The Performance of
Byzantine Fault Tolerant Blockchains

Gary Shapiro
University of Sydney
Sydney, Australia
gsha5095 @uni.sydney.edu.au

Abstract—Blockchains have captured the attention of many,
resulting in an abundance of new systems available for use. How-
ever, selecting an appropriate blockchain for an application is
challenging due to the lack of comparative information discussing
core metrics such as throughput, latency and scalability. Although
a number of efforts have been devoted to performance evaluation,
there is limited work dedicated to blockchains that are both
efficient, due to avoiding complex Proof-of-Work cryptopuzzles,
and secure, because they solve consensus deterministically despite
Byzantine failures. In this paper, we evaluate the performance
of three permissioned blockchains that cope with such malicious
behavior, namely Burrow, Quorum and Red Belly Blockchain.
To this end, we modified the Hyperledger Caliper benchmark to
solve three main limitations: unnecessary overheads, offloading
cryptographic signatures and multiplying clients. Our results
identify the maximum send rate that Burrow and Quorum can
process, and that Red Belly Blockchain can offer an 8-times
higher throughput than the other blockchains.

Index Terms—Benchmark, Byzantine fault tolerance, perfor-
mance

I. INTRODUCTION

The plethora of blockchain proposals and their evaluation
in isolation of one another raised questions on the suitability
of a particular proposal for a targeted application. As of today,
there are approximately 1045 blockchains available' but very
little information on their benefits in terms of throughput,
latency and scalability. When this information is provided [1],
[2], [3], it often results from tests run by the developers of
the blockchain, in isolation of other blockchains, and within
a very specific experimental environment.

As a result, the open source community [4] as well as
the database community [5] have started designing bench-
marks that would allow the performance comparison of var-
ious blockchains on the same grounds. The former attempt
targets only blockchains offering smart contracts and pre-
vents comparison against transaction-based blockchains (e.g.,
Bitcoin [6]). The latter attempt compares blockchains that
are made inherently slow to cope with potentially malicious
permissionless users (e.g., Ethereum [7]) to blockchains that
cannot tolerate malicious participants (e.g., Hyperledger Fab-
ric [8]).

Despite these preliminary efforts, to our knowledge there is
no thorough evaluation of secure blockchain systems. In this

'Number of coins in existence according to https:/coinmarketcap.com/co
ins/views/all/.

Christopher Natoli
University of Sydney
Sydney, Australia
christopher.natoli @sydney.edu.au

Vincent Gramoli
University of Sydney and EPFL
Lausanne, Switzerland
vincent.gramoli @epfl.ch

paper, we tackle this problem by thoroughly evaluating the
performance of three blockchain systems that are secure in
that they tolerate Byzantine failures, namely Burrow [9], Quo-
rum [10] and Red Belly Blockchain [11]. These blockchain
systems were precisely designed to either support financial
workloads, offer scalability or be efficient. Interestingly, eval-
uating the performance of blockchains led us to identify and
remedy three major drawbacks that have plagued previous
evaluations of blockchain systems:

1) Distributed workload generation. Some benchmarks
have been designed in a centralized fashion, having a
single client machine, potentially running multiple con-
current client software, to send requests to the blockchain
nodes [12]. As blockchains are distributed systems that
aim at scaling to large numbers of participating nodes,
it is crucial to generate a workload sufficiently high to
stress test these numerous blockchain nodes. Without
provisioning enough physical client resources, the risk
is that an experiment may report performance that is
misleadingly capped by the client resources rather than
representing the true capacity of the blockchain itself.

2) Limiting misleading overheads. For the sake of sim-
plifying deployment and monitoring, several blockchain
systems come with packaging options that limit their
access to physical resources. Caliper [4] requires a docker
container for ease of deployment?, yet containers are
known to induce unnecessary overheads [13]. Distributed
synchronization services help monitoring blockchains,
like Zookeeper, but these services are known to bot-
tleneck at the leader network interface, hence offering
results that could be misleading [14]. It is thus crucial
to limit the effects of these levels of indirections on the
observed performance.

3) Offline cryptographic preprocessing. The cryptographic
functions to guarantee the authentication in a blockchain
system were found particularly CPU-intensive at various
occasions [11]. Part of these CPU-intensive tasks are
produced on the client side: the benchmark should sign
sufficiently many transactions to generate a workload.
Benchmarks that measure the time needed to produce

Zhttps://github.com/hyperledger/caliper/blob/master/packages/caliper-tests-
integration/ethereum_tests/networkconfig.json.

https://coinmarketcap.com/coins/views/all/
https://coinmarketcap.com/coins/views/all/
https://github.com/hyperledger/caliper/blob/master/packages/caliper-tests-integration/ethereum_tests/networkconfig.json
https://github.com/hyperledger/caliper/blob/master/packages/caliper-tests-integration/ethereum_tests/networkconfig.json

this CPU-intensive workload, like [4], return a biased
throughput that does not represent the capacity of the
blockchain system but that is limited by the time it took
for the benchmark to sign the transactions to be sent.

Addressing these issues and deploying up to 32 Amazon
Web Service (AWS) c4.xlarge virtual machines (VMs) was
sufficient to outline important differences between Byzantine
fault tolerant (BFT) blockchains. In order to fairly evaluate
these blockchain systems, we modified Caliper to avoid the
aforementioned limitations. Interestingly, we identified that
Burrow would fail at high workloads and Quorum would offer
performance almost one order of magnitude lower than Red
Belly Blockchain.

We do not pretend that our proposal aims at evaluating all
blockchains. First, proof-of-work blockchains can be made
arbitrarily slow in order to increase their security. Although
proof-of-authority blockchains can be compared to BFT ones,
they often require parameterizing the block period that dictates
their performance as well. Second, we observed that many
BFT blockchains are not stable and at too early stages to
be evaluated. Finally, the performance evaluation of smart
contracts is out of the scope of this paper and left to future
work.

II. BACKGROUND AND RELATED WORK

Blockchain benchmarks are often developed and tailored
specifically for one blockchain. It thus makes it hard to
compare the performance of blockchains as they are usually
obtained in different benchmarks. To solve this issue, a number
of benchmarking frameworks have been developed to compare
different blockchains or its consensus component on the same
ground.

a) Caliper: Hyperledger Caliper [4] is a benchmark-
ing framework aimed at measuring blockchain performance
through defined use-cases. Currently, Caliper supports Hyper-
ledger’s blockchains such as Fabric, Sawtooth, Iroha, Burrow
and Besu, but is also planned to support Ethereum. Caliper’s
pre-defined workloads specify which contract is called, which
functions are used and the rate at which the transactions are
sent. It outputs success rate, transaction and read throughput,
transaction and read latency and resource consumption. At the
time of writing, Caliper has minimal support for distributed
worker client machines.

b) Blockbench: Blockbench [5] provides a number
of workloads ranging from blockchain specific use-cases
to more traditional database system benchmarks such as
YCSB [15]. Currently, Blockbench compares a crash fault
tolerant blockchain (Hyperledger Fabric) to a BFT blockchain
(Quorum) and to a proof-of-work blockchain (Ethereum). Our
focus is on comparing exclusively BFT blockchains as they
are appealing to critical applications.

c¢) Chainhammer: Chainhammer [12] provides a
benchmark framework supporting only Ethereum-compatible
blockchains, based on different consensus algorithms (geth
clique [16], parity aura [17], and Quorum’s [10] RAFT and
IBFT). This benchmark provides metrics of transactions

per second, block information. Chainhammer was used to
experiment blockchains under varying machine sizes, but not
to test scalability.

d) BFT-Bench: BFT-Bench [18] measures the perfor-
mance of various BFT State Machine Replications (SMRs)
executing a sequence of consensus instances for distributed
replicas to agree on a common state, similar to blockchain
nodes agreeing on a block. However, SMRs do not support
signature and verification of transaction requests that are nec-
essary in blockchain systems. These verifications are known to
significantly impact blockchain performance [11], this is why
we take these into account in our evaluation.

e) Simulators: BFTSim [19] simulates the execution of
BFT consensus algorithms and run on top of an ns—2 network
simulator. It allows researchers to rapidly test a BFT algorithm
after writing it in a declarative specification language and
simulates its cryptographic operations. BlockSim [20] aims at
simulating different blockchains using a discrete-event model
to scale to a large number of nodes. BlockSim was used to
simulate Ethereum and Bitcoin and demonstrated that the cost
of encrypting communications is costly. Our evaluation does
not rely on a specific model and assess the performance a BFT
blockchains user can experience in a real environment.

f) Crash fault tolerant distributed ledgers: Hyperledger
Fabric [8] and Corda [24] are two permissioned distributed
ledger technologies. Unfortunately, there is no full fledged
solution of these distributed ledgers offering Byzantine fault
tolerance, so we excluded them from our evaluation. Although
a research prototype of the orderer of Hyperledger Fabric
builds upon BFT-SMaRt and tolerates Byzantine behaviors,
the full system of Fabric v1.x has not been designed towards
this goal. An initial version of Corda was originally designed
to build upon BFT-SMaRt, however, this version is not stable
and the developers recommend to use the version based on
Raft that cannot tolerate intrusions [25].

g) Blockchains requiring synchrony: Other blockchain
systems do not tolerate unexpected message delays. They
assume synchrony [26] and an attacker may double spend
if some messages get unexpectedly delayed [27]. These
blockchains are thus vulnerable in large networks to attacks,
natural disasters or human misconfigurations, like in the In-
ternet. Solida [28] assumes synchrony even though it builds
upon PBFT [29]. Dfinity [27] is proved under synchrony but
executes in asynchronous rounds. Avalanche [30] is analyzed
under synchrony but is conjectured to work under partially
synchrony. Omnil.edger [31] needs synchrony to assign par-
ticipants to shards.

h) Ethereum for permissioned settings: Even though
Ethereum [7] is originally a proof-of-work blockchain, it
has been deployed in permissioned environments, like the
environment we consider. A key difference between Ethereum
and the BFT blockchains we study here, is that Ethereum
assumes synchrony [32] whereas the blockchains we consider
here simply assume partial synchrony [26], hence the latter
blockchains do not need to know the time it will take to
deliver a message. Proof-of-authority has been proposed in

TABLE I: Comparison of selected BFT blockchains

Blockchain Consensus Fault tolerance Developer Goals
Burrow [9] Tendermint [21] n>3f Hyperledger Simplicity and speed?
Quorum [10] IBFT [22] n>3f J.P. Morgan Financial applications4
Red Belly [11] DBFT [23] n>3f U. Sydney and CSIRO Security and scalability’

Ethereum as an alternative to avoid the difficulty parameter of
proof-of-work. It was shown to offer a throughput of up to
84 transactions per second [33], however, it requires selecting
a block period and it has proven vulnerable in partially
synchronous settings [34].

i) Permissioned Blockchain Performance: There have
been a number of other works performing analysis on per-
missioned blockchains. Pongnumkul et al. [35] perform an
analysis of Ethereum against Hyperledger Fabric in a permis-
sioned context. The benchmark results utilize smart contract
invocations to compare throughput and latency, highlighting
that Hyperledger outperforms Ethereum with throughput and
latency. Leppelsak [36] presents a thesis performing analysis
of private blockchains utilizing Hyperledger Caliper. The paper
highlights Hyperledger Fabric’s performance with varying lev-
els of transaction requests and interacts with smart contracts.
Similarly, Thakkar et al. [37] presents experimental analysis of
Hyperledger Fabric and optimizations made to increase overall
throughput.

Baliga et al [38] present the most comparable performance
analysis to ours, but utilizes Caliper to evaluate exclusively
the Quorum blockchain. This analysis provides insights into
how Quorum’s configurations effect the overall throughput and
latency, focusing directly on the impact of changes to Quorum.
In this paper, we utilize the Quorum extension of Caliper
to provide comparisons against other blockchains; namely
Burrow and Red Belly Blockchain. We analyze how the
performance of Quorum with default configurations compares
against others with similar environmental setups.

III. BYZANTINE FAULT TOLERANT BLOCKCHAINS

In this section, we present the BFT blockchain systems that
we evaluate and the ones we could not evaluate. A summary
of the blockchains we evaluate can be seen in Table I where
n is the number of nodes and f is the number of Byzantine
failures they tolerate.

A. Burrow

Burrow [9] is a blockchain optimized for the proof-of-
stake setting. It does not run proof-of-work, which allows for
higher performance and can run as a consortium or private
blockchain that tolerates Byzantine failures. It supports both
the Ethereum Virtual Machine (EVM) and the Web Assembly
(WASM) programming language. Its builds upon the Tender-
mint algorithm [21] to reach consensus.

B. Quorum

Quorum [10] is a permissioned blockchain system that
builds upon the Istanbul Byzantine Fault Tolerant (IBFT)
consensus protocol [22]. Although the initial version of IBFT
suffered from a liveness issue, some fixes were proposed [22].
Quorum targets financial applications and can treat EVM-
based smart contracts.

C. Red Belly Blockchain

Red Belly Blockchain [11] builds upon the leaderless DBFT
consensus protocol [23] that was designed for blockchains.
Instead of having a leader imposing its proposal, it combines
multiple proposals into a superblock to scale to large numbers
of nodes. It spawns multiple instances of a binary consen-
sus algorithm that was recently proved correct using model
checking [39]. In addition to avoiding the leader, Red Belly
Blockchain supports a UTXO model and exploits verification
sharding to avoid having all nodes verifying the exact same
sets of transactions in order to scale to hundreds of geo-
distributed nodes. We interpret scalability as the ability for
performance not to deteriorate as we increase the system size.

D. Unsupported blockchains

Most BFT blockchains are either no longer supported or
their code was made proprietary, and offer at best a non-stable
version. Ethermint [40] is the combination of Tendermint, a
BFT consensus algorithm [21], with the Ethereum Virtual
Machine (EVM). At the time of writing it is at the pre-
alpha development stage® and despite our efforts we could
not deploy it on a distributed system.

Concord” is a permissioned blockchain that builds upon
the Byzantine fault tolerant consensus algorithm SBFT [41]
and is compatible with the EVM. The consensus algorithm
was evaluated within a key-value store application and a
blockchain application, however, the developers could not
help us make the publicly available version of SBFT run on
multiple machines. While it might be possible to deploy a
proprietary version, its code is not available so we could not
compare it to other blockchains.

SMaRtChain [42] presents a permissioned blockchain uti-
lizing BFT-SMaRt with reconfigurable consensus to maintain
state machine replication, showing promising results. The
blockchain layer provides an example execution by supporting
value transfer transactions and the consensus layer is compat-
ible with state execution models such as the EVM. Although

Ohttps://github.com/ChainSafe/ethermint.
7https://github.com/vmware/concord-bft

https://github.com/ChainSafe/ethermint
https://github.com/vmware/concord-bft

1000 2000
Send Rate (TPS)

3000

(a) Throughput

-¢- 4 ¥ 8 —k= 32

PP AR
PR

Average Latency (
whHh U
[oNeoNe)
\‘
b
\
\
o

10 i/‘%"

T

0 1000 2000
Send Rate (TPS)

3000

(b) Latency

Fig. 1: 4,8 and 32 Burrow nodes - 1 Caliper client machine

SMaRtChain provides a permissioned BFT blockchain, it does
not provide methods to interact with the chain that can be
utilized within Caliper’s benchmark model.

IV. EVALUATION ON A DISTRIBUTED SYSTEM

In this section we present the experimental results achieved
using Burrow, Quorum and Red Belly Blockchain on a dis-
tributed system. To this end, we modified the Hyperledger
Caliper benchmark to interact with Red Belly Blockchain
and to overcome three limitations by (1) removing unneces-
sary overheads, (2) offloading cryptographic signatures and
(3) multiplying clients. Section IV-A describes the experi-
mental settings, Section IV-B presents the initial experiments
run with Burrow and Red Belly utilising a single Caliper
client machine, Section IV-C introduces multiple Caliper client
machines while Section IV-D shows the comparative results
achieved for Burrow, Red Belly and Quorum.

A. Experimental Settings

In the remainder, we refer to client as the benchmark
runtime sending the transaction requests, and to server as the
blockchain runtime receiving and treating the requests. We
deployed each of the servers as well as each of clients on
separate Amazon Web Services (AWS) EC2 virtual machines
(VMs). Each considered VM is a c4.xlarge instance with 4

B Success EEE Failure
100
50
44444888 8 83232323232
Number of Nodes
(a) Burrow - send rate 2,000 TPS
B Success EEE Failure
100 .I
0

444448888 83232323232
Number of Nodes

(b) Burrow - send rate 3,000 TPS

Fig. 2: Failed transactions for Burrow

Intel Xeon E5-2666v3 vCPUs running at 2.9 GHz with 7.5 GiB
of memory and provided with “High” network performance
as defined by Amazon. Each experiment is run at least 5
times for a duration of 20 seconds with a minimum send
rate of 200 transactions per second (TPS). As a result each
individually plotted data point in our graphs corresponds to
the performance computed over at least 20,000 transactions.
The error bars, when present, indicate the standard deviations.

In order to minimize the cryptographic overheads, we pre-
generate the signatures of the transactions offline before col-
lecting the statistics on the performance: once the transactions
are pre-generated and correctly signed, the clients start sending
them with specific send rate and measuring the performance of
the blockchain servers. This decoupling between signing and
evaluating the performance is necessary in order to avoid client
bottlenecks induced by the CPU-intensive signing process at
the client side. In order to minimize unnecessary overheads,
we do not make use of additional middleware or virtualization
layers like Zookeeper or docker.

B. A Workload that does not Overload the Blockchain

We start our series of experiments with a simple configu-
ration where we dedicate one VM located in Oregon to the
benchmark client and between 4 and 32 VMs to the blockchain
servers. This client VM sends all its requests to the same
blockchain server during the entire experiment. In order to
achieve fault tolerance, this server must communicate with

1500 10

1250 et 8 @
Q < % =~
4

E.1000 S 5
5 s 7 6 %
2 750 A S
[=) -7 4 Y
3 s00™ g
= Tt >
250 o 2 g

/

N4

0 500 1000 1500 2000 25(5)0
Send Rate (TPS)

Fig. 3: 4 Red Belly nodes - 1 Caliper client machine

other servers before the requests can be fully treated by the
service.

1) The limited capacity of Hyperledger Burrow: Fig. la
depicts the performance of the Burrow blockchain with n €
{4, 8,32} blockchain servers or Burrow nodes. To this end,
we measure the throughput—expressed as the number of
transactions treated by the blockchain service per second
(TPS)—as we increase the client send rate from 100 to 3000
TPS. We observe that the peak throughput of Burrow is 311
TPS, which is achieved with a send rate of 500 TPS. When
the send rate increases further, the throughput decreases as
the server struggles to keep up with the send rate increase.
We further observe that once the send rate reaches 2,000
TPS, Burrow begins to fail. Interestingly, we observed that
a benchmark containing numerous rounds resulted in more
frequent system crashes than one-round benchmarks.

Fig. 2 depicts the corresponding failure rate as the percent-
age of failed transactions for each benchmark run with a send
rate of 2,000 TPS or 3,000 TPS. At 2,000 TPS the blockchain
handles the load most of the time at 4 server nodes but begins
to fail most of the time at 8 and 32 nodes. Once the send
rate reaches 3,000 TPS, the blockchain fails transactions on
every run of the benchmark regardless of the number of nodes.
Throughout the execution of the benchmark, we observed that
a benchmark containing numerous rounds resulted in system
crashes more frequently than one-round benchmarks.

2) Red Belly performance increases with the workload:
We evaluate Red Belly Blockchain similar to the previous
Burrow experiment, with one client sending requests to the
same blockchain server. Fig. 3 depicts the throughput of Red
Belly as we increase the send rate with n = 4 server nodes.
As opposed to Burrow, Red Belly highest throughput reaches
1,395 TPS with a send rate of 2,000 TPS. As the throughput
keeps increasing with the send rate indicates that it is probably
not the peak capacity of Red Belly. Moreover, the fact that
no transactions fail confirms a previous observation that Red
Belly Blockchain offers starvation freedom: every correctly
submitted transaction gets eventually committed.

-$- 2000 —§- 1000

8000

__7000

£ 6000 .

Z5000{ g _ X -

3 7

24000{ o

23000

[e]

£2000

'_
1000

0 10 20 30
Number of Nodes

(a) Red Belly - Throughput with varying send rate of
1000 and 2000 TPS

-eo- 20 secs —¥— 100 secs
_600] S TTm=-o o
wn [S
o ! S
!: 1 \\\
= ! >y, \\\\
3400 d \.\ °
ey .
2 / \'\
2200 { AN
e e
- \'\,
\.*
00 200 400 600 800 1000

Send Rate (TPS)

(b) 4 Burrow nodes - Throughput for the same send rate
for varying duration of 20s and 100s

Fig. 4: Equal number of blockchain nodes and Caliper client
machines

3) Adjusting the workloads: The previous results illustrated
the problem of stress testing a single server node with a single
client node. First, as the performance of Red Belly keeps
increasing with the send rate, one can provision more client re-
sources to identify faster the Red Belly peak capacity. Second,
the instability of Burrow indicates that each benchmark should
only be run with a single test round to minimize failures.
This is the reason why we multiply the number of clients and
balance their send rate to multiple servers in Section IV-C.

C. On the Need of Multiple Benchmarking Clients

We now explore whether a higher throughput can be
achieved by multiplying the client machines. As before, we
experiment with Burrow and Red Belly. At the time of
implementation, Caliper had minimal support for distributed
worker client machines, so we first modified Caliper.

1) Caliper modifications: We wrote scripts to configure
and launch multiple client instances on separate VMs and
orchestrate the benchmark. One of the scripts launches the
specified number of client and server nodes through AWS
CLI It then configures Caliper with network parameters and
launches simultaneously the benchmark on multiple VMs,

8000 1250 1250 3
7000 5 = 30
EGOOO ; f_;lOOO —o—0o—o—o—o 1000& 525

5000 = = N
< 5 -2 315
23000 S 500 500 © 2
22000 g 5 —10
E 1000 F 250 250 ¥ 5

% 10 20 30 % 10 20 3¢ % 10 20 30

Number of Nodes

(a) Total Throughput

Number of Nodes

(b) Average Throughput Per Node

Number of Nodes

(c) Latency

Fig. 5: Red Belly - send rate 1,000 TPS per Caliper client machine

1000 250 250 35
_ 900 =
9 800 — — £200[e—s—e—e—e—s 120005 30
£ 700 */,,/*/ E 5 ©25
= 600 | | 21501\ 150 5, >
2 500 1 2 g g20
S 400 100 100% 215
> =} © ©
g 300 e S —10
£ 200 £ 50 50 &
F 100 a 5
% 10 20 30 % 0 20 30 % 10 20 30
Number of Nodes Number of Nodes Number of Nodes
(a) Total Throughput (b) Average Throughput Per Node (c) Latency
Fig. 6: Burrow - send rate 200 TPS per Caliper client machine

900 100 100 40
800 — = & _ 35
& 700 & go \ 80 & —30

— = w0
<600 = \ = 25
- S T [} >
3500 H 60 60 2 S50
5400 S 40 a0 5 215
5388 : N % . 10
< £ 20 20 ¥
F 100 a 5
% 10 20 30 % 0 20 30 % 10 20 30

Number of Nodes

(a) Total Throughput

Number of Nodes

(b) Average Throughput Per Node

Number of Nodes

(c) Latency

Fig. 7: Quorum - send rate 100 TPS per Caliper client machine

running Ubuntu 18.04 LTS and NodeJS v10.13.0 and located
in the AWS Seoul region. The benchmark was configured to
run one test round with the simple benchmark configuration.
The throughput is now computed as the sum of the throughputs
reported by each client node.

2) The More Clients, the Higher the Load: Fig. 4a shows
the performance of Red Belly Blockchain as the number of
nodes increases for send rates of 1,000 and 2,000 TPS. The
peak throughput of 6,375 TPS is achieved with 12 clients
each sending 1,000 TPS to 12 Red Belly servers. Fig. 4a
shows that when the send rate of each client is 2,000 TPS the
throughput is not as high, indicating that there is an optimal
send rate before the client overloads the server. Fig. 4b show
the throughput of Burrow in two different length experiments
with 4 servers and 4 clients as the send rate increases. The

result indicates that for a sending rate above 100 TPS, Burrow
achieves lower throughput in an experiment of 100s than in
an experiment of 20s. This is mainly due to the blockchain
system not being able to process transactions fast enough,
which results in an increased number of failed transactions
and hence a lower measured throughput.

3) Observation: Improvements during these experiments
highlighted that better results are observed when using dis-
tributed Caliper clients, each sending simultaneous transac-
tions to the blockchain servers. We observed that there exists
an optimal send rate and optimal duration for a benchmark to
observe peak performance, as blockchain nodes may become
overloaded with high send rates, and longer benchmarks may
stack unprocessed transactions leading to memory issues or
failed transactions.

-4+-R —¥- B - Q -4+ R —¥-B % Q

8000 1000
3 7000) x
£ 6000 e T S
4-: [- = \#
= 5000 e 2 600 ~\
24000 2 500 L
3000 o 400 e
3 3 300 -
2000 S e
2 £ 200
= 1000 T S Sl Dt R ~ 100 ><--'-*1|~,.*__Q_"*__’

% 10 20 30 % 10 20 30

Number of Nodes

(a) Total Throughput

Number of Nodes

(b) Average Throughput Per Node

o 10 20 30
Number of Nodes

(c) Latency

Fig. 8: Comparison of Red Belly (R), Burrow (B) and Quorum (Q)

These observations led to benchmarks being standardized
to 20 seconds, as well as utilizing multiple configurations to
determine the optimal send rate prior to final metric gathering.

D. Comparing Blockchain Performance

The next set of experiments compares the three blockchain
systems namely, Burrow, Red Belly and Quorum. To this end,
we deployed multiple Caliper client machines, each sending
transactions simultaneously to the same number of blockchain
servers at an optimal send rate with an increasing number of
blockchain and client nodes.

1) Large Performance Variations per Blockchain: We com-
pare the performance of the three blockchains, Burrow, Red
Belly Blockchain and Quorum, by measuring their throughput,
latency and scalability as the system enlarges. We first present
isolated results indicating the total throughput, the throughput
per server as we change the send rate and the latency for each
blockchain (Fig. 5, 6 and 7) before plotting the performance
of the three blockchains on the same graph (Fig. 8).

Fig. 5 depicts the Red Belly performance with a send rate
of 1,000 TPS. Fig. 5a shows that the throughput increases
as the number of nodes increases and eventually plateaus to
a constant throughput. The peak throughput of 6,375 TPS is
achieved with 12 Red Belly nodes and a corresponding latency
of 12s. Although the total throughput increases, the average
throughput per node decreases from 906 TPS down to 237
TPS as the number of nodes increases, as can be seen from
Fig. 5b. This is due to the superblock optimization of Red
Belly that combines multiple proposals [11].

Fig. 6 depicts the Burrow performance with a send rate of
200 TPS. Recall that we chose this send rate to maximize
Burrow’s throughput as Burrow fails under high loads as
explained in Section IV-C. Fig. 6a shows that the throughput
remains relatively constant as the number of nodes increases.
The peak throughput achieved at 16 nodes is 765 TPS with
a corresponding latency of 18.86s. Fig. 6b shows that the
average throughput per node decreases down to 29 TPS as
the number of nodes increases.

Fig. 7 depicts the Quorum performance with a send rate of
200 TPS. Fig. 7b shows that the send rate was 100 TPS for
4, 8 and 12 nodes, however, we had to reduce it to 50 TPS as

the blockchain system failed when the send rate was higher
than this for more than 12 nodes. As can be seen from Fig. 7c
the latency peaked to 24s with 12 nodes. Fig. 7a shows that
the throughput peaks at 725 TPS with 8 nodes before dipping
to 576 TPS and then coming back up to a maximum of 694
TPS with the lower send rate of 50 TPS. Fig. 7b shows the
average throughput per node starts at 91 TPS with 4 Nodes
but drops sharply to 29 TPS with 24 Nodes.

Fig. 8 shows a comparison of all three blockchains side
by side. Fig. 8a and Fig. 8b show that Red Belly achieves a
peak total throughput of 6,375 TPS and an average throughput
per node of 906 TPS. This is almost one order of magnitude
greater than both Burrow and Quorum. Fig. 8c shows that
the Latency for Red Belly and Burrow are relatively similar
as the number of nodes increases. The latency achieved by
Quorum is relatively lower, however there is a spike at 12
nodes before the send rate decreases. The results achieved
in terms of throughput are relatively similar for Burrow and
Quorum, as can be seen in Fig. 8a and Fig. 8b, although
Quorum has a lower latency as can be seen in Fig. &c.

2) Red Belly Blockchain Scalability: Although testing
showed the optimum send rate for Quorum was 100 TPS, once
the number of nodes increased to 16, the Quorum blockchain
system failed and Caliper was unable to measure results. As
such the send rate was altered to 50 TPS per Caliper machine
to accommodate for the higher node numbers in the network.
We observed that both Quorum and Burrow only managed to
achieve a throughput of under 800 TPS while Red Belly was
able to achieve a peak throughput of 6,375 TPS as depicted
in Table II.

TABLE II: Comparison summary of the blockchains, when
deployed on c4.xlarge AWS instances

Blockchain ~ Consensus Peak throughput
Burrow [9] Tendermint [21] 765 TPS
Quorum [10] IBFT [22] 726 TPS
Red Belly [11] DBFT [23] 6375 TPS

V. CONCLUSION

The abundance of blockchains makes it hard to identify the
most suitable blockchain. Despite recent efforts, there is no
way to compare the performance of secure blockchains. We
identified three frequent evaluation limitations: (1) the lack
of distributed workload generation, (2) misleading overheads,
and (3) processing of unnecessary computationally intensive
tasks during testing. By addressing these limitations we were
able to effectively evaluate three Byzantine Fault Tolerant
blockchains: Burrow, Quorum and Red Belly Blockchain. This
evaluation led to identify the maximum workload that Burrow
and Quorum can tolerate before losing requests and that they
are almost one order of magnitude slower than Red Belly
Blockchain. Future work includes the evaluation of smart
contracts.

Acknowledgments

This research is supported under Australian Research
Council Future Fellowship funding scheme (project number
180100496) entitled “The Red Belly Blockchain: A Scalable
Blockchain for Internet of Things”.

REFERENCES

[1] M. Cavicchioli, “EoS in the lead for TPS thanks to the new testnet,”
2020. [Online]. Available: https://en.cryptonomist.ch/2020/02/12/eos-tp
s-testnet/

[2] S. O’Neal, “Who scales best? inside blockchains’ ongoing transactions-
per-second race,” 2019. [Online]. Available: https://cointelegraph.com/
news/who-scales-it-best-inside-blockchains-ongoing- transactions-per-
second-race

[3] Unita, “Qtumx reaches 10,000 tps in benchmark tests,” 2019. [Online].
Available: https://blog.qtum.org/qtumx-reaches-10-000-tps-in-benchm
ark-tests-cee6452166fd

[4] Hyperledger Foundation, “Hyperledger caliper,”
Available: https://hyperledger.github.io/caliper/

[5] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
SIGMOD, 2017, pp. 1085-1100.

[6] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://www.bitcoin.org

[71 G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2015, yellow paper.

[8] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukoli¢, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in EuroSys, 2018, pp. 1-15.

[9] C. Kuhlman, B. Bollen, S. Davis, and D. Middleton, “Hyperledger

burrow (formerly eris-db),” Mar. 2017. [Online]. Available: https:

/Iwww.hyperledger.org/wp-content/uploads/2017/06/HIP_Burrowv2.pdf

JP Morgan Chase, “Quorum whitepaper,” Aug. 2018. [Online].

Available: https://github.com/jpmorganchase/quorum/blob/master/docs

/QuorumWhitepaperv0.2.pdf

T. Crain, C. Natoli, and V. Gramoli, “Evaluating the Red Belly

Blockchain,” arXiv, Tech. Rep. 1812.11747, 2018.

A. Kriiger, “Chainhammer: Ethereum benchmarking,” 2017. [Online].

Available: https://github.com/drandreaskrueger/chainhammer

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling

hyperledger fabric to 20,000 transactions per second,” in IEEE ICBC,

2019, pp. 455-463.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free

coordination for internet-scale systems,” in USENIX ATC, 2010, p. 11.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in ACM SOCC,

J. M. Hellerstein, S. Chaudhuri, and M. Rosenblum, Eds., 2010, pp.

143-154.

2019. [Online].

[10]

[11]
[12]

(13]

[14]

[15]

[16]

(17]
[18]
[19]
[20]

[21]

(22]

[23]

[24]
[25]
[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

P. Szilagyi, “Clique proof-of-authority consensus protocol,” 2017.
[Online]. Available: https://github.com/ethereum/EIPs/blob/master/EIP
S/eip-225.md

Parity, “Parity aura: Authority round.” [Online]. Available: https:
/lopenethereum.github.io/wiki/Aura

D. Gupta, L. Perronne, and S. Bouchenak, “BFT-Bench: A framework
to evaluate BFT protocols,” in ACM/SPEC ICPE, 2016, pp. 109-112.
A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “BFT
protocols under fire.” in NSDI, vol. 8, 2008, pp. 189-204.

C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in /[EEE
Blockchain, 2019, pp. 439-446.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on
BFT consensus,” arXiv, Tech. Rep. 1807.04938, Nov. 2019. [Online].
Available: http://arxiv.org/abs/1807.04938

R. Saltini and D. Hyland-Wood, “Correctness analysis of IBFT,” arXiv,
Tech. Rep. 1901.07160v2, Aug. 2019.

T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “DBFT: Efficient
leaderless Byzantine consensus and its applications to blockchains,” in
IEEE NCA, 2018.

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: An introduc-
tion,” R3 CEV, August, 2016.

R. Han, G. Shapiro, V. Gramoli, and X. Xu, “On the performance of
distributed ledgers for internet of things,” Internet of Things, Aug 2019.
C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, Apr. 1988.

T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series, consensus system,” arXiv, Tech. Rep. 1805.04548, May
2018.

I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable Byzantine consensus,”
in OPODIS, 2017, pp. 25:1-25:19.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398—
461, Nov. 2002.

T. Rocket, “Snowflake to avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” 2018, unpublished manuscript.
E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE S&P, 2018, pp. 583-598.

C. Natoli and V. Gramoli, “The balance attack or why forkable
blockchains are ill-suited for consortium,” in IEEE/IFIP DSN, 2017,
pp. 579-590.

F. Leal, A. E. Chis, and H. Gonzilez-Vélez, “Performance evaluation
of private ethereum networks,” SN Computer Science, vol. 1, no. 285,
2020.

P. Ekparinya, V. Gramoli, and G. Jourjon, “The Attack of the Clones
against Proof-of-Authority,” in NDSS. Internet Society, Feb 2020.

S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Perfor-
mance analysis of private blockchain platforms in varying workloads,”
in Proceedings of the 26th International Conference on Computer
Communication and Networks (ICCCN), 2017, pp. 1-6.

H. F. Leppelsack, “Experimental performance evaluation of private
distributed ledger implementations,” 2018.

P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmark-
ing and optimizing hyperledger fabric blockchain platform,” in IEEE
MASCOTS, 2018, pp. 264-276.

A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee, “Performance evalua-
tion of the quorum blockchain platform,” arXiv, Tech. Rep. 1809.03421,
2018.

P. Tholoniat and V. Gramoli, “Formal verification of blockchain
Byzantine fault tolerance,” in 6th Workshop on Formal Reasoning in
Distributed Algorithms (FRIDA’19), Oct 2019. [Online]. Available:
https://gramoli.redbellyblockchain.io/web/doc/pubs/fridal9.pdf
Interchain foundation, “A beginner?s guide to ethermint,” 2017.
[Online]. Available: https://blog.cosmos.network/a-beginners-guide-to
-ethermint-38ee15f8a6f4

G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A scalable
and decentralized trust infrastructure,” in IEEE/IFIP DSN, 2019, pp.
568-580.

A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
Byzantine replication to blockchain: Consensus is only the beginning,”
in IEEE/IFIP DSN, 2020, pp. 424-436.

https://en.cryptonomist.ch/2020/02/12/eos-tps-testnet/
https://en.cryptonomist.ch/2020/02/12/eos-tps-testnet/
https://cointelegraph.com/news/who-scales-it-best-inside-blockchains-ongoing-transactions-per-second-race
https://cointelegraph.com/news/who-scales-it-best-inside-blockchains-ongoing-transactions-per-second-race
https://cointelegraph.com/news/who-scales-it-best-inside-blockchains-ongoing-transactions-per-second-race
https://blog.qtum.org/qtumx-reaches-10-000-tps-in-benchmark-tests-cee6452166fd
https://blog.qtum.org/qtumx-reaches-10-000-tps-in-benchmark-tests-cee6452166fd
https://hyperledger.github.io/caliper/
http://www.bitcoin.org
https://www.hyperledger.org/wp-content/uploads/2017/06/HIP_Burrowv2.pdf
https://www.hyperledger.org/wp-content/uploads/2017/06/HIP_Burrowv2.pdf
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum Whitepaper v0.2.pdf
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum Whitepaper v0.2.pdf
https://github.com/drandreaskrueger/chainhammer
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-225.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-225.md
https://openethereum.github.io/wiki/Aura
https://openethereum.github.io/wiki/Aura
http://arxiv.org/abs/1807.04938
https://gramoli.redbellyblockchain.io/web/doc/pubs/frida19.pdf
https://blog.cosmos.network/a-beginners-guide-to-ethermint-38ee15f8a6f4
https://blog.cosmos.network/a-beginners-guide-to-ethermint-38ee15f8a6f4

	Introduction
	Background and Related Work
	Byzantine Fault Tolerant Blockchains
	Burrow
	Quorum
	Red Belly Blockchain
	Unsupported blockchains

	Evaluation on a Distributed System
	Experimental Settings
	A Workload that does not Overload the Blockchain
	The limited capacity of Hyperledger Burrow
	Red Belly performance increases with the workload
	Adjusting the workloads

	On the Need of Multiple Benchmarking Clients
	Caliper modifications
	The More Clients, the Higher the Load
	Observation

	Comparing Blockchain Performance
	Large Performance Variations per Blockchain
	Red Belly Blockchain Scalability

	Conclusion
	References

