeldovich. Algorand: Scaling Byzantine Agreements for Cryptocurrencies in SOSP'17.
- Redbelly TPS was evaluated worldwide but without comparisons Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: a Secure, Fair and Scalable Open Blockchain. In Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P'21)

Diablo: Open Source Framework

Proceedings of the ACM European Conference on Systems (EuroSys) 2023

DIABLO: A Benchmark Suite for Blockchains

Vincent Gramoli University of Sydney Sydney, Australia EPFL Lausanne, Switzerland vincent.gramoli@sydney.edu.au Rachid Guerraoui EPFL Lausanne, Switzerland rachid.guerraoui@epfl.ch Andrei Lebedev TUM Munich, Germany EPFL Lausanne, Switzerland a.lebedev@tum.de

Chris Natoli University of Sydney Sydney, Australia chrisnatoli.research@gmail.com

Abstract

With the recent advent of blockchains, we have witnessed a plethora of blockchain proposals. These proposals range from using work to using time, storage or stake in order to Gauthier Voron EPFL Lausanne, Switzerland gauthier.voron@epfl.ch

a classification of blockchains, listing 8 different protocols to select nodes that are tasked with proposing blocks, 13 different consensus protocols and 9 data structures to store transaction information. This diversity illustrates a probably

Performance Comparison

200 machines from 10 countries in 5 continents Various decentralized applications (mobility service, web service, decentralized exchange, gaming...) 7 blockchains

Configuration	Blockcha number	in nodes #vCPUs	memory	Regions	Cape Tow Toky Mumba
datacenter testnet devnet community consortium	10 10 10 200 200	36 4 4 4 8	72 GiB 8 GiB 8 GiB 8 GiB 16 GiB	Ohio Ohio all all all	Sydne Stockholr Mila Bahrai Sao Paul Ohi Orego

Capo		~ 11	.e	Stor		. R	Sac		- 0		
45Q	TOWN	Tokyo "	unbai oy	dney Sta	holm	Milan	hrain	Paulo	Ohio .	regon	
ape Town	-	26.1	36.0	20.8	59.8	67.1	33.6	27.1	43.6	35.9	
Tokyo	354.0		89.3	112.1	42.1	48.1	66.8	39.3	85.8	108.8	
Mumbai	272.0	127.2		75.9	81.3	103.2	336.3	30.8	53.3	48.5	
Sydney	410.4	102.3	146.8		32.0	42.4	59.6	31.2	57.0	80.8	
Stockholm	179.7	241.2	138.9	295.7		404.6	81.8	48.2	94.7	67.6	
Milan	162.4	214.8	110.8	238.8	30.2		105.7	49.4	104.9	70.1	
Bahrain	287.0	164.3	36.4	179.2	137.9	108.2		29.9	49.4	38.7	
Sao Paulo	340.5	256.6	305.6	310.5	214.9	211.9	320.0		92.3	60.5	
Ohio	237.0	131.8	197.3	187.9	120.0	109.2	212.7	121.9		105.0	
Oregon	276.6	96.7	215.8	139.7	162.0	157.8	251.4	178.3	55.2		

Round trip time (ms)

No GPU No special instructions

Configuration	Blockcha	Regions		
	number	#vCPUs	memory	
datacenter	10	36	72 GiB	Ohio
testnet	10	4	8 GiB	Ohio
devnet	10	4	8 GiB	all
community	200	4	8 GiB	all
consortium	200	8	16 GiB	all

Capo	Capo ~ M			Stor	,	, A	Sac		0			
	TOWN	Cokyo "	mbai S	dney	holm	Milan Sa	hrain	Paulo	Ohio .	regon		
Cape Town	·	26.1	36.0	20.8	59.8	67.1	33.6	27.1	43.6	35.9		
Tokyo -	354.0		89.3	112.1	42.1	48.1	66.8	39.3	85.8	108.8		
Mumbai -	272.0	127.2		75.9	81.3	103.2	336.3	30.8	53.3	48.5		
Sydney -	410.4	102.3	146.8		32.0	42.4	59.6	31.2	57.0	80.8		
Stockholm -	179.7	241.2	138.9	295.7		404.6	81.8	48.2	94.7	67.6		
Milan -	162.4	214.8	110.8	238.8	30.2		105.7	49.4	104.9	70.1		
Bahrain -	287.0	164.3	36.4	179.2	137.9	108.2		29.9	49.4	38.7		
Sao Paulo-	340.5	256.6	305.6	310.5	214.9	211.9	320.0		92.3	60.5		
Ohio-	237.0	131.8	197.3	187.9	120.0	109.2	212.7	121.9		105.0		
Oregon -	276.6	96.7	215.8	139.7	162.0	157.8	251.4	178.3	55.2			

Round trip time (ms)

Gramoli, Guerraoui, Lebedev, Natoli, Voron. Diablo: A Benchmark Suite for Blockchains. EuroSys 2023.

Bandwidth (Mbps)

					C _{ape}	TOWN	Tokyo Mi	inbai Sj	Stock	holm	Milan Ba	Sao brain	Paulo	Ohio
Configuration	Plastraka	in nodoc		Dociona	Cape Town		26.1	36.0	20.8	59.8	67.1	33.6	27.1	43.6
Comiguration	Бюскспа	in nodes		Regions	Tokyo -	354.0		89.3	112.1	42.1	48.1	66.8	39.3	85.8
	number	#vCPUs	memory		Mumbai -	272.0	127.2		75.9	81.3	103.2	336.3	30.8	53.3
datacontor	10	26	72 C:P	Ohia	Sydney -	410.4	102.3	146.8		32.0	42.4	59.6	31.2	57.0
	10	30	72 GID	Onio	Stockholm -	179.7	241.2	138.9	295.7		404.6	81.8	48.2	94.7
testnet	10	4	8 GiB	Ohio	Milan -	162.4	214.8	110.8	238.8	30.2		105.7	49.4	104.9
devnet	10	4	8 GiB	all	Bahrain -	287.0	164.3	36.4	179.2	137.9	108.2		29.9	49.4
community	200	4	8 GiB	all	Sao Paulo-	340.5	256.6	305.6	310.5	214.9	211.9	320.0		92.3
consortium	200	8	16 GiB	all	Ohio-	237.0	131.8	197.3	187.9	120.0	109.2	212.7	121.9	
consor cruin	200	0	10 010	an	Oregon -	276.6	96.7	215.8	139.7	162.0	157.8	251.4	178.3	55.2

Round trip time (ms)

Gramoli, Guerraoui, Lebedev, Natoli, Voron. Diablo: A Benchmark Suite for Blockchains. EuroSys 2023.

Network

Oregon

35.9

108.8

48.5

80.8

67.6

70.1

38.7

60.5 105.0

					C _{ape}	Tokyo Mi	unbai Sj	Stock	cholon	Milan Ba	Sao hrain	Paulo	Obio O	regon	
					Cape Town		26.1	36.0	20.8	59.8	67.1	33.6	27.1	43.6	35.9
Configuration	Blockcha	in nodes		Regions	Tokyo	354.0		89.3	112.1	42.1	48.1	66.8	39.3	85.8	108.8
	number	#vCPUs	memory		Mumbai	272.0	127.2		75.9	81.3	103.2	336.3	30.8	53.3	48.5
datacenter	10	36	72 CiB	Ohio	Sydney -	410.4	102.3	146.8		32.0	42.4	59.6	31.2	57.0	80.8
ualacenter	10	50			Stockholm -	179.7	241.2	138.9	295.7		404.6	81.8	48.2	94.7	67.6
testnet	10	4	8 GiB	Ohio	Milan -	162.4	214.8	110.8	238.8	30.2		105.7	49.4	104.9	70.1
devnet	10	4	8 GiB	all	Bahrain -	287.0	164.3	36.4	179.2	137.9	108.2		29.9	49.4	38.7
community	200	4	8 GiB	all	Sao Paulo	340.5	256.6	305.6	310.5	214.9	211.9	320.0		92.3	60.5
consortium	200	8	16 GiB	211	Ohio-	237.0	131.8	197.3	187.9	120.0	109.2	212.7	121.9		105.0
	200	0	10 010	all	Oregon -	276.6	96.7	215.8	139.7	162.0	157.8	251.4	178.3	55.2	

Round trip time (ms)

Best setup for Algorand

					C _{ape}	Town	Tokyo Mi	unb _{aj} S	Stoci Vdney	cholm	Milan Ba	Sao hrain	p aulo	Ohio O	regon	
Confirmation	Dla alvala a	in madaa		Deriene	Cape Town	I	26.1	36.0	20.8	59.8	67.1	33.6	27.1	43.6	35.9	i
Configuration	Бюскспа	in nodes		Regions	Tokyo -	354.0		89.3	112.1	42.1	48.1	66.8	39.3	85.8	108.8	
	number	#vCPUs	memory		Mumbai -	272.0	127.2		75.9	81.3	103.2	336.3	30.8	53.3	48.5	Ba
datacenter	10	26	72 CiP	Ohio	Sydney -	410.4	102.3	146.8		32.0	42.4	59.6	31.2	57.0	80.8	ndv
ualacenter	10	30	72 GID	Onio	Stockholm -	179.7	241.2	138.9	295.7		404.6	81.8	48.2	94.7	67.6	vidt
testnet	10	4	8 GiB	Ohio	Milan -	162.4	214.8	110.8	238.8	30.2		105.7	49.4	104.9	70.1	th (
devnet	10	4	8 GiB	all	Bahrain -	287.0	164.3	36.4	179.2	137.9	108.2		29.9	49.4	38.7	Mb
community	200	4	8 GiB	all	Sao Paulo-	340.5	256.6	305.6	310.5	214.9	211.9	320.0		92.3	60.5	ps)
consortium	200	8	16 GiB	all	Ohio-	237.0	131.8	197.3	187.9	120.0	109.2	212.7	121.9		105.0	
consor cram	200	0	10 01D		Oregon -	276.6	96.7	215.8	139.7	162.0	157.8	251.4	178.3	55.2		

Round trip time (ms)

Best setup for Avalanche and Solana

Realistic Workloads with DApps

Blockchain Comparison

Blockchain	Property	Consensus	DApp language
Algorand	Probabilistic	BA*	PyTeal
Avalanche		Avalanche	Solidity
Diem	Deterministic	HotStuff	Move
Quorum		IBFT	Solidity
Redbelly		DBFT	Solidity
Ethereum	Eventual	Clique	Solidity
Solana		TowerBFT	Solidity

Performance Comparison

Setup: Community, DApp: Exchange/Nasdaq

Tennakoon, Gramoli. Smart Red Belly Blockchain: Reducing Congestion for Web3, IPDPS 2023.

Performance Comparison (con't)

Conclusion

Conclusion

- Setup, workloads and distribution impact performance significantly
- It is important to document them for the sake of reproducibility
- Use a well established benchmark to evaluate your blockchain
 - Contribute to https://diablobench.github.io/
- Compare with other blockchains

Conclusion

coursera

Browse > Computer Science > Computer Security and Networks

Blockchain Scalability and its Foundations in Distributed Systems

**** **4.5** 64 ratings

Offered By

Enroll for Free Starts Oct 8

Financial aid available

Vincent Gramoli

Blockchain Scalability and its Foundations in Distributed Systems

3,612 already enrolled