
Ten Myths About Blockchain Consensus

David Hyland and João Sousa and Gauthier Voron and Alysson Bessani and
Vincent Gramoli

Abstract Blockchain and distributed ledger technologies have become key to de-
velop secure decentralized applications. Their potential applications span various
industries and their use-cases have already demonstrated the potential of such ap-
plications. Interestingly, these technologies rely on a large body of complex re-
search topics like the Byzantine consensus problem. Although such problem was
defined four decades ago, its subtle ramifications are largely misunderstood by many
blockchain developers, let alone application programmers who build upon these
blockchains. These misconceptions are dramatic as they prevent these applications
from working efficiently and they make them vulnerable to attacks. This chapter
debunks the major myths about blockchain consensus. First, it lists ten myths about
blockchain consensus that are appearing frequently in the blockchain community.
Second, it presents clarifications that debunk these myths to help build safer and
more efficient blockchain and distributed ledger systems. These misconceptions are
illustrated with the evaluation of three distributed ledgers, Hyperledger Fabric, Red-
belly Blockchain and R3 Corda, as well as three important consensus algorithms,
BFT-SMaRt, Democratic BFT and HotStuff.

David Hyland
University of Sydney, Australia, e-mail: dhyl2836@uni.sydney.edu.au

João Sousa
Faculdade de Ciências, Universidade de Lisboa, Portugal e-mail: jcsousa@fc.ul.pt

Gauthier Voron
University of Sydney, Australia, e-mail: gauthier.voron@sydney.edu.au

Alysson Bessani
Faculdade de Ciências, Universidade de Lisboa, Portugal e-mail: anbessani@fc.ul.pt

Vincent Gramoli
University of Sydney and EPFL, Switzerland e-mail: vincent.gramoli@sydney.edu.au

1

dhyl2836@uni.sydney.edu.au
jcsousa@fc.ul.pt
gauthier.voron@sydney.edu.au
anbessani@fc.ul.pt
vincent.gramoli@sydney.edu.au

2 D. Hyland et al.

1 Introduction

Over the last decade, blockchain experienced an important momentum leading to
a plethora of new consensus protocol proposals (e.g., Ripple’s consensus algo-
rithm [55], Democratic BFT (DBFT) [23], Aura [41], Casper [15], HotStuff [66],
IBFT [46], Tendermint [43]). A consensus protocol is a key element of the blockchain
system as it helps a distributed set of machines agree on a unique block at each given
index of a chain. In contrast with the problem of consensus that has been known by
the distributed computing community for the past four decades [52], a significant
part of these proposals is often unclear. Most of these new consensus protocols are
described in white papers, wikis and online documentations, rather than in more tra-
ditional academic publications and it is unclear whether they satisfy the application
requirements [18].

As a result, there are several misconceptions about what is blockchain consensus,
the guarantees it should offer and how it could be made secure and fast. For example,
efforts to standardize blockchain technologies have revealed ambiguous terminolo-
gies [36] and, when consensus protocols are stated informally, one can easily find
scenarios in which these protocols fail [6, 18, 32, 61]. As blockchains are becoming
important components to guarantee the security of critical applications, these myths
can have devastating effects, whose latest example is probably the vulnerability of
some of the mostly deployed blockchain software (e.g., parity and geth) [30],
used to handle high-value digital assets. Other examples include the recent efforts
devoted to develop quantum resilient cryptographic software on top of blockchain
systems that are already vulnerable to the misbehavior of a single participant [19].
While cryptography and fault tolerance address problems that may seem orthogonal,
a blockchain cannot provide the security level required by such applications without
both cryptography and fault tolerance (cf. Section 7).

As blockchains are now being offered as a service by most cloud providers and
have become the cornerstone of various applications, it is crucial to clarify some of
the misconceptions that will have, sooner or later, dramatic consequences. Some of
these misconceptions could be attributed to the lack of knowledge of the distributed
computing and database literatures. First, there are various failure models in which
an algorithm can solve consensus. In fact, a consensus algorithm typically allows =
nodes (or processes) reach an agreement despite 5 of them failing. These failures are
generally classified in two types: crash, where a node simply stops, and Byzantine,
where a node behaves arbitrarily, misbehaving either accidentally or with malicious
intent. This is why we distinguish crash fault-tolerant (CFT) from Byzantine (or
arbitrary) fault-tolerant (BFT) protocols (cf. Sections 6 and 8). Second, the three
properties of the classic consensus problem [44] are often misinterpreted: (i) va-
lidity requires that the value decided by a non-faulty (or correct) node has to be
valid, (ii) agreement requires that two non-faulty nodes cannot decide differently,
and (iii) termination requires that eventually the non-faulty nodes decide. Also, the
factors affecting the performance of a blockchain are often misunderstood (Sec-
tions 4 and 5) as they typically embed, in addition to the consensus protocol, other
components like cryptography (Section 11). This may distract engineers from other

Ten Myths About Blockchain Consensus 3

Section Myth Clarification At risks

3. Po* solves consensus Po* selects blocks users
without guaranteeing uniqueness.

4. Consensus bottlenecks blockchain in LANs BFT-SMaRt runs faster designers
outside Hyperledger.

5. Consensus bottlenecks distributed ledgers in WANs DBFT and BFT-SMaRt designers
scales better outside Corda.

6. CFT consensus tolerate Byzantine faults BFT quorums are larger users
than CFT ones.

7. Signatures and hashes make blockchain secure They do not cope with users
disagreement & double spending.

8. A CFT blockchain with a BFT consensus becomes BFT The whole communication users +
pattern needs to be changed. designers

9. BFT consensus needs linear message complexity Some quadratic complexity designers
algorithms perform better.

10. Reconfiguring consensus participants is easy It is difficult to make it designers
non-disuptive.

11. Blockchain performance is not limited by cryptography CPU demand can surpass designers
the network demand of consensus.

12. Blockchain needs to solve the classic consensus problem Deciding Ω(=) proposals help designers
scale.

Table 1: A summary of common Blockchain consensus myths.

challenging problems (Sections 9 and 10). One of the most common misinterpreta-
tions is illustrated by the large family [49] of so-called “proof-of-∗ consensus (sic)”
that cannot ensure agreement upon a unique block and may lead the blockchain to
counter-intuitively fork into multiple branches (cf. Section 3).

The aim of this chapter is to bust ten myths about blockchain consensus, summa-
rized in Table 1. Thesemyths correspond typically tomisinformation that profession-
als and students commonly learn by reading posts and blogs online before attending
a blockchain course. We proceed by listing each myth and explaining why it is in-
correct by offering a counter example, sometimes using a blockchain (Hyperledger
Fabric, Redbelly Blockchain or R3 Corda) or a consensus algorithm (BFT-SMaRt,
DBFT or HotStuff). Our aim is not to survey existing approaches for blockchain
consensus, as there is an extensive literature on the subject (e.g., [18, 49]), neither to
provide a formal treatment of these myths but rather to state them in a pedagogical
language to reach the blockchain community at large. As some of these clarifications
already helped improving the scalability of blockchains (Section 12), we hope that
they will help build secure and efficient blockchain applications in the future.

2 Background on Consensus and Proof-of-∗

Before listing each myth, we present various interpretation of the term “consensus”
in the blockchain context. A blockchain is easily understood as a chain of blocks
abstraction where new blocks get regularly appended, however, the system that

4 D. Hyland et al.

replicates this abstraction on multiple machines or nodes of the network does not
always maintain the sequence structure of the chained blocks.

Instead a more precise description of this abstraction is a directed acyclic graph
or—to put it simply—a tree structure whose nodes are blocks and whose edges are
directed upwards in the tree, from children blocks to their parent block [34]. Each
of these edges is implemented as a hash of the content of the parent block stored as
a field of the child block. A parent block has multiple children in the tree as soon
as the blockchain forks, which means that two nodes disagree about the block that
should be inserted at the next available index of the chain. The consensus abstraction
is employed to guarantee that there is no such disagreement among all nodes about
the unique block to be appended next.

The consensus problem was defined more than half a century ago [52] and
requires to guarantee that if replicas propose their block, then no two replicas should
decide differently (Agreement), the block that is decided is one of the proposed
block (Validity), and the non-faulty replicas should eventually decide (Termination).
While this definition presents some inherent limitations for scalability that will be
discussed in Section 11, it paved the way for research on consensus algorithms in
small settings and influenced newer definitions of the consensus problem considering
cryptography [17] and scalability [23, 24].

Interestingly, the term “consensus” has been extensively used on blog posts
and websites about blockchain to denote proof-of-∗ methods of selecting a sub-
set of blocks proposed to a particular index of the blockchain. As surveyed in [49],
these proof-of-∗ (Po*) methods include proof-of-work, proof-of-reputation, proof-
of-lock, proof-of-activity, proof-of-stake, proof-of-burn, proof-of-authority, proof-
of-location, each choosing a different local attribute in order to decide whether a
block is selectable to a particular index. These attributes include the computational
power of the node, stake owned by the node in the considered blockchain system,
its activity, location, etc. The diversity of existing proof-of-∗ makes it difficult to list
them all here and is not part of the scope of this paper.

3 Myth #1: Proof-of-∗ solves consensus

A proof-of-work [28] is a mechanism to limit the power of the adversary that
can control the Byzantine participants. By requesting each participant to solve a
moderately complex crypto-puzzle and produce a proof of this effort, called proof-
of-work, before producing a block [48], the ability for the adversary to overwhelm
the system with new valid blocks becomes limited by its computational power. Many
alternatives to this proof-of-work mechanism have been proposed, like proof-of-
stake that limits the power of the adversary to its stake, hence leading to the large
family of proof-of-∗ mechanisms. For a list of more than a dozen of these proof-of-∗
proposals, we refer the interested reader to a survey on the topic [49].

Ten Myths About Blockchain Consensus 5

As it is widely believed that proof-of-∗ protocols solve consensus,1 many proto-
cols have been called “proof-of-∗ consensus (sic)”. As an example, Coin Telegraph
explains how proof-of-work can be seen as the “original consensus algorithm in a
blockchain network” by using a “complicated mathematical puzzle and a possibility
to easily prove the solution”.2 It may seem as if “proof-of-work consensus” was a
metonymy aimed at being pedagogical and referring to proof-of-work as the com-
ponent of a more complex consensus procedure. However, the frequent forks [65]
in proof-of-work blockchains indicate the possibility of disagreements, which con-
tradict the scientific notion of consensus [52]. This metonymy, albeit simple, hides
more complex intricacies. Such simplifications put the users at risk, because, strictly
speaking, consensus prevents double spending that could be induced by forkswhereas
proof-of-∗ actually tolerates forks and may lead to double spending.

Consensus

(e.g., PBFT,
BFT-SMaRt,
DBFT, Nakamoto’s
consensus)

Selection

(e.g., Proof-of-
Work, Proof-of-
Stake, Proof-of-
Authority)

b1

b2

b3

b1

b1b3 b3

Fig. 1: Proof-of-∗ mechanisms do not solve the consensus problem. Instead, they
select a subset, say {11, 13}, of proposed blocks, say {11, 12, 13}, as legitimate
based on some attribute (computational power, coins owned, etc.) of the nodes that
generated them but a separate consensus algorithm is necessary to guarantee that the
block, like 13, decided for a given index of the chain is unique.

In fact, the proof-of-∗ mechanism cannot solve consensus but is instead a mech-
anism to enforce some of the consensus prerequisites so that a proper consensus
algorithm can be executed. Typically, a proof-of-∗ mechanism selects a small subset
of nodes to participate in the consensus by proposing a block for the same index of
the chain as depicted in Figure 1, where {11, 13} are proposed. As this mechanism
cannot guarantee that a unique block is proposed, it is insufficient to decide a single
block and does not solve the consensus problem. Recently, researchers have tried to
clarify the terminology to address this confusion [36] but it remains well spread on
the Internet.

Example: Bitcoin

Bitcoin [48] uses proof-of-work to limit the number of nodes that can create a new
block for a given index of the chain. Once these blocks are created, Bitcoin solves

1 Wikipedia makes use of the term “proof-of-work consensus (sic)” at https://en.wikipedia.
org/wiki/Proof_of_work.
2 https://cointelegraph.com/explained/proof-of-work-explained.

https://en.wikipedia.org/wiki/Proof_of_work
https://en.wikipedia.org/wiki/Proof_of_work
https://cointelegraph.com/explained/proof-of-work-explained

6 D. Hyland et al.

consensus by deciding among multiple candidate blocks (that all contain a valid
proof-of-work) the unique block that is part of the longest branch. This is the reason
why Bitcoin [48] uses an extra mechanism, Nakamoto’s consensus, to try to solve
the problem: it selects the blocks of the longest branch by assuming that the delay
to create and propagate every block to all miners in the network is upper-bounded
such that every miner can safely choose the candidate block at index 8 once they
have waited long enough [33]. The proof-of-work mechanism helps limit the block
creation speed by requiring that a node first solves a computationally hard crypto-
puzzle before propagating a new block. This proof-of-work mechanism alone does
not ensure the uniqueness of the block at each index—this is precisely why a separate
consensus protocol based on identifying the block of the longest branch is required
in Bitcoin.

4 Myth #2: Consensus is the bottleneck of
blockchains in LANs

Distributed consensus performance (expressed for example in decisions per unit of
time) generally degrades with the number of participants. This led to the folklore
belief that the performance of consensus is the key limiting factor of the performance
of the blockchain in normal executions as was described by NEC.3 Typically, BFT
consensus algorithms involve a quadratic number of messages [12, 20, 23] that is
believed to rapidly consume the limited bandwidth resource. For example, the classic
PBFT consensus algorithm [20] employs a distinguished participant, the leader,
proposing a value and having participants exchanging sufficiently many prevotes to
make sure that no other value will be accepted, then having participants exchanging
sufficiently many votes to make sure the value is accepted by other participants
before deciding this value.

For this reason, it has long been thought that a blockchain performance is lim-
ited by the performance of its consensus, and recent solutions, like HotStuff [66],
attempted to boost blockchain performance by reducing the message complexity
of the consensus algorithm using threshold signatures (as discussed in Section 9).
HotStuff follows the classic leader-based pattern but reduces the quadratic message
complexity, induced by the participants sending prevotes and votes to each other, to
the linear complexity, induced by the participants sending their prevotes and votes
only to the leader that retransmits them.

It turns out that there are other scalability limitations in blockchain systems,
especially in Local Area Networks (LANs)—one example is the verification of
transaction signatures [11, 63]. Traditional blockchain would require every node to
verify the signatures of every transaction. Although there are some blockchains that
employ verification sharding [24] for each signature to be verified by only 5 + 1
nodes, in general, even this optimization is not sufficient to make the verification

3 https://www.nec.com/en/global/insights/article/2020022520/index.html.

https://www.nec.com/en/global/insights/article/2020022520/index.html

Ten Myths About Blockchain Consensus 7

finish significantly earlier. We present the cost of verification sharding in Myth #11.
Additionally, previous works [67] point the execution of smart contracts as a sig-
nificant scalability limitation, specifically the frequent disk operations they cause as
well as their computational cost.

HLF-BFT10 HLF-BFT100 HLF-Solo BFT-Only

Configuration

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (t

x/
se

c)

Fig. 2: In a LAN, Hyperledger Fabric running with an experimental BFT orderer
based on BFT-SMaRt is slightly slower than without consensus (HLF-Solo) but
significantly slower than the BFT orderer alone (BFT-Only). This indicates that the
bottleneck of blockchains is not necessarily their consensus component.

Example: Hyperledger Fabric

In order to test our hypothesis on the existence of other performance limitations,
we selected the Hyperledger Fabric blockchain [3] that aims at being modular and
offering privacy. Even thoughHyperledger Fabric v1.x is crash fault tolerant and does
not aim at tolerating malicious behaviors, there exists a prototype version [57] that
makes use of a BFT orderer (cf. Section 8 for more details) based on BFT-SMaRt.
BFT-SMaRt [12] is a modular BFT consensus protocol in which a stable leader sends
a proposal to all nodes that confirm its consistency in two all-to-all communication
steps, similarly to PBFT [20]. The goal of the test is to observe whether Hyperledger
Fabric could offer similar performance as its consensus or orderer component alone,
when run in the same environmental settings.

We ran the Hyperledger Fabric blockchain system and a BFT-SMaRt baseline
on four machines, each with Ubuntu Linux 14.04.1 LTS, hosted in Dell PowerEdge
R410 servers. Each machine has 32GB of memory and two quad-core 2.27GHz
Intel Xeon E5520 processor with hyper-threading. These machines communicate
through an isolated gigabit Ethernet LAN. The results were obtained with Hyper-
ledger Caliper [16] and are averaged over 5 runs with error bars showing the standard
deviation. Figure 2 depicts throughput for HLF-BFT for blocks of 10 (HLF-BFT10)
and 100 (HLF-BFT100) transactions of payload 4KiB and envelopes of 900 bytes,
HLF-Solo for blocks of 100 transactions (Caliper benchmarks could not complete
with blocks of 10) and a BFT-Only benchmarkwith blocks of 10 transactions.We can

8 D. Hyland et al.

clearly observe that the Byzantine fault-tolerant orderer based on BFT-SMaRt [57]
performs 2× better than Hyperledger Fabric with the same version of this orderer.
Furthermore, the BFT-SMaRt replication library alone, without the required Fabric
machinery, can order 5×more 4KiB transactions per second than what was obtained
in the orderer [12].

5 Myth #3: Consensus is the bottleneck of distributed ledgers in
WANs

Section 4 showed that consensus is not necessarily the bottleneck of a blockchain
in a LAN. This result could be attributed to the blockchain prototype in use, and it
is interesting to explore whether the same observation would apply to a distributed
ledger like Corda [14] that aims at enabling businesses to transact in privacy using
smart contracts without necessarily chaining blocks. Additionally, Section 4 did
not contradict the belief that the consensus protocol could be the bottleneck of
a distributed ledger deployed on the Internet. A LAN typically offers bandwidth
resources that are not comparable to the resources one could obtain in a Wide Area
Network (WAN) subject to congestions, long distances, etc.

Here we push the study one step further by selecting a recent BFT consensus
protocol designed especially for distributed ledgers, DBFT [23]; two versions of
Corda, its public version and its enterprise edition; and running experiments across
four regions, in Australia, Brazil, Europe and USA. The goal of these new sets of
experiments is to pinpoint what overhead comes from the consensus itself and what
overhead comes from other parts of the distributed ledger. If consensus was truly the
bottleneck of the distributed ledger, the performance of the distributed ledger would
be comparable to the performance of its bottleneck when running in isolation.

Example: Corda

Corda is crash fault tolerant as it uses the Raft consensus algorithm and cannot
tolerate Byzantine failures. In fact, some of us tried deploying a BFT prototype of
Corda running on BFT-SMaRt in the past, however, we were not able to make it run
and the Corda developers recommended that we use the crash fault tolerant version
instead [38]. We thus modified Corda to use BFT-SMaRt and DBFT as consensus
algorithms. DBFT is a formally-verified consensus protocol [23, 61] that differs from
the previously-mentioned leader-based protocols as each of its = participants reliably
broadcasts its proposal to other nodes and spawn = binary consensus instances that
define a bitmask in order to output a decision.Wemeasure both the throughput of the
Corda distributed ledger, its public and enterprise version Corda 4.0-SNAPSHOT,
as well as the throughput of the BFT-SMaRt and DBFT consensus algorithms, as the
average observed over 4 runs on Amazon Web Services (AWS) EC2 instances. As

Ten Myths About Blockchain Consensus 9

in Corda, each transaction has a serialized size of 8KiB bytes (that is much larger
than the original size), we use the same transaction size for running the consensus
algorithms alone.

DBFT-Local(2 cores)
DBFT-World(2 cores)

Corda-Public-DBFT(2 cores)

Corda-Ent-DBFT(2 cores)
Corda-Ent-DBFT(36 cores)

Configuration

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (t

x/
se

c)

6103

251

31 39

138

(a) Corda w/ DBFT vs. DBFT alone

16 20
Server

0

250

500

750

1000

1250

1500

1750

2000

Th
ro

ug
hp

ut
 (t

x/
s)

BFT-SMaRt (Local)
BFT-SMaRt (World)
Corda/BFT-SMaRt (Local)

(b) Corda w/ BFT-SMaRt vs. BFT-SMaRt
alone

Fig. 3: The bottleneck of distributed ledger is not necessarily the consensus protocol.
(a) When running with the DBFT consensus, the public and the entreprise versions
of the Corda distributed ledger are significantly slower than DBFT alone. (b) When
running with the BFT-SMaRt consensus, the enterprise version of Corda runs slower
than BFT-SMaRt alone.

Figure 3a compares the throughput of DBFT and Corda with DBFT on 4 c5.large
instances, each with 1 hyperthreaded Intel Xeon 8124M core. We also add the
throughput of Corda enterprise with DBFT on 4 c5.9xlarge instances, each with
18 hyperthreaded Intel Xeon 8124M cores. We execute DBFT in two setups. In the
“DBFT-Local” setup, the 4 instances are in a single datacenter. In the “DBFT-World”
setup, each instance is in a separate datacenter located in Ohio, Frankfurt, Sydney
and São Paulo.We execute Corda in a local setup only as we did not manage to deploy
it on a geo-distributed setup. The result indicates that with comparable setups the
throughput of DBFT is 156× higher than the throughput we could obtain from any
version of Corda running DBFT with the same number of cores. Moreover, DBFT
executed on a georeplicated setup on a 2-core machine still has a throughput 1.8×
higher than Corda on a local setup with a 36-core machine, and 6.4× higher than
Corda on a local setup with a 2-core machine. We were not able to locate precisely
the cause of the Corda performance drop, however, we observe that Corda enterprise
performance increases with the number of cores. This seems to indicate that the
throughput of Corda is limited by computation.

On Figure 3b we compare the throughput of BFT-SMaRt and Corda enterprise
with BFT-SMaRt on 16 and 20 c5.4xlarge instances, each with 8 hyperthreaded Intel
Xeon Platinum 8275CL cores. Similarly to DBFT, deploy BFT-SMaRt in two setups.
In the “Local” setup, all instances are in the same datacenter. In the “World” setup,
instances are spread among 4 datacenters in Ohio, Frankfurt, Sydney and Sao Paulo.

10 D. Hyland et al.

We execute Corda in a local setup only as we did not manage to deploy it on a geo-
distributed setup. We observe that, on a local setup, the throughput of BFT-SMaRt
is consistently more than 6× larger than the throughput of Corda. Moreover, even
when executed in a geo-distributed setup, the throughput of BFT-SMaRt is still more
than 2× larger than Corda executing in a single datacenter. Since the only difference
between BFT-SMaRt and Corda is the set of operations outside the consensus, this
performance gap indicates that these additional operations are the bottleneck of the
Corda distributed ledger.

6 Myth #4: CFT consensus algorithms are safe under Byzantine
faults

There is a misconception that CFT protocols are enough for implementing a safe
blockchain consensus. In particular, the possibility that Byzantine nodes can affect
the safety of these protocols is often overlooked: two recent consensus algorithms,
called Clique and Aura [41], have been integrated in two of the mostly deployed
blockchain software, called geth and parity, in order to cope with d=/2e − 1
Byzantine failures, a problem that is known to be unsolvable [13]. As a result, the
Attack of the Clones led to double-spending in two testnets running these soft-
ware [30], hence demonstrating, in practice, this safety violation. More generally,
consider a system with = nodes in which up to 5 can fail. In a practical system, where
there are no strict time bounds for communication, a node can wait for responses
from at most = − 5 nodes (a quorum) since up to 5 nodes can be faulty and never
answer. In such systems, quorums must intersect in at least one correct process to
ensure actions observed from a quorum (i.e., a subset of =− 5 nodes) are observable
from any quorum. In the crash failure model, all =− 5 responding nodes are correct,
and thus = > 2 5 (the number of nodes in any two quorums must be greater than
the total number of nodes in the system, i.e., (= − 5) + (= − 5) > =) is enough
to ensure intersection. In the Byzantine model, there might be faulty nodes in an
accessed quorum sending wrong values, therefore = > 3 5 (the number of nodes
in any two quorums must be greater than the total number of nodes in the system
plus the maximum number of “liars”, i.e., (= − 5) + (= − 5) > = + 5) and quorums
intersecting in at least 5 + 1 nodes.

Example: Raft

In Figure 4, one can see that two quorums of three nodes intersecting at one node
could be sufficient to ensure safety if nodes can only crash but would violate safety if
the intersecting node misbehaves by responding that no new transaction tx has been
written. Raft [51] is a CFT protocol currently employed in popular blockchains such
as Corda [14] and Hyperledger Fabric [3]. In Raft, a leader coordinates the replicated

Ten Myths About Blockchain Consensus 11

client
leader
node1

Byzantine node
node2

new leader

fault

ackwrite(tx) read()

w
ri

te
qu

or
um

re
ad

qu
or

um

tx’

time tx’

Fig. 4: A possible execution of a replicated write-then-read with a quorum size of
b=/2c + 1. We assume the quorum leaders are correct for simplicity. The execution
would be correct in a CFT model but is incorrect in a BFT model. The intersection
of BFT quorums should be larger than the intersection of CFT quorums for the
consensus protocol to guarantee safety. If the intersection contains only Byzantine
nodes, then the response obtained after reading from a quorum can violate safety,
which can be exploited to double-spend in cryptocurrency applications.

execution by writing the next transaction to be processed onto a write quorum and
then informs the client that its transaction is committed as depicted in the distributed
execution of Figure 4 where time increases from left to right. If, after this, the leader
fails before committing this transaction in all servers and a new leader takes over, this
new leader will read the pending transactions to ensure the same safety requirement
of the algorithm: that if some server committed this transaction, all servers will
commit it in the same position on the transaction log. If this new leader accesses
a read quorum that intersects with the write quorum in a single server (as in the
figure), and if this server is Byzantine and misbehaves, then it can lie about what
happened (ignoring or replacing the transaction) and make the new leader commit a
corrupted state, hence violating safety. This is precisely why, in contrast with Raft,
BFT systems typically use quorums whose intersections contains at least 5 +1 nodes.

7 Myth #5: A blockchain with signatures and hashes is secure

An important misconception is that cryptography could solve the same problem as
fault tolerance as illustrated by quantum-resilient efforts devoted on top of fundamen-
tally insecure blockchains [19]. In particular, public-key cryptosystems are typically
used in blockchains to ensure authentication: if a transaction is not signed by the
owner of the account from which it tries to withdraw, then it is rejected—meaning
that the signature is incorrect. Combined with hashes these signatures guarantee
tamper-evidence in that a non-authorized change will be easily detected as the hash
of the signed transaction will not correspond to the observed signatures. These guar-
antees are not sufficient for security to ensure for example that a client is observing
the right blockchain version. A malicious node could convince a client who acts as
a merchant that a transaction buying its product is committed while it is not. To do

12 D. Hyland et al.

so, the malicious node presents a fake version of the blockchain where it appends
correctly signed transactions that it created without ever sending them to the actual
blockchain.

This misconception is illustrated by some recent efforts devoted to develop
quantum-resilient cryptographic software [19] on top of blockchain systems be-
cause these blockchains cannot tolerate the misbehavior of a single participant. In
fact, quantum resilience aims at coping with the misbehavior of a quantum computer
node to avoid asset theft, yet the misbehavior of a single node participating in the
underlying CFT blockchain is sufficient to produce this theft, hence defeating the
purpose of the quantum resilience.

Example: Raft

To guarantee that a client can truly identify whether its transaction is committed, it
must make sure that 5 + 1 nodes say so. If not, it risks to be a victim of a double
spending where the coins used in the supposedly committed transaction of the fake
version are actually reused in a truly committed transaction of the blockchain. Notice
that the use of signatures cannot help in the Raft scenario described in Myth #6. If
the write operation of the leader is signed in Figure 4, the Byzantine node on the
intersection cannot create a different proposal (with CG ′) for the leader, but it can still
hide it, stating it has not received any transaction at all. In this way, the transaction,
despite being confirmed to the client, will be “undone” from the system history,
opening up the possibility of double spending attacks that may be devastating for
financial applications. More generally, there exist various attacks against blockchains
that rely on delaying messages (e.g., selfish mining [31], eclipse attacks [39], BGP
hĳacking [5] and more generally man-in-the-middle attack [29]) that an attacker can
exploit to double spend without violating authentication or forging private keys.

8 Myth #6: Adding a BFT consensus to a CFT blockchain makes
it BFT

Modularity is important for enabling project collaboration at the heart of open
source communities. Due to this, several blockchain platforms have been built with
modular or replaceable components [3, 8]. Hyperledger Fabric separates the orderer
service in charge of ordering transactions from the endorser service in charge of
validating transactions to offer modularity [3]. In particular, Fabric offers several
interchangeable orderers: a centralized service, a CFT one, and an experimental
BFT one [57], hence illustrating this modularity.

A common mistake stems from extrapolating the guarantees offered by a module
of a blockchain system to the whole blockchain system, for example when using

Ten Myths About Blockchain Consensus 13

Corda in applications where a consortium of competitors do not trust each other,4 or
when using a BFT orderer within Hyperledger Fabric, which tolerates only crashes.
To illustrate this issue, let us consider a distributed ledger that tolerates only crash
failures, like Corda or Hyperledger Fabric—this type of distributed ledgers can
thus only run in a trustworthy environment as its guarantees would be violated if a
participant misbehaves. A developer who want to make the blockchain service more
robust may identify the consensusmodule as amodule that is limited by its crash fault
tolerance and be tempted to replace it by a more robust module offering Byzantine
fault tolerance. If the blockchain system is modular enough, then the developer
expects the BFT consensus module to have the same interface as the CFT module.
However, typical BFT services do not have the same interface as CFT services,
precisely because the acknowledgement of a Byzantine server does not convey the
same guarantee as the acknowledgement of a correct server. Figure 5 depicts the
problem that might happen when the interface remains unchanged while the model
changes from CFT to BFT: the client might be fooled by a flawed acknowledgement
coming from a Byzantine front-end while it could only receive correct servers in a
CFT model.

BFT
Consensus

FrontendClient

lie
Byzantine
node

Fig. 5: A client contacting a single Byzantine front-end server makes the BFT
consensus useless. This is why, replacing one component of the software architec-
ture is rarely sufficient to make a blockchain originally tolerant to crash failures, a
blockchain that also tolerates Byzantine failures.

Example: Hyperledger Fabric and BFT-SMaRt

Hyperledger Fabric [3] defines a modular architecture for supporting permissioned
blockchains, which is used in production since version 1.0.5An important component
of this architecture is the orderer service, a group of nodes responsible for ordering
and packing transactions into blocks. At the time of writing, Fabric supports only
CFT orderers: one based on Apache Kafka and another based on CoreOS’ Raft
implementation. In both cases, a single front-end/server receives the transaction to
be ordered, and produces and signs the block (with ordered transactions) in the

4 https://www.corda.net/samples/

5 https://www.fintechfutures.com/2017/03/ibm-cloud-launches-enterprise-ready\
-blockchain-for-hyperledger-fabric/.

https://www.corda.net/samples/
https://www.fintechfutures.com/2017/03/ibm-cloud-launches-enterprise-ready\-blockchain-for-hyperledger-fabric/
https://www.fintechfutures.com/2017/03/ibm-cloud-launches-enterprise-ready\-blockchain-for-hyperledger-fabric/

14 D. Hyland et al.

end. This design still tolerates crashes because there are redundant front-ends in the
system, and in case of failures a backup front-end takes over the role. However, in this
model, even if we replace Raft by PBFT [20] the front-end of the ordering service
will still be receiving and signing the block. An experimental BFT orderer available
for Fabric [57] changes this design to make the server create a block and sign it,
however, it impacts modularity. In the end, the final generated block is signed by at
least 5 +1 servers. Yet, this change requires additional changes in other modules, say
to verify these 5 + 1 signatures. This shows that replacing a module was insufficient.

9 Myth #7: BFT consensus needs a linear message complexity

It is often the case that bad consensus performance at large scale is attributed to the
all-to-all communication pattern of state-of-the-art consensus protocols [22, 64, 66].
In fact = servers sending messages to all other servers necessarily lead to a quadratic
messages complexity [12, 20, 21]. As a result, lots of efforts have been devoted
to replacing all-to-all message exchanges by one-to-all exchanges [1, 7, 8, 42, 66].
The consensus protocol at the heart of Facebook’s blockchain [66] is a typical case
which uses threshold signatures to replace all-to-all by one-to-all communications.
This result in a linear message complexity for the steady state case. It appears that
improving this message complexity does not necessarily lead to better performance.
Several factors may limit the throughput of a replicated state machine before the
message complexity becomes an issue. Some of these factors are the computational
cost of cryptography (cf. Myth #11), the latency of writing new blocks to stable
storage [11], the unique value decided per consensus instance (cf. Myth #12), and
the use of a slow leader [9, 4].

Europe-64 Europe-128 World-80
Configuration

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (t

ho
us

an
ds

 tx
/s

)

DBFT
HotStuff

Fig. 6: Linear message complexity does not always bring good performance. The
throughput of DBFT, which has a quadratic message complexity, is always higher
than HotStuff, which has a linear message complexity in the steady state. This is
because DBFT balances the network load on more links.

Ten Myths About Blockchain Consensus 15

Example: HotStuff vs. Democratic BFT (DBFT)

In Figure 6,we compare the throughput of two systems,HotStuff [66] andDBFT [24],
when the number of server increases on two different setups. On the “Europe” setup,
a total of 64 or 128 servers run in four different AWS datacenters in Ireland, London,
Paris and Frankfurt. On the “World” setup, a total of 80 servers run in four different
AWS datacenters in Ohio, Frankfurt, Sydney and São Paulo. Each server is an AWS
EC2 c5.xlarge instance with 2 hyperthreaded Intel Xeon 8124M cores for a total of
4 hardware threads. HotStuff has a linear message complexity while DBFT has a
quadratic message complexity. The DBFT replicated state machine does not use any
specific optimization and is written in Java. HotStuff replicated state machine uses
pipelining to reduce communication delays and iswritten inC++.Weuse transactions
of 400 bytes, which is a typical Bitcoin transaction size. We observe that DBFT has
a throughput up to 11× larger than HotStuff in the “Europe” setup and 16× larger
in the “World” setup despite the fact that HotStuff has a better message complexity.
We explain this difference by the fact that the HotStuff consensus is leader based and
uses expensive threshold signatures while DBFT consensus is leaderless and its most
expensive operation is a cryptographic hash. While we do not deny the impact of
message complexity, we stress that other bottlenecks limit a consensus performance
before message complexity becomes an issue.

10 Myth #8: Reconfiguring consensus participants is easy

Consortium blockchains rely on a globally known set of participants. This set of
participants does not change while the consensus decides a new block. However, it
is necessary or even desirable to change this set regularly between the consensus
executions (e.g., to prevent bribery attacks). This operation, called reconfiguration
or membership change, seems to be a built-in feature of some blockchains. For
example, Tendermint design mentions a validator set changes [58] but unfortunately
this requires to shutdown the blockchain. One of the challenge is purely related to
software design as it is generally hard for a complex system to handle components
hotplug [40, 47]. A more subtle issue is the possibility of blockchain forks when
reconfiguration is employed, since participants already removed from the group can
be compromised and cope with the ledger [11]. More generally, the challenge is for
the system client to know where to send requests as the participant set changes over
time. This last challenge is especially hard since a malicious frontend could always
present fake participant set in a scenario similar to Myth #8.

16 D. Hyland et al.

Examples: Hyperledger Fabric and Tendermint

Hyperledger Fabric aims at supporting membership changes without compromis-
ing the network, however, it still “requires that the peer or orderer process is
restarted”.6 Tendermint mentions validator set changes [58], however, this requires
an external application that handles those reconfigurations.7 BFT replication sys-
tems like BFT-SMaRt also require a trusted external application to manage such
reconfigurations [12]. New implementations to reconfigure the Byzantine consensus
participants rely on consensus protocol themselves and need a trusted domain name
system to catch up with the latest configuration [62], and a forgetting protocol to
ensure removed participants are unable to validate blocks from an invalid fork [11].
These new implementations make it possible for alive participants (i.e., participants
being notified of configuration changeswhen they happen) to keep track of the system
configuration. However, participants joining the system for the first time or catching
up after being offline still have to rely on a permissioned trusted infrastructure that
cannot be reconfigured, hence falling back on the initial challenge.

11 Myth #9: Blockchain performance is not limited by the
cryptography

Blockchain is believed to be bottlenecked by the large bandwidth consumed by its
Byzantine consensus component. This is the reason why substantial efforts were de-
voted to reduce communication complexity at the price of increasing CPU overhead
through the use of threshold signatures [66] (cf. Section 9). There is, however, a
CPU bottleneck induced by the cryptographic verification of transaction signatures
inherent to blockchain systems [24, 60] that is often neglected. In particular, this
CPU-intensive verification is necessary to ensure that a Byzantine node does not
withdraw an amount of assets from the account of someone else. Each transaction
has thus an associated signature that needs to be cryptographically verified. This
verification limits the speed at which the blockchain can commit transactions.

Example: Redbelly Blockchain

Redbelly Blockchain [24, 59] relies on verification sharding to minimize the number
of verifications needed per transaction and to maximize its performance. The idea is
to have each transaction being verified by between 5 + 1 and 2 5 + 1 nodes instead

6 https://hyperledger-fabric.readthedocs.io/en/latest/msp.html.
7 See Section 7.1, second paragraph, of https://atrium.lib.uoguelph.ca/xmlui/
bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&
isAllowed=y

https://hyperledger-fabric.readthedocs.io/en/latest/msp.html
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y

Ten Myths About Blockchain Consensus 17

10 15 20 25 30 35 40 45 50
Fault tolerance

60000

80000

100000

120000

140000

160000

T
h
ro

u
g
h
p
u
t

(t
x
/s

e
c)

Fig. 7: The performance of Redbelly Blockchain decreases with the number of
verifications of transaction signatures that is linear in the fault tolerance.

of all nodes in order to minimize CPU consumption. Figure 7 depicts the through-
put (expressed in 400-byte transactions per second) of Redbelly when increasing the
number of failures 5 on 140 c4.8xlarge AWSVMs geo-distributed on four continents
(see details in [24]). The performance decreases linearly with the system’ fault toler-
ance 5 precisely because the number of verifications per node increases, illustrating
the negative impact of verifications on the throughput of Redbelly Blockchain. Note
that similar observations have been made in the context of Hyperledger Fabric [60]
where the caching of verified endorsement certificates led to significant performance
improvements.

12 Myth #10: Blockchain needs to solve the classic consensus
problem

A blockchain system needs a consensus protocol to totally order a series of blocks in
order to guarantee that the blockchain it implements remains a chain. If disagreement
happens, then the blockchain forks,making the systemvulnerable to double spending.
As participants can be incentivized to steal assets from others, most systems resort to
traditional Byzantine consensus protocols [52], which ensures (1) agreement in that
correct nodes cannot decide different values, (2) termination in that a correct node
eventually decides, and (3) validity in that the decided value is one of the proposals.
This is what is done in most blockchain systems that rely on a BFT consensus:
Tendermint consensus [43] uses a variant of DSL [27], Facebook’s Libra [8] uses
HotStuff [66], and an orderer of Hyperledger Fabric uses BFT-SMaRt [12].

These protocols share the same goal of guaranteeing that only one proposal among
all the proposals of the system get decided. This means that if each server proposes
$ (1) transactions to the consensus service, then the number of transactions decided
by the consensus is $ (1), regardless of the number of servers participating in the
protocol. This happens because they ensure this classic notion of consensus validity
where the value decided is one of the proposed values. There are variants of the

18 D. Hyland et al.

0 20 40 60 80 100
Server

0

2000

4000

6000

8000

10000

T
ra

n
sa

ct
io

n
s

p
e
r

co
n
se

n
su

s
in

st
a
n
ce Predicate-based consensus

Classic consensus

Fig. 8: A protocol solving the classic consensus definition would commit less trans-
actions than one solving predicate-based validity consensus.

consensus problem definition for the Byzantine model that replace this property.
For instance, in interactive consistency [44], which is well suited for synchronous
system but cannot be solved in a partially synchronous environment, the proposed
values of all correct nodes are obtained in the end. Another definition is vector
consensus [26, 50] that requires servers to decide the same vector containing at
least 5 + 1 values proposed by different servers, where 5 is the maximum number
of Byzantine failures. Unfortunately, in blockchain systems one cannot guarantee
that 5 + 1 values are valid and thus, we would need to select the union of the valid
transactions in each vector position. In particular, proposers (or miners) typically
group transaction requests from client and cannot guarantee that all the received
transactions are valid. An alternative to this problem is thus to relax the validity
further to only accept values as long as they are deemed valid by the application (e.g.,
are correctly signed [12, 17]), but without any restrictions on their numbers [23, 24].

Example: validity predicate-based Byzantine consensus problem

With this new consensus definition called validity predicate-based consensus [23],
one can thus have distinct servers collecting transaction requests from the clients
and then propose a batch of these transactions to a common consensus instance. If
each of = server propose distjoint batches ofΩ(1) transactions, and provided that the
transactions are correctly signed, then the number of transactions that can be decided
at the end of the consensus is Ω(=). This approach is currently implemented in the
pipeplined Byzantine state machine replication, called Dispel [63], and in Redbelly
Blockchain [24, 59] in the form of a Set ByzantineConsensus solution. As depicted in
Figure 8, the number of committed transactions per consensus instance is linear in the
number of servers participating and the throughput of the blockchain system grows
with the number of servers (until exhaustion of some resources). This Byzantine
consensus variant is especially designed for the geo-distributed environment of
blockchains.

Ten Myths About Blockchain Consensus 19

Final Remarks

Related work. Although we are not aware of any work focusing on debunking
blockchainmyths, there are several research papers presenting evidence contradicting
previous claims about blockchain consensus. Armknecht et al. [6] show that some
assumptions listed in the Ripple consensus protocol white paper are not sufficient to
ensure its safety. Cachin and Vukolić [18] explain that proof-of-work blockchains do
not offer finality. Amoussou-Guenou et al. give counter-examples where Tendermint
core does not solve consensus [2]. Saltini and Hyland-Wood [54] explain that the
consensus at the heart of the Quorum blockchain does not terminate. Tholoniat
and Gramoli [61] explain that the consensus at the heart of HoneyBadgerBFT does
not terminate and argue in favor of formal verification. We ourselves rely on the
correctness of consensus protocols to debunk these myths, but we have chosen the
BFT-SMaRt library that has been publicly available for more than a decade [12] and
Democratic BFT [23] that has recently been formally verified using parameterized
model checking [10].

Prior to this work, various efforts were dedicated to evaluating the performance
of distributed ledgers. BFT-Bench [37] predates blockchains and evaluates mul-
tiple BFT consensus algorithms. Blockbench [25] as well as [53] compare the
performance of proof-of-work blockchains against private blockchains. Han et
al. measures the number of participants at which the performance of blockchain
drops [38]. Some evaluate proof-of-authority blockchains [45] that rely on a set
of = authoritative validators among which at most 5 can be Byzantine to run the
consensus. An evaluation focuses on comparing the performance of Byzantine Fault
Tolerant blockchains [56] whereas the recent Diablo benchmark allows to measure
blockchain performance under realistic workloads [35].

Conclusion.We presented ten myths on blockchain consensus that represent misun-
derstandings about the performance and trust model of existing applications. Since
consensus is a key element of blockchain and distributed ledger systems and is instru-
mental in the design of fault-tolerant replicated state machines, these misconceptions
can lead to dramatic consequences, including asset losses in financial applications.
In fact, several blockchains have been built to offer crash fault tolerant consensus,
however, adapting them to work in an adversarial context is not trivial. It is thus
crucial to debunk these myths to strengthen the security of future blockchain-based
applications to be put in production. We argue that it is possible for application
designers to rethink blockchains with built-in Byzantine fault tolerance to offer
reasonable performance after identifying the right bottlenecks.

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
Byzantine fault-tolerant services. In: SOSP, pp. 59–74 (2005)

20 D. Hyland et al.

2. Amoussou-Guenou, Y., Pozzo, A.D., Potop-Butucaru, M., Tucci Piergiovanni, S.: Correctness
of tendermint-core blockchains. In: OPODIS, vol. 125, pp. 16:1–16:16 (2018)

3. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D.,
Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M.,
Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S., Yellick, J.:
Hyperledger Fabric: A distributed operating system for permissioned blockchains. In: EuroSys
(2018)

4. Antoniadis, K., Desjardins, A., Gramoli, V., Guerraoui, R., Zablotchi, I.: Leaderless consensus.
In: ICDCS (2021)

5. Apostolaki, M., Zohar, A., Vanbever, L.: Hĳacking bitcoin: Routing attacks on cryptocurren-
cies. In: S&P, pp. 375–392 (2017)

6. Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple: Overview and
outlook. In: Trust and Trustworthy Computing, pp. 163–180 (2015)

7. Aublin, P.L., Guerraoui, R., Knežević, N., Quéma,V.,Vukolić,M.: The next 700BFTprotocols.
ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015)

8. Bano, S., Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z.,
Malkhi, D., Naor, O., Perelman, D., Sonnino, A.: State machine replication in the Li-
bra blockchain (2019). https://developers.libra.org/docs/assets/papers/
libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
(accessed 10/2019)

9. Berger, C., Reiser, H.P., Sousa, J., Bessani, A.: AWARE: Adaptive Wide-Area Replication
for Fast and Resilient Byzantine Consensus. IEEE Transactions on Dependable and Secure
Computing pp. 1–16 (2020). Early access

10. Bertrand, N., Gramoli, V., Konnov, I., Lazic, M., Tholoniat, P., Widder, J.: Compositional
verification of byzantine consensus. Tech. Rep. 03158911, HAL (2021)

11. Bessani, A., Alchieri, E., Sousa, J.a., Oliveira, A., Pedone, F.: From Byzantine Replication to
Blockchain: Consensus is only the Beginning. In: DSN (2020)

12. Bessani, A., Sousa, J., Alchieri, E.E.P.: State machine replication for the masses with BFT-
SMART. In: DSN, pp. 355–362 (2014)

13. Bracha, G.: An asynchronous [(n - 1)/3]-resilient consensus protocol. In: PODC, pp. 154–162
(1984)

14. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction. R3 CEV, August (2016)
15. Buterin, V., Griffith, V.: Casper the friendly finality gadget. Tech. Rep. 1710.09437v4, arXiv

(2019)
16. Hyperledger caliper benchmarks (2020). https://www.hyperledger.org/use/caliper
17. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast

protocols. In: CRYPTO, pp. 524–541 (2001)
18. Cachin, C., Vukolić, M.: Blockchain consensus protocols in the wild (keynote talk). In: DISC,

pp. 1:1–1:16 (2017)
19. Campbell, R.: Transitioning to a Hyperledger Fabric quantum-resistant classical hybrid public

key infrastructure. The Journal of The British Blockchain Association (2019)
20. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACMTrans.

Comput. Syst. 20(4), 398–461 (2002)
21. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine fault tolerant

systems tolerate Byzantine faults. In: NSDI, pp. 153–168 (2009)
22. Coelho, P.R., Junior, T.C., Bessani, A., Dotti, F.L., Pedone, F.: Byzantine fault-tolerant atomic

multicast. In: DSN, pp. 39–50 (2018)
23. Crain, T., Gramoli, V., Larrea,M., Raynal,M.: DBFT: Efficient leaderless Byzantine consensus

and its applications to blockchains. In: NCA, pp. 1–8 (2018)
24. Crain, T., Natoli, C., Gramoli, V.: Red belly: A secure, fair and scalable open blockchain. In:

S&P (2021)
25. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A framework for

analyzing private blockchains. In: SIGMOD, pp. 1085–1100 (2017)
26. Doudou, A., Schiper, A.: Muteness detectors for consensus with byzantine processes. In:

PODC, p. 315 (1998)

https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://www.hyperledger.org/use/caliper

Ten Myths About Blockchain Consensus 21

27. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM
35(2), 288–323 (1988)

28. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: CRYPTO, vol. 740
(1993)

29. Ekparinya, P., Gramoli, V., Jourjon, G.: Impact of man-in-the-middle attacks on Ethereum. In:
SRDS, pp. 11–20 (2018)

30. Ekparinya, P., Gramoli, V., Jourjon, G.: The Attack of the Clones against Proof-of-Authority.
In: Proceedings of the Network and Distributed Systems Security Symposium (NDSS’20)
(2020)

31. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: International
conference on financial cryptography and data security, pp. 436–454. Springer (2014)

32. Gramoli, V.: On the danger of private blockchains. In: DCCL (2016)
33. Gramoli, V.: From blockchain consensus back to byzantine consensus. Future Generation of

Computer Systems (2017)
34. Gramoli, V.: Blockchain scalability and its foundations in distributed systems (2021). Coursera

MOOC
35. Gramoli, V., Guerraoui, R., Lebedev, A., Natoli, C., Voron, G.: Diablo: A benchmark suite for

blockchains. In: EuroSys (2023)
36. Gramoli, V., Staples, M.: Blockchain standard: Can we reach consensus? IEEE Communica-

tions Standards Magazine (2018)
37. Gupta, D., Perronne, L., Bouchenak, S.: BFT-Bench: A framework to evaluate BFT protocols.

In: ACM/SPEC ICPE, pp. 109–112 (2016)
38. Han, R., Shapiro, G., Gramoli, V., Xu, X.: On the performance of distributed ledgers for internet

of things. Internet of Things 10 (2020)
39. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer

network. In: USENIX Security, pp. 129–144 (2015)
40. Kemme, B., Bartoli, A., Babaoglu, O.: Online reconfiguration in replicated databases based

on group communication. In: DSN, pp. 117–126. IEEE (2001)
41. Khahulin, P., Barinov, I., Baranov, V.: POA network white paper (2018). https://github.
com/poanetwork/wiki/wiki/POA-Network-Whitepaper

42. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative Byzantine fault
tolerance. In: SOSP, pp. 45–58 (2007)

43. Kwon, J.: Tendermint: Consensus without mining (2014)
44. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4(3), 382–401 (1982)
45. Leal, F., Chis, A.E., González-Vélez, H.: Performance evaluation of private ethereum networks.

SN Computer Science 1(285) (2020)
46. Moniz, H.: The Istanbul BFT consensus algorithm. Tech. Rep. 2002.03613, arXiv (2020)
47. Mwaikambo, Z., Raj, A., Russell, R., Schopp, J., Vaddagiri, S.: Linux kernel hotplug CPU

support. In: Linux Symposium, vol. 2 (2004)
48. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
49. Natoli, C., Yu, J., Gramoli, V., Esteves-Verissimo, P.: Deconstructing blockchains: A com-

prehensive survey on consensus, membership and structure. Tech. Rep. 1908.08316, arXiv
(2019)

50. Neves, N.F., Correia, M., Verissimo, P.: Solving vector consensus with a wormhole. IEEE
Trans. Parallel Distrib. Syst. 16(12), 1120–1131 (2005)

51. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm. In: USENIX
Annual Technical Conference, pp. 305–319 (2014)

52. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J.
ACM 27(2), 228–234 (1980)

53. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private
blockchain platforms in varying workloads. In: ICCCN, pp. 1–6 (2017)

54. Saltini, R., Hyland-Wood, D.: Correctness analysis of IBFT. Tech. Rep. 1901.07160, arXiv
(2019)

https://github.com/poanetwork/wiki/wiki/POA- Network-Whitepaper
https://github.com/poanetwork/wiki/wiki/POA- Network-Whitepaper

22 D. Hyland et al.

55. Schwartz, D., Youngs, N., Britto, A.: The Ripple consensus protocol (2014). https://
ripple.com/files/ripple_consensus_whitepaper.pdf

56. Shapiro, G., Natoli, C., Gramoli, V.: The performance of Byzantine fault tolerant blockchains.
In: NCA (2020)

57. Sousa, J.a., Bessani, A., Vukolić, M.: A Byzantine fault-tolerant ordering service for the
hyperledger fabric blockchain platform. In: DSN (2018)

58. Tendermint 0.10.2 (2017). White paper - https://jepsen.io/analyses/
tendermint-0-10-2.pdf

59. Tennakoon, D., Hua, Y., Gramoli, V.: Smart Redbelly Blockchain: Reducing congestion for
Web3. In: IPDPS (2023)

60. Thakkar, P., Nathan N, S., Vishwanathan, B.: Performance benchmarking and optimizing
Hyperledger Fabric blockchain platform. In: MASCOTS (2018)

61. Tholoniat, P., Gramoli, V.: Formal verification of blockchain byzantine fault tolerance. In:
FRIDA (2019)

62. Vizier, G., Gramoli, V.: ComChain: A blockchain with Byzantine fault tolerant reconfiguration.
Concurrency and Computation, Practice and Experience 32(12) (2019)

63. Voron, G., Gramoli, V.: DISPEL: Byzantine SMR with distributed pipelining. Tech. Rep.
1912.10367, arXiv (2019)

64. Vukolic, M.: The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In:
IFIP WG 11.4 International Workshop on Open Problems in Network Security, pp. 112–125
(2015)

65. Weber, I., Gramoli, V., Ponomarev, A., Staples, M., Holz, R., Tran, A.B., Rimba, P.: On
availability for blockchain-based systems. In: SRDS, pp. 64–73 (2017)

66. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT consensus with
linearity and responsiveness. In: PODC, pp. 347–356 (2019)

67. Zheng, P., Zheng, Z., Luo, X., Chen, X., Liu, X.: A detailed and real-time performance
monitoring framework for blockchain systems. In: ICSE-SEIP, pp. 134–143 (2018)

https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://jepsen.io/analyses/tendermint-0-10-2.pdf
https://jepsen.io/analyses/tendermint-0-10-2.pdf

	Ten Myths About Blockchain Consensus
	David Hyland and João Sousa and Gauthier Voron and Alysson Bessani and Vincent Gramoli
	Introduction
	Background on Consensus and Proof-of-
	Myth #1: Proof-of- solves consensus
	Myth #2: Consensus is the bottleneck ofblockchains in LANs
	Myth #3: Consensus is the bottleneck of distributed ledgers in WANs
	Myth #4: CFT consensus algorithms are safe under Byzantine faults
	Myth #5: A blockchain with signatures and hashes is secure
	Myth #6: Adding a BFT consensus to a CFT blockchain makes it BFT
	Myth #7: BFT consensus needs a linear message complexity
	Myth #8: Reconfiguring consensus participants is easy
	Myth #9: Blockchain performance is not limited by the cryptography
	Myth #10: Blockchain needs to solve the classic consensus problem
	References

