
How To Benchmark Permissioned Blockchains

Jeeta Ann Chacko1, Ruben Mayer2, Alan Fekete3, Vincent Gramoli3, and
Hans-Arno Jacobsen4

1 Technical University of Munich
chacko@in.tum.de

2 University of Bayreuth
ruben.mayer@uni-bayreuth.de

3 University of Sydney
{alan.fekete,vincent.gramoli}@sydney.edu.au

4 University of Toronto
jacobsen@eecg.toronto.edu

Abstract. Blockchain benchmarking systems are actively discussed in
the literature, focusing on increasing the number of blockchains that can
be supported. However, the constant inception of new blockchains into
the market and their vast implementation differences make it a mas-
sive engineering challenge. We provide a general discussion on the main
aspects of benchmarking blockchains, highlighting the necessary contri-
butions from the developers and users of blockchains and benchmarking
systems. We identify problem statements across four benchmarking fac-
tors by investigating five popular permissioned blockchains. Further, we
define a broad methodology to tackle these problems. We conduct a case
study of five existing blockchain benchmarking systems for our evaluation
and identify their limitations, clarifying the need for our methodology.

Keywords: permissioned blockchains · benchmarking systems

1 Introduction

Though blockchains were initially considered digital currency exchange sys-
tems, introducing smart contracts led to the classification of blockchains as
decentralized transactional management systems that could support more use
cases [64]. Later, the conception of permissioned blockchains that restricted the
network access to authorized users and improved the overall performance made
blockchains attractive for enterprise use cases. Currently, the most popular per-
missioned blockchain platforms, such as Fabric, Corda, Multichain, and Quo-
rum, have around 30 to 70 enterprise partners using their systems for various
use cases, such as banking, supply chain transparency, and digital asset manage-
ment [21,43,55,60].

However, the plethora of blockchain systems currently available in the market
creates uncertainty in the selection process. A recent survey shows that 26% of
users switched from their initially chosen blockchain at a later stage of develop-
ment and that performance is one of the top selection criteria for blockchains [63].



2 Chacko et al.

Though most blockchains report their individual performance data, the vast dif-
ferences in implementation, system configuration, and workloads make a fair
comparison challenging [34]. This highlights the demand for a comprehensive
and impartial blockchain benchmarking approach. Currently, there are multiple
benchmarking system implementations available for blockchains [12,29,34,41,58,
65]. Each of them targets one or a specific set of blockchains to benchmark. The
current focus in this research space is on increasing the number of blockchains
supported by a benchmarking system. For example, Blockbench [29], the first
benchmarking system for permissioned blockchains, supports four blockchains,
while Diablo [34] and Gromit [58], the latest benchmarking systems, support
seven blockchains. However, the rapid inception of new blockchains into the
market makes this a massive engineering challenge.

Additionally, as is the case with most transaction processing systems, ini-
tially, the lines between the design and implementation of benchmarking sys-
tems are often blurred [5]. A well-implemented benchmarking system may still
fail to consider all crucial aspects of benchmarking due to poor design [35]. For
example, many existing benchmarking systems only support simple asset trans-
fer scenarios [58, 65], while in reality, blockchains are employed for numerous
other use cases. Therefore, we identify the need for a thorough discussion on the
different aspects of benchmarking blockchains, which will assist in implementing
a comprehensive and extensible benchmarking system in the future.

One needs to understand the similarities and differences between the various
blockchain platforms to identify the diverse factors of benchmarking accurately.
A significant challenge in this direction is the insufficient scientific literature.
Since many blockchains are commercialized, apart from research papers, we
must also analyze technical documentation and blog posts from the respective
blockchain developers to understand their systems thoroughly. Further, given
the vast implementation distinctions among the different blockchain systems,
discussions regarding blockchain benchmarking should not be limited to devel-
opers of benchmarking systems, but should also include developers of blockchain
systems.

Our discussions address the problems regarding crucial benchmarking ele-
ments such as system configuration, parameter tuning, workloads, and metrics.
We emphasize the importance of these issues by extensively analyzing five dif-
ferent permissioned blockchains. We then define the contributions required from
the entire blockchain community to tackle them. We also conduct a case study
of five existing benchmarking systems to identify their limitations and highlight
the need for contributions. For example, we identify various system configuration
settings that affect the performance of each of the multiple blockchains, while
current benchmarking studies only employ the default value for these settings.
In detail, we provide the following contributions:

1. We formulate problem statements across four aspects of benchmarking based
on five different permissioned blockchains (Fabric, Corda, Multichain, Quo-
rum and Diem). This highlights the importance of these problems across
different blockchain platforms.



How To Benchmark Permissioned Blockchains 3

2. We define a general methodology to tackle the problems that spans across
developers and users of blockchains as well as benchmarking systems. This
highlights the contributions required from each of them to improve the do-
main of blockchain benchmarking.

3. We provide a case study of five different blockchain benchmarking systems
and the corresponding benchmarking studies to highlight the current limi-
tations. This can help benchmarking system developers to extend their im-
plementations to adhere to our methodology.

2 Permissioned Blockchains

In permissioned blockchains, access is restricted to a set of authorized users, mak-
ing them suitable for many enterprise use cases that cannot support anonymity.
They are peer-to-peer networks with access controls operating on a distributed
ledger. Despite being in the same classification, the multiple permissioned blockchain
systems currently available have vast differences in their implementation. This
section briefly overviews the basic concepts and transaction flow of five popular
permissioned blockchains, accentuating their similarities and differences.

2.1 Hyperledger Fabric

Hyperledger Fabric (a.k.a Fabric) is an open-sourced, permissioned blockchain
system under the Linux foundation [3]. Fabric follows an execute-order-validate
(EOV) model, one of its unique features. The main components of a Fabric
network are peers, endorsers, and the ordering service. Only the endorsers store
the smart contracts, and transactions are sent to the endorsers for execution
based on an endorsement policy. Speculative transaction execution results in a
read-write set of all the keys in the transaction which is then forwarded to the
ordering service. The ordering service is a cluster of nodes that employs the Raft
consensus protocol to decide on the order of the transactions. Upon consensus,
a block of ordered transactions is broadcasted to all peers. Every peer validates
the speculative results of every transaction in the block with the current world
state. After successful validation, the world state is updated, and the block of
transactions is committed to the ledger.

2.2 Corda

R3 Corda is an open-sourced permissioned blockchain mainly designed for finan-
cial use cases [8]. In Corda, data is only shared among the network participants
on a need-to-know basis, one of its unique features. The nodes in a Corda network
are authorized using an identity service. Further, a network map service is em-
ployed for node lookup, enabling point-to-point communication between nodes.
An immutable object called a state describes any data known to the nodes at
a specific point in time. Each node has a vault or database that stores all the
state sequences it knows. Constraints to ensure that a state is valid are defined



4 Chacko et al.

using smart contracts. A transaction defines the input and output for a state
transformation. Further legal prose can be attached to a transaction to settle
future disputes, which makes Corda appealing to financial use cases. Notaries
are specific nodes assigned with the responsibility of ensuring that output states
are unique successors of input states thereby preventing double spending. When
a transaction proposal is created, only the entities related to it execute the smart
contract to ensure its validity. Further, notaries check each input state object
in a transaction to ensure that they have not been consumed earlier and pre-
vent double-spending. Transactions are committed after the transaction-related
entities and the notaries sign them.

2.3 Multichain

Multichain is a fork of Bitcoin and shares many of its features [36]. However, it is
designed for a permissioned environment where nodes prove their identity using
a handshaking protocol when connecting to other nodes. Each node defines the
public address for which it has a private key, and other nodes can send challenge
messages to be signed with this key. Unlike Bitcoin, only a few nodes are granted
mining privileges, and there is a single validator per block. The validator is
scheduled in a round-robin style with tunable parameters. Other participants
then execute the individual transactions in a block in the defined global order.

2.4 Quorum

Quorum is a fork of the Go implementation of Ethereum, where the P2P layer
was redesigned to allow only authorized nodes [51]. A privacy layer is imple-
mented to support private and public transactions in a permissioned environ-
ment. Quorum uses transaction managers to handle encrypted data, including
an enclave, which is a hardware security module, to hold private keys. Private
transactions are sent to transaction managers for encryption after verifying the
sender, and only the entities related to the transaction can receive the decrypted
data. Different protocols, such as Raft, IBFT, and QBFT, are employed to attain
consensus in the Quorum network. When consensus is reached, all the nodes in
the network execute the public transactions in a block, while private transactions
are only executed by the entities related to the transaction.

2.5 Diem

Diem (earlier known as Libra) is a permissioned blockchain introduced by Face-
book (now Meta) [28]. The network consists of two types of nodes - full nodes
and validators. For every incoming transaction, validators check the signature,
balance, and whether the transaction has been replayed, before sharing them
with other validators. A BFT protocol (DiemBFT) is used to reach a consensus
on the order of transactions. When a validator is elected as the leader, it pro-
poses a block which is forwarded to the other validators for approval. Meanwhile,



How To Benchmark Permissioned Blockchains 5

the transactions in the block are speculatively executed and also shared. Upon
consensus, all the transactions of the proposed block are committed. Full nodes
are employed to re-execute and store all transactions to provide evidence in the
event of a history rewrite attempt. It ensures that validators cannot collude on
transaction executions.

3 Benchmarking Guidelines

In this section, we focus on four important aspects to address when benchmark-
ing permissioned blockchains. We consider examples from Fabric [3], Corda [38],
Multichain [56], Quorum [61] (four of the most commonly used permissioned
blockchains [63]) and Diem [28] when defining each problem statement. We then
propose a general methodology for tackling each problem. The methodology tar-
gets blockchain developers, benchmarking system developers, as well as those
conducting benchmarking studies on blockchains. We aim to bring to light the
contributions required from each of them to the blockchain benchmarking space.

3.1 System Configuration

Problem Statement There is a vast distinction in the system components
that compose the different permissioned blockchain implementations. The choice,
count, and distribution of the different components significantly affect the per-
formance. For example, the Hyperledger Fabric network consists of validating
peers, endorsers, orderers, and clients where the count and distribution of each
of these components impact the performance [10,13,39]. Corda offers two config-
urations for its notary nodes: validating and non-validating. Deploying multiple
validating notary clusters can aid load balancing, improving performance [20].
In the Quorum network, performance is influenced by the choice between full
nodes with a privacy manager or light nodes [33] for process-intensive tasks as
well as boot nodes [15] or static nodes [16] for different peer discovery strategies.
Multichain has the concept of data streams, and nodes that subscribe to these
streams ensure faster information retrieval [53]. Also, Diem has the concept of
validator nodes and full nodes, the choice of which can introduce additional over-
head depending on the use case [27]. Therefore, identifying the influential system
components and designing the optimal setup is crucial to ensure the best per-
formance for each blockchain implementation. Further, even though the system
configuration of each blockchain needs to be individually optimized, the hard-
ware requirements or the hardware cost must be uniform across all blockchains
for a fair benchmarking approach [62].

Methodology
1. Blockchain system developers need to provide extensive documentation and

experimental results to quantify the influence of system components on the
performance for each blockchain. Identifying and documenting a priority-
based list of the main components that significantly impact the performance



6 Chacko et al.

will be highly beneficial. Multichain published a list of tips for performance
optimization on their website [54] which includes ideal server specifications,
and though they do not provide concrete suggestions, this highlights the
need for such documentation from the developers.

2. Benchmarking system users must design an optimal system setup specific
to each blockchain based on their documentation. This is a challenging yet
crucial task. Individually optimizing the system setup ensures benchmarking
the best performing setup of each blockchain. Further, all the blockchains
benchmarked together must employ uniform hardware or be limited to uni-
form hardware costs to ensure fairness [62].

3. Benchmarking system developers must support easy integration and recon-
figuration of all system components. Due to the large number and type of
components involved, system setup is often complex for blockchains [71].
Benchmarking systems need to provide automation scripts or at least de-
tailed documentation that supports the integration of influential system com-
ponents apart from the default to ease the system setup process. Further, the
optimal system setup varies with use cases, so easy reconfiguration should
also be supported.

3.2 Parameter Tuning

Problem Statement Parameter tuning is a significant factor to consider while
benchmarking blockchains, and it is heavily discussed in the literature [10,48,70].
The literature mainly discusses generic parameters, such as block size, while
system-specific parameters are largely ignored. However, both are equally im-
portant to ensure fair benchmarking. The number of transactions to include
in a block is a well-known parameter that influences the performance of most
blockchains [10, 50], but Corda is an exception since the concept of blocks does
not exist [19]. Further, there are system-specific parameters such as the set of
cache-related parameters for GoQuorum [31, 32] and Corda [18], the validator
pool size, endorsement policy, and CouchDB parameters for Fabric [13], or the
mining diversity and skip proof-of-work check [52] configurations in Multichain,
all of which can be tuned for performance improvements. Also, Diem offers mem-
pool [26] and consensus [25] configurations that are based on its unique imple-
mentation. Therefore, individually identifying and tuning the critical parameters
for each blockchain is required to benchmark the ideal performance of every sys-
tem. However, on the other hand, some parameters may impact the system’s
functionality and must be set equivalently to ensure a fair comparison. For ex-
ample, Clique is byzantine fault tolerant with eventual finality, while Raft is only
crash fault tolerant with immediate finality, and either can be chosen as the con-
sensus protocol in Quorum [17]. If Fabric, which offers only the Raft consensus
protocol, is benchmarked with Quorum, then to ensure fairness, Quorum’s con-
sensus protocol needs to be set to Raft. Parameter tuning is often discussed in
the literature on benchmarking transaction processing systems [5,35]. However,
when considering blockchains, there is a more diversified set of parameters for



How To Benchmark Permissioned Blockchains 7

tuning since the blockchain stack is comprised of numerous layers such as con-
sensus models, access control protocols, database stores, smart contracts, and
distributed ledgers.

Methodology
1. Blockchain developers should identify key parameters that influence the per-

formance of their blockchain. They should ensure that all configuration pa-
rameters and quantitative evidence of their effect on performance are well
documented. Workload-based analysis of these parameters should also be
conducted and documented. Further, given the large number of parameters
in blockchains, a prioritizing strategy would be beneficial. For example, Fab-
ric has over 50 parameters, and a recent study quantitatively ranked the top
parameters that significantly affect the performance [47].

2. Benchmarking system users must tune parameters based on the workload
and system setup. Currently, benchmarking is often accomplished with the
default parameter values or with a one-time tuning of limited parameters [29,
34, 58]. However, studies show that parameter tuning significantly depends
on the workload and system setup [10, 48, 70]. Therefore, parameter tuning
should be done dependent on the use case that is being benchmarked. Re-
cently, auto-tuning of blockchains is also being discussed in the literature,
which could ease this process [47].

3.3 Workloads and Use Cases

Problem Statement The third important aspect to consider is the workload
employed for benchmarking. Using existing workloads such as YCSB and TPC
is a popular choice since these are well established in the community [29, 45].
However, blockchains often target different use cases than traditional transaction
processing systems. Therefore, reusing existing workloads is often unrealistic and
leads to inaccurate assumptions about the performance of a system [34]. Further,
blockchain implementations are varied, and each is designed with a specific use
case in mind. For example, Fabric cannot handle highly skewed workloads due
to its optimistic concurrency control model [10], and Corda supports only point-
to-point requests between entities involved in a transaction [19]. Also, Quorum
and Corda are mainly popular for financial use cases while Fabric applications
range across multiple domains such as supply chain management and health-
care [73]. Further, the system setup, parameters, and transaction definition also
vary with the use case. Multichain recommends different performance optimiza-
tion strategies based on the expected type of workload [54], and Diem defines
three different types of transactions based on the client account type [72].

Methodology
1. Benchmarking system developers should focus on traditional as well as blockchain-

specific workloads. Porting traditional workloads such as TPC and YCSB
to blockchain environments is a good practice as it corresponds to scenarios



8 Chacko et al.

where existing enterprise applications are migrated to blockchain platforms.
However, the focus should also be given to blockchain-specific workloads,
such as supply chain and digital asset management scenarios, to capture
realistic performance capabilities better. Apart from workload generation,
converting or porting the workloads to support multiple blockchain imple-
mentations is an important and challenging engineering task.

2. Benchmarking system developers must also generate system-specific work-
loads. Such workloads that stress test distinctive blockchains based on their
specific design are essential to highlight accurate performance expectations.
For example, private transactions in Fabric and point-to-point requests in
Corda would need specific workloads different from other generic broadcast
transactions. Also, the targeted use cases of each blockchain implementation
should be supported.

3. Benchmarking system users and blockchain developers should provide use
case-based discussion of benchmarking results. Benchmarking results will
quantitatively indicate the most or least performant blockchain. However, a
specific blockchain’s intended use case must be considered before reaching a
viable conclusion. For example, it has been quantitatively shown that Fabric
is more performant than Diem [76]. However, Diem supports a byzantine
fault-tolerant consensus protocol, while Fabric uses a crash fault-tolerant
consensus protocol, both of which are suitable for entirely different use cases.
Therefore, evaluation results need to be explored extensively in relation to
the blockchain implementation and envisioned use.

3.4 Performance Metrics

Problem Statement The metrics used for benchmarking depend on the quality
being benchmarked. Throughput and latency are the main client-visible metrics
generally used in benchmarking blockchains when the focus is on performance;
as well, some studies look at metrics reported from the blockchain platform, such
as CPU usage or storage. However, there needs to be more clarity about how to
define these metrics. Throughput is often defined as the number of transactions
committed to a blockchain per second. However, for Fabric, failed transactions
are also committed to the blockchain [3]. Latency is often described as the du-
ration between transaction submission and final commit. However, submission
time can be considered as the time the client submitted the transaction or the
time the transaction entered the consensus protocol [29, 46]. Further, depend-
ing on whether the blockchain supports immediate or probabilistic finality, the
definition of commit time changes [58]. Also, latency is a distribution, and sin-
gle summary values such as mean or 95-percentile can be quoted, depending on
what matters most for the specific use case. Therefore, a uniform definition for
blockchain performance metrics is challenging. Further, system-specific metrics
also need to be considered to provide a better understanding for the client. For
example, apart from throughput and latency, Diem developers define a met-
ric called capacity as “the ability of the blockchain to store a large number of
accounts” [2].



How To Benchmark Permissioned Blockchains 9

Methodology
1. Blockchain developers must define generic as well as system-specific per-

formance metrics. Generic metrics should either be uniformly defined for
all blockchains along with the system-specific assumptions or be uniquely
defined for each blockchain (or both). System-specific performance metrics
must be clearly defined, and the necessity for these metrics must also be
clarified.

2. Benchmarking system developers should support fine-grained result genera-
tion. Since the metric definition varies for each blockchain, publishing all vari-
ations of a metric in the results will be helpful for better understanding. In
most cases, simple mathematical calculations can provide more fine-grained
results. For example, the results from the Caliper benchmarking system dis-
play only the “success throughput” and not the “commit throughput” even
though both can be derived from the available results [10].

4 Case Study

In this section, we analyze five different benchmarking systems that support
permissioned blockchains [6,9,23,37,41] as well as the corresponding five bench-
marking studies conducted using these systems [10,29,34,58,65]. Our discussion
is mainly based on the benchmarking studies as this is representative of how
the benchmarking system is used in practice. Table 1 summarizes the integrated
blockchain systems, available workloads, and published performance metrics for
each benchmarking system. We intend to identify the limitations of the current
benchmarking systems through this case study which can help develop a more
comprehensive system.

Scope.We observe that none of the benchmarking systems currently support
all four of the most commonly used permissioned blockchains. One of the main
reasons for benchmarking is for clients to choose the appropriate blockchains
based on their requirements. Therefore, a benchmarking system must support
at least the most popular blockchain choices. However, the engineering challenge
behind implementing such a comprehensive benchmarking system is immense.
Alternatively, providing documentation that accurately details the exact pro-
cedure to integrate any new blockchain into an existing benchmarking system
would be beneficial. Diablo, Gromit, and BCTMark provide short documen-
tation or discussions on integrating new blockchains into their benchmarking
system [24, 58, 65]. Caliper provides extensive documentation that details the
steps required to implement a connector to integrate a new blockchain [75].
This includes the requirements of the connector, implementation, binding, and
integration, as well as instructions on how to document the newly developed con-
nector for future users. Despite the well-defined documentation, there has been
little effort from the community to integrate more blockchains into Caliper.

System Configuration. The existing benchmarking systems support the
evaluation of the different blockchains on scaling hardware configurations. Di-
ablo, Gromit, and HyperledgerLab emulate geo-distribution. However, system



10 Chacko et al.

Table 1. Blockchain Benchmarking Systems

Benchmarking
Systems

Supported
blockchains
(permissioned
underlined)

Supported
Workloads

Performance
Metrics

Blockbench [29] Ethereum [74],
Fabric [3],
Parity [59], Quorum [61]

YCSB, smallbank,
etherId, doubler,
wavesPresale,
doNothing,
analytics, IOHeavy,
CPUHeavy [6]

success throughput,
average latency

HyperledgerLab [10],
Caliper [41]

Fabric, Ethereum,
Besu [40]

simple asset
transfer, smallbank,
fabcar, synthetic
generator, electronic
health records,
digital music
management,
e-voting, supply
chain
management [42,44]

commit throughput,
success throughput,
average latency

Diablo [34] Algorand [30],
Avalanche [1],
Ethereum, Diem [4],
Solana [68], Quorum,

RedBelly [22,69]

exchange DApp,
gaming DApp,
webservice DApp,
mobility service
DApp, video sharing
DApp [23]

throughput, average
latency, proportion of
committed
transactions, peak
transaction
throughput, latency
distribution over time

Gromit [58] Ethereum, Algorand,
BitShares [66], Diem,
Fabric, Stellar [49],
Avalanche

simple asset
transfer [37]

peak transaction
throughput, average
latency

BCTMark [65] Ethereum, Clique [14],

Fabric

synthetic generator,
history-based ,
sorting
algorithms [9]

CPU usage, HDD
usage, memory
consumption, gas
cost

configuration is not extensively evaluated in the corresponding benchmarking
studies. The number of hardware nodes and, correspondingly, the number of
peers in a system are scaled and evaluated but the peer configurations are kept
constant. Currently, system configuration is considered independent from the
benchmarking systems and is left to the client’s responsibility. Providing auto-
mated testbed setups for the supported blockchains can ease the benchmarking
effort with varying system configurations. The HyperledgerLab benchmarking
system includes such an automated testbed and therefore can evaluate the effect
of endorser and database configurations, but it is limited to Fabric.

Parameter Tuning. In the studies we examined, system parameters are
mostly kept with the default value used in whichever blockchain is being tested.
Blockbench tunes the difficulty variable for Ethereum to limit miners from di-
verging [29]. HyperledgerLab evaluates the effect of system parameters such as
block size and endorsement policy but is limited to Fabric [10]. Tuning the pa-
rameters of individual blockchains to ensure the fair comparison of the best
performance of all the systems under test is a massive challenge due to the large
number of parameters involved. Currently, we identified some of the prominent
parameters for the different blockchains discussed in this paper by manually pars-



How To Benchmark Permissioned Blockchains 11

ing through the multiple documentations and configuration files [16, 18, 19, 27,
31,33,39,52]. Blockchain developers must provide more intuitive documentation
regarding the performance tuning of their specific blockchain implementation.
Consequently, benchmarking systems could automate parameter tuning to ease
the benchmarking process.

Workloads and Use Cases. Workloads are well investigated by the exist-
ing benchmarking systems, and the supported workloads for each are listed in
Table 1. Diablo extracts the workload trace from five real centralized applications
and designs corresponding decentralized applications (DApps) to provide a re-
alistic blockchain-specific benchmarking scenario. Blockbench provides popular
database benchmarking workloads such as YCSB and small bank, which provides
a good understanding of the contrast between blockchains and databases. Block-
bench also supports microbenchmarks such as IO-heavy and CPU-heavy, while
HyperledgerLab provides synthetic workloads such as read-heavy, update-heavy,
or skewed keys. All the existing benchmarking systems also support workloads
at different transaction rates. Overall, the workloads supported by the existing
benchmarking systems cover many practical and synthetic use cases, ensuring
a comprehensive blockchain evaluation. There are also many other blockchain
specific workloads available in the literature [10, 11, 57]. However, developing
or extending a benchmarking system to include this extensive set of workloads
would be advantageous. The evaluation results of the existing benchmarking
systems are well explored and discussed in their corresponding papers. For ex-
ample, Nasrulin et al. [58] highlight six different findings that summarize the
performance of the compared blockchains. However, relating the evaluation re-
sults to the implementation specifics of the blockchains and the intended use
cases would be helpful for a client trying to choose the ideal blockchain. Gramoli
et al. [34] observe that Diem and Avalanche do not support challenging hard-
ware configurations but also point out that such configurations may not be the
intended use case for these blockchains. They also highlight that blockchains
with eventual consistency scale better, providing a client who requires immedi-
ate consistency with realistic expectations. The intended use cases of a specific
blockchain and its implementation specifics, such as its consistency and fault tol-
erance models, need to be effectively understood and explored while discussing
benchmarking results.

Performance Metrics. The existing benchmarking studies evaluate a wide
range of performance metrics. Gromit focuses on the peak transaction through-
put, the maximum throughput supported by a system before it hangs. Dia-
blo measures the average throughput and a throughput time series, including
the peak throughput. BCTMark focuses more on system metrics such as CPU
and memory usage. Blockbench measures the success throughput, while Hyper-
ledgerLab evaluates the committed throughput, including failed transactions.
The importance and reasoning of each of the metrics are well-defined in the
benchmarking studies. However, a single benchmarking system that provides a
comprehensive set of all the different metrics would be valuable.



12 Chacko et al.

5 Related Work

The literature proposes various benchmarking systems and corresponding bench-
marking studies for permissioned blockchains, which we have analyzed in our
case study. Dinh et al. developed the first benchmarking system for permis-
sioned blockchains with a precise definition for the different abstraction lay-
ers [29]. HyperledgerLab [10], which uses the Hyperledger Caliper benchmark-
ing system [41], implemented an automated blockchain (Fabric) network de-
ployment tool to simplify benchmarking experiments. Saingre et al. proposed
a blockchain benchmarking system that adheres to the six criteria for a good
benchmark [65,67]. Nasrulin et al. investigated the popular consensus protocols
and benchmarked representative blockchain systems for each [58]. Gramoli et al.
implemented realistic distributed applications to evaluate multiple blockchain
systems’ performance uniformly [34]. The existing publications focus on devel-
oping a benchmarking system, while our work highlights general benchmarking
guidelines for the blockchain community, which includes both blockchain and
benchmarking system developers. Benchmarks and benchmarking systems are
well-established research areas in the database community [5,7,35,62]. However,
despite the similarities, the implementation and application differences demand
a separate discussion for benchmarking blockchains [64].

6 Conclusion

In this paper, we analyzed five permissioned blockchains to define specific prob-
lem statements regarding four main aspects of benchmarking blockchains. We
provide examples from each of the chosen platforms to clarify the problem state-
ments. Further, we discuss a general methodology to tackle each problem state-
ment, highlighting the need for contributions from the developers and users
of blockchains and benchmarking systems. We then conducted a case study of
five different permissioned blockchain benchmarking systems and the affiliated
benchmarking studies based on our problem statements. We emphasize the cur-
rent limitations of these systems, which can help improve the state-of-the-art.
Given the implementation differences between blockchains and the numerous
components, configuration parameters, and metrics specific to each blockchain,
one main conclusion from our work is the need for blockchain developers to
actively engage in the benchmarking space. We urge blockchain developers to
quantitatively identify and define system-specific factors such as the top pa-
rameters to tune, the ideal system setup for a fixed hardware configuration or
cost, targeted use cases, and performance metrics that can ease the process of
benchmarking blockchains.

References

1. Snowflake to avalanche : A novel metastable consensus protocol family for cryp-
tocurrencies team rocket (2018)



How To Benchmark Permissioned Blockchains 13

2. Amsden, Z.: The libra blockchain. Diem Technical White Paper 2020 (2020)
3. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,

Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
thirteenth EuroSys conference. pp. 1–15 (2018)

4. Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z., Malkhi,
D., Naor, O., Perelman, D., Sonnino, A.: State machine replication in the libra
blockchain (2019)

5. Bermbach, D., Wittern, E., Tai, S.: Cloud service benchmarking. Springer (2017)
6. Blockbench. https://github.com/ooibc88/blockbench (2020), [Online; accessed 13-

October-2022]
7. Brent, L., Fekete, A.: A versatile framework for painless benchmarking of database

management systems. In: Chang, L., Gan, J., Cao, X. (eds.) Databases Theory and
Applications. pp. 45–56. Springer International Publishing, Cham (2019)

8. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: an introduction. R3 CEV,
August 1(15), 14 (2016)

9. Btcmark. https://gitlab.inria.fr/dsaingre/bctmark (2020), [Online; accessed 13-
October-2022]

10. Chacko, J.A., Mayer, R., Jacobsen, H.A.: Why do my blockchain
transactions fail? a study of hyperledger fabric. In: Proceedings of
the 2021 International Conference on Management of Data. pp. 221–
234. SIGMOD/PODS ’21, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3448016.3452823,
https://doi.org/10.1145/3448016.3452823

11. Chacko, J.A., Mayer, R., Jacobsen, H.A.: How to optimize my blockchain? a
multi-level recommendation approach. Proc. ACM Manag. Data 1(1) (may 2023).
https://doi.org/10.1145/3588704, https://doi.org/10.1145/3588704

12. Chainhammer. https://github.com/drandreaskrueger/chainhammer (2020), [On-
line; accessed 13-October-2022]

13. Chung, G., Desrosiers, L., Gupta, M., Sutton, A., Venkatadri, K., Wong, O., Zugic,
G.: Performance tuning and scaling enterprise blockchain applications (2019)

14. Clique proof-of-authority consensus protocol. https://eips.ethereum.org/EIPS/eip-
225 (2020), [Online; accessed 13-October-2022]

15. Configure bootnodes. https://consensys.net/docs/goquorum/en/latest/configure-
and-manage/configure/bootnodes/ (2020), [Online; accessed 13-October-2022]

16. Configure static nodes. https://consensys.net/docs/goquorum/en/latest/configure-
and-manage/configure/static-nodes/ (2020), [Online; accessed 13-October-2022]

17. Consensus protocols. https://docs.goquorum.consensys.net/concepts/consensus
(2020), [Online; accessed 13-October-2022]

18. Corda configurations. https://docs.r3.com/en/platform/corda/4.6/enterprise/
node/setup/corda-configuration-fields.html (2020), [Online; accessed 13-October-
2022]

19. Corda key concepts. https://docs.r3.com/en/platform/corda/5.0-dev-preview-
2/introduction/key-concepts.html (2020), [Online; accessed 13-October-2022]

20. Corda notaries. https://docs.r3.com/en/platform/corda/4.8/open-source/key-
concepts-notaries.html (2020), [Online; accessed 13-October-2022]

21. Corda use case directory. https://r3.com/products/use-case-directory-all/apps-list
(2023), [Online; accessed 29-May-2023]

22. Crain, T., Natoli, C., Gramoli, V.: Red belly: a secure, fair and scalable open
blockchain. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 466–483.
IEEE (2021)



14 Chacko et al.

23. Diablo blockchain benchmark suite. https://diablobench.github.io/ (2020), [On-
line; accessed 13-October-2022]

24. Diablo blockchain benchmark suite. https://diablobench.github.io/blockchain-
howto (2020), [Online; accessed 13-October-2022]

25. Diem consensus configurations. https://github.com/diem/diem/blob/latest/config/
src/config/consensus config.rs (2020), [Online; accessed 13-October-2022]

26. Diem mempool configurations. https://github.com/diem/diem/blob/latest/config/
src/config/mempool config.rs (2020), [Online; accessed 13-October-2022]

27. Diem validator nodes. https://developers.diem.com/docs/basics/basics-validator-
nodes (2020), [Online; accessed 13-October-2022]

28. Diem white paper. https://developers.diem.com/docs/technical-papers/the-diem-
blockchain-paper/ (2020), [Online; accessed 13-October-2022]

29. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A
framework for analyzing private blockchains. In: Proceedings of the 2017 ACM
international conference on management of data. pp. 1085–1100 (2017)

30. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51–68. SOSP ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757,
https://doi.org/10.1145/3132747.3132757

31. Go ethereum. https://geth.ethereum.org/docs/interface/command-line-options
(2020), [Online; accessed 13-October-2022]

32. Goquorum configuration file. https://consensys.net/docs/goquorum/en/latest/
configure-and-manage/configure/use-configuration-file/ (2020), [Online; accessed
13-October-2022]

33. Goquorum qlight. https://consensys.net/docs/goquorum/en/latest/concepts/
qlight-node/ (2020), [Online; accessed 13-October-2022]

34. Gramoli, V., Guerraoui, R., Lebedev, A., Natoli, C., Voron, G.: Diablo: A bench-
mark suite for blockchains. In: 18th ACM European Conference on Computer
Systems (EuroSys). p. to appear (2023)

35. Gray, J.: Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc. (1992)

36. Greenspan, G., et al.: Multichain private blockchain-white paper. URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf pp. 57–60
(2015)

37. Gromit blockchain benchmarking tool. https://github.com/grimadas/gromit
(2020), [Online; accessed 13-October-2022]

38. Hearn, M., Brown, R.G.: Corda: A distributed ledger. Corda Technical White
Paper 2016 (2016)

39. How fabric networks are structured. https://hyperledger-
fabric.readthedocs.io/en/latest/network/network.html (2020), [Online; accessed
13-October-2022]

40. Hyperledger besu. https://www.hyperledger.org/use/besu (2020), [Online; ac-
cessed 13-October-2022]

41. https://hyperledger.github.io/caliper/ (2020), [Online; accessed 13-October-2022]
42. Hyperledger caliper benchmarks. https://github.com/hyperledger/caliper-

benchmarks (2020), [Online; accessed 13-October-2022]
43. Hyperledger foundation case studies. https://www.hyperledger.org/learn/case-

studies (2023), [Online; accessed 29-May-2023]
44. Hyperledgerlab ii. https://github.com/MSRG/HyperLedgerLab-2.0 (2020), [On-

line; accessed 13-October-2022]



How To Benchmark Permissioned Blockchains 15

45. Klenik, A., Kocsis, I.: Porting a benchmark with a classic workload to blockchain:
Tpc-c on hyperledger fabric. In: Proceedings of the 37th ACM/SIGAPP Sympo-
sium on Applied Computing. pp. 290–298 (2022)

46. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: En-
hancing bitcoin security and performance with strong consistency via collective
signing. In: Proceedings of the 25th USENIX Conference on Security Symposium.
p. 279–296. SEC’16, USENIX Association, USA (2016)

47. Li, M., Wang, Y., Ma, S., Liu, C., Huo, D., Wang, Y., Xu, Z.: Auto-tuning with re-
inforcement learning for permissioned blockchain systems. Proc. VLDB Endow.
16(5), 1000–1012 (february 2023). https://doi.org/10.14778/3579075.3579076,
https://doi:10.14778/3579075.3579076

48. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Performance optimization
for blockchain-enabled industrial internet of things (iiot) systems: A deep rein-
forcement learning approach. IEEE Transactions on Industrial Informatics 15(6),
3559–3570 (2019). https://doi.org/10.1109/TII.2019.2897805

49. Lokhava, M., Losa, G., Mazières, D., Hoare, G., Barry, N., Gafni, E., Jove,
J., Malinowsky, R., McCaleb, J.: Fast and secure global payments with
stellar. In: Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles. pp. 80–96. SOSP ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3341301.3359636,
https://doi.org/10.1145/3341301.3359636

50. Mazzoni, M., Corradi, A., Di Nicola, V.: Performance evaluation
of permissioned blockchains for financial applications: The consen-
sys quorum case study. Blockchain: Research and Applications 3(1),
100026 (2022). https://doi.org/https://doi.org/10.1016/j.bcra.2021.100026,
https://www.sciencedirect.com/science/article/pii/S209672092100021X

51. Morgan, J.: Quorum whitepaper. New York: JP Morgan Chase (2016)
52. Multichain configurations. https://www.multichain.com/developers/blockchain-

parameters/ (2020), [Online; accessed 13-October-2022]
53. Multichain data streams. https://www.multichain.com/developers/data-streams/

(2020), [Online; accessed 13-October-2022]
54. Multichain performance optimization. https://www.multichain.com/developers/

performance-optimization/ (2020), [Online; accessed 13-October-2022]
55. Multichain product partners. https://www.multichain.com/product-partners/

(2023), [Online; accessed 29-May-2023]
56. Multichain white paper. https://www.multichain.com/download/MultiChain-

White-Paper.pdf (2020), [Online; accessed 13-October-2022]
57. Nasirifard, P., Mayer, R., Jacobsen, H.A.: Fabriccrdt: A conflict-

free replicated datatypes approach to permissioned blockchains. In:
Proceedings of the 20th International Middleware Conference. p.
110–122. Middleware ’19, Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3361525.3361540,
https://doi.org/10.1145/3361525.3361540

58. Nasrulin, B., De Vos, M., Ishmaev, G., Pouwelse, J.: Gromit: Benchmarking the
performance and scalability of blockchain systems. In: 2022 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS). pp. 56–
63. IEEE (2022)

59. Parity: Blockchain infrastructure for the decentralised web. https://www.parity.io/
(2020), [Online; accessed 13-October-2022]

60. Quorum blockchain in action. https://consensys.net/quorum/enterprise/ (2023),
[Online; accessed 29-May-2023]



16 Chacko et al.

61. Quorum white paper. https://github.com/ConsenSys/quorum/blob/master/docs/
Quorum%20Whitepaper%20v0.2.pdf (2020), [Online; accessed 13-October-2022]

62. Raasveldt, M., Holanda, P., Gubner, T., Mühleisen, H.: Fair bench-
marking considered difficult: Common pitfalls in database perfor-
mance testing. In: Proceedings of the Workshop on Testing Database
Systems. DBTest’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3209950.3209955,
https://doi.org/10.1145/3209950.3209955

63. Rauchs, M., Blandin, A., Bear, K., McKeon, S.B.: 2nd global enterprise blockchain
benchmarking study. Available at SSRN 3461765 (2019)

64. Ruan, P., Dinh, T.T.A., Loghin, D., Zhang, M., Chen, G., Lin, Q.,
Ooi, B.C.: Blockchains vs. Distributed Databases: Dichotomy and Fu-
sion. Association for Computing Machinery, New York, NY, USA (2021),
https://doi.org/10.1145/3448016.3452789

65. Saingre, D., Ledoux, T., Menaud, J.M.: Bctmark: a framework for benchmark-
ing blockchain technologies. In: 2020 IEEE/ACS 17th International Conference on
Computer Systems and Applications (AICCSA). pp. 1–8. IEEE (2020)

66. Schuh, F., Larimer, D.: Bitshares 2.0: General overview (2017)
67. Smaalders, B.: Performance anti-patterns: Want your apps

to run faster? here’s what not to do. Queue 4(1),
44–50 (feb 2006). https://doi.org/10.1145/1117389.1117403,
https://doi.org/10.1145/1117389.1117403

68. Solana: A new architecture for a high performance blockchain v0.8.13.
https://solana.com/solana-whitepaper.pdf (2020), [Online; accessed 13-October-
2022]

69. Tennakoon, D., Gramoli, V.: Smart red belly blockchain: Enhanced transac-
tion management for decentralized applications. arXiv preprint arXiv:2207.05971
(2022)

70. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and
optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th In-
ternational Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). pp. 264–276 (Sep 2018).
https://doi.org/10.1109/MASCOTS.2018.00034

71. Tran, N.K., Babar, M.A., Walters, A.: A framework for automating deployment and
evaluation of blockchain networks. Journal of Network and Computer Applications
206, 103460 (2022). https://doi.org/https://doi.org/10.1016/j.jnca.2022.103460,
https://www.sciencedirect.com/science/article/pii/S1084804522001102

72. Types of transactions. https://developers.diem.com/docs/transactions/txns-
types/ (2020), [Online; accessed 13-October-2022]

73. Valenta, M., Sandner, P.G.: Comparison of ethereum, hyperledger fabric and corda
(2017)

74. Wood, D.D.: Ethereum: A secure decentralised generalised transaction ledger
(2014)

75. Writing connectors. https://hyperledger.github.io/caliper/v0.5.0/writing-
connectors/ (2020), [Online; accessed 13-October-2022]

76. Zhang, J., Gao, J., Wu, Z., Yan, W., Wo, Q., Li, Q., Chen, Z.: Performance anal-
ysis of the libra blockchain: An experimental study. In: 2019 2nd International
Conference on Hot Information-Centric Networking (HotICN). pp. 77–83. IEEE
(2019)


