
ARTICLE IN PRESS

Please cite this article as: K. Antoniadis, J. Benhaim, A. Desjardins et al., Leaderless consensus, Journal of Parallel and Distributed Computing,

https://doi.org/10.1016/j.jpdc.2023.01.009

JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.1 (1-19)

Journal of Parallel and Distributed Computing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Leaderless consensus

Karolos Antoniadis a, Julien Benhaim a, Antoine Desjardins a, Poroma Elias a,
Vincent Gramoli a,b, Rachid Guerraoui a, Gauthier Voron a, Igor Zablotchi c

a EPFL, Switzerland
b University of Sydney, Australia
c MIT, USA

a r t i c l e i n f o a b s t r a c t

Article history:

Received 17 January 2022

Received in revised form 18 November 2022

Accepted 26 January 2023

Available online xxxx

Keywords:

Leaderless termination

Byzantine

Synchronous-k

Synchronizer

Fast-path

Classic synchronous consensus algorithms are leaderless in that processes exchange proposals, choose

the maximum value and decide when they see the same choice across a couple of rounds. Indulgent

consensus algorithms are typically leader-based. Although they tolerate unexpected delays and find

practical applications in blockchains running over an open network like the Internet, their performance

is highly dependent on the activity of a single participant.

This paper asks whether, under eventual synchrony, it is possible to deterministically solve consensus

without a leader. The fact that the weakest failure detector to solve consensus is one that also eventually

elects a leader seems to indicate that the answer to the question is negative. We prove in this paper that

the answer is actually positive.

We first give a precise definition of the very notion of a leaderless algorithm. Then we present three

indulgent leaderless consensus algorithms, each we believe interesting in its own right: (i) for shared

memory, (ii) for message passing with omission failures and (iii) for message passing with Byzantine

failures.

Finally, we implement a Byzantine fault tolerant (BFT) state machine replication (SMR), that is leaderless.

Our empirical results demonstrate that it is faster and more robust than HotStuff, the recent BFT SMR

algorithm used in the Facebook Libra blockchain when deployed in a wide area network.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

Consensus algorithms that are designed for an eventually syn-

chronous system, coined indulgent algorithms, tolerate an ad-

versary that can delay processes for an arbitrarily long period

of time [36,30,7,39,29,28,2,13,19,46,45]. Recently, these algorithms

gained traction to maintain blockchain safety despite communica-

tion delays [12,47,20]. A common characteristic of these algorithms

is that they all rely on a leader. Essentially, the leader helps pro-

cesses converge towards a decision and it usually does so in a fast

manner when the system is initially synchronous and there is nei-

ther failure nor contention. The drawback arises in the other cases:

as the leader slows down, so does its consensus execution.

Basically, the requirement for a leader in existing indulgent al-

gorithms represents a weakness that the adversary can exploit to

E-mail addresses: karolos.antoniadis@alumni.epfl.ch (K. Antoniadis),

julien.benhaim@epfl.ch (J. Benhaim), antoinedesjard@gmail.com (A. Desjardins),

elias.poromawiri@alumni.epfl.ch (E. Poroma), vincent.gramoli@sydney.edu.au

(V. Gramoli), rachid.guerraoui@epfl.ch (R. Guerraoui), gauthier.voron@epfl.ch

(G. Voron), igorz@mit.edu (I. Zablotchi).

significantly delay any decision. Accurately detecting a faulty leader

is impossible during asynchronous periods. Moreover, the choice

of the timeout to suspect a faulty leader and replace it impacts

performance drastically [30,41], sometimes by two orders of mag-

nitude [28]. Besides, replacing the leader requires a view-change

protocol that is so complex that research prototypes often omit

it [21] or suffer from errors [2].

With the advent of blockchains aimed at running in open net-

works, various efforts have been recently devoted to minimize the

role of the leader in an eventually synchronous system. One idea

is to change the leader frequently even if it is not suspected to

have failed [46,13]. Another is to bypass the leader bottleneck by

having multiple proposers [19,45,17] before reverting to a weak

coordinator to converge. A third one is to tolerate multiple lead-

ers for different consensus instances [36,39,28], however, it only

eliminates the leader from the state machine replication (SMR)

algorithm, not from the underlying consensus algorithm for a sin-

gle SMR slot. None of these approaches manages to eliminate the

leader.

This raises a fundamental question. Is it possible to eliminate

the leader from a deterministic indulgent consensus algorithm?

https://doi.org/10.1016/j.jpdc.2023.01.009

0743-7315/ 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2023.01.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:karolos.antoniadis@alumni.epfl.ch
mailto:julien.benhaim@epfl.ch
mailto:antoinedesjard@gmail.com
mailto:elias.poromawiri@alumni.epfl.ch
mailto:vincent.gramoli@sydney.edu.au
mailto:rachid.guerraoui@epfl.ch
mailto:gauthier.voron@epfl.ch
mailto:igorz@mit.edu
https://doi.org/10.1016/j.jpdc.2023.01.009

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.2 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Two reasons might lead to believe that the answer is negative.

First, the weakest failure detector to solve consensus has been

shown to be an eventual leader [16]. Second, when seeking the

weakest amount of synchrony needed to solve consensus, it was

shown that one correct process must have as many eventually

timely links as there can be failures (some sort of leader) [3,11].

The main contribution of this paper is to show that it is actually

possible to devise and implement a leaderless indulgent consensus

algorithm.

First, to address this question, we formally define the notion of

“leaderless”, that has been informally understood as the ability to

cope with the delay caused by a malicious process [10,33,19,42].

We believe this definition to be of independent interest. Intu-

itively, a leaderless algorithm is one that should be robust to the

repeated slow-downs of individual processes. We introduce the

synchronous−k (which reads “synchronous minus k”) round-based

model where executions are (eventually) synchronous and at most

k < n processes can be suspended per round. We define a leader-

less algorithm as one that decides in an eventually synchronous−1

(denoted by ⋄synchronous−1) system. In a synchronous−1 sys-

tem, the classical idea of exchanging values in rounds and adopting

the maximum one would not work, because the adversary can sus-

pend the process with the maximum value for as long as it wants.

Then we present three leaderless consensus algorithms, each

for a specific setting. The first algorithm, called Archipelago,1 works

in shared memory and builds upon a new variant of the clas-

sical adopt-commit object [26] that returns maximum values to

help different processes converge towards the same output. In-

terestingly, the algorithm requires n ≥ 3 processes, which is not

common for shared memory algorithms. The second algorithm is

a generalization of Archipelago in a message passing system with

omission failures. The third algorithm, called BFT-Archipelago, is a

generalization of Archipelago for Byzantine failures. This algorithm

shares the same asymptotic communication complexity as a classic

Byzantine fault tolerant consensus algorithm [15] and can execute

optimistically a fast path to terminate in two message exchanges

under good conditions. Interestingly, all our algorithms are optimal

both in terms of resilience and time complexity.

Finally, we propose a State Machine Replication (SMR) imple-

mentation of BFT-Archipelago in order to demonstrate the practi-

cality of our approach. To this end, we deploy the BFT-Archipelago

SMR in a geo-distributed setting and compare its performance to

the HotStuff SMR [47] that recently inspired the development of

the Libra blockchain initially proposed by Facebook. Since the Hot-

Stuff SMR features pipelining, which allows to start a new con-

sensus instance before the preceding one is complete, we also

implemented pipelining in the BFT-Archipelago SMR. Our results

indicate that the BFT-Archipelago SMR outperforms HotStuff SMR

when deployed across four distinct data centers. In addition, the

performance of the BFT-Archipelago SMR is maintained even after

isolated failures while the performance of HotStuff is negatively

impacted by the same isolated failures, confirming the advantages

of a leaderless SMR.

The rest of the paper is organized as follows. Section 2 gives

some necessary background. Section 3 formalizes the notion of

a leaderless consensus algorithm and explains why well-known

leader-based consensus algorithms do not satisfy this definition.

Section 4 presents a leaderless consensus algorithm for shared

memory. Section 5 presents a leaderless consensus algorithm to

tolerate omission failures in message passing. Section 6 presents

a leaderless consensus algorithm to tolerate Byzantine failures.

1 Unlike in Paxos, whose name refers to a unique island and where a unique

leader plays the most decisive role, in Archipelago, whose name refers to a group

of islands, all nodes play an equally decisive role.

Section 7 discusses the complexities of our algorithms. Section 8

presents the experimental results of the state machine replication

based on the Byzantine fault tolerant consensus algorithm. Sec-

tion 9 discusses related work while Section 10 concludes.

2. Preliminaries

We first consider an asynchronous shared-memory model with

n processes P = {p1, p2, . . . , pn}. Processes have access to (an in-

finite) set R of atomic registers that can each store values from

a set V . Initially, all registers contain the initial value ⊥. For sim-

plicity of notation, we assume that R includes an infinite set of

single-writer multi-reader (SWMR) arrays of n registers each. We

denote these arrays as R1,R2, . . . where a process pi can write

locations R1[i],R2[i], Processes communicate by reading from

and writing to atomic registers. A process is a state machine that

can change its state as a result of reading a register or writing

to a register. An algorithm is the state machine of each process. A

configuration corresponds to the state of all processes and the val-

ues in all registers in R. An initial configuration is a configuration

where all processes are in their initial state and all registers in R

contain value ⊥.

When a process p invokes a reador a writeoperation, we say

that p performs a read or write event respectively. An execu-

tion corresponds to an alternating sequence of configurations and

events, starting from an initial configuration. For example, in

the execution α = C, read(r, v)p,C
′,write(r′, v ′)p′ ,C

′′ we have pro-

cesses p, p′ ∈P , registers r, r′ ∈R, values v, v ′ ∈ V , and configura-

tions C,C ′,C ′′ where C is an initial configuration, and the system

moves from configuration C to C ′ when p reads v from r and

from C ′ to C ′′ when p′ writes v ′ to r′ . We assume that all execu-

tions are well-formed, hence for a process p to perform an event

after configuration C in an execution, there must be a transition

specified by p’s state machine from p’s state in C . In this work,

we consider deterministic algorithms and hence the initial state of

processes and the sequence of processes that take steps uniquely

define a single well-formed execution. For the sake of simplicity,

we represent an execution as a sequence of steps and omit the

configurations.

An execution α′ is called an extension of a finite execution α
if α is a prefix of α′ . Two executions α and β are equal if both

executions contain the same configurations and events in the same

order.

Synchronous−k execution. We can now define what it means for

an execution to be synchronous in shared-memory. Our definition

is inspired by the notion of synchrony in a message passing model

where there is a bound on the time needed for a message to prop-

agate from one process to another and for the receiver to process

this message. In a message passing model, we can divide time into

rounds [23] such that, in each round, every process p: (i) sends a

message to every other process in the system, and (ii) delivers any

message that was sent to p and performs local computation.

To adapt synchrony to the shared memory model, we also as-

sume that processes take steps in rounds. Specifically, in each

round, every process pi (i) performs a write in some R j[i] and

(ii) collects all the values written in array R j . The collect opera-

tion is useful to reason later in terms of message passing, where

collecting from all cells of an array is similar to reading the mes-

sages received from all processes. In one round, different processes

can read from different arrays.

More precisely, a collect by a process pi on an array R j is de-

fined as a sequence of n read events: collect(R j)pi =

read(R j[1], ·)pi , . . . , read(R j[n], ·)pi . Notation “·” indicates any

value. We define a step of R j by a process pi as a write event and

then a collect on R j . So, step(R j)pi=write(R j[i], ·)pi , collect(R j)pi .

2

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.3 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

p1

p2

1 2 3 4 5 6 7 8 9 10 11

step(R5)p1 step(R2)p1 step(R6)p1 step(R3)p1 step(R3)p1 step(R2)p1 step(R1)p1 step(R4)p1 step(R1)p1

step(R2)p2 step(R4)p2 step(R2)p2 step(R1)p2

X X

X X X X X X X

Fig. 1. Graphical depiction of a synchronous−1 execution.

A round consists of all the write events write(R j1 [1], ·)p1 , . . . ,

write(R jn [n], ·)pn , followed by a sequence collect(R j1)p1 , . . . ,

collect(R jn)pn of collects by the exact same processes that per-

formed a write event. Note that indices ja and jb could be

the same for a 6= b. For example, if we only consider two pro-

cesses {p1, p2}, then a round r could be the following sequence

of events r = write(R j1 [1], ·)p1 ,write(R j2 [2], ·)p2 , collect(R j1)p1 ,

collect(R j2)p2 .

To capture that a process is suspended in a round r, we de-

note by r|−Ps
all the steps except the ones taken by processes

in Ps . For instance, for the above sequence r, we have r|−{p1} =

write(R j2 [1], ·)p2 , collect(R j2)p2 .

We say that an execution is synchronous−k (which reads “syn-

chronous minus k”) if α is the steps of a sequence of rounds

r1|−Ps1
, r2|−Ps2

, r3|−Ps3
, . . . and |Psi | ≤ k for i ≥ 1. In other words,

at most k processes can be suspended in each round. A sus-

pended process p in a round r does not perform all the events

in r; i.e. it may perform some, most or none of the actions of

the round, but not all of them. For this reason, we call such

an execution “synchrony minus k”, since all processes except k

behave synchronously in each round. However, up to all of the

n processes may, in turn, be suspended at some point during

the execution. We say that an infinite execution α is eventually

synchronous−k (or ⋄synchronous−k) if an infinite suffix of α is

equal to a synchronous−k execution. Naturally, a synchronous−k

execution for k = 0 corresponds to a fully synchronous execution,

while synchronous−k with k > 0 allows for some asynchrony in an

execution.

In a synchronous−k or ⋄synchronous−k execution α, we say

that a round r′ occurs after round r if the events of round r′ appear

after the events of round r in α.

We say that a process p is correct in an infinite execution α

if p is not suspended forever in α. More precisely, a process p is

correct in an infinite execution if, for every round r there exists a

later round r′ such that process p is not suspended in r′ .

Example. Fig. 1 depicts a synchronous−1 execution for two pro-

cesses p1 and p2 that take steps in a sequence starting from round

1 and ending in round 11. The X symbol in a round indicates that

the process is suspended in this round. In Fig. 1, both processes

perform steps in the first round, p1 in array R5 and p2 in R2 .

Then, in the next round, process p1 is suspended, etc.

Omission and Byzantine fault models. A process is faulty in the

omission model if it may at some point of the execution omit

sending some message, or in the Byzantine model if it can behave

arbitrarily, except impersonating another process.

Consensus. In consensus [14], each process proposes a value by

invoking a propose(v) function and then all processes have to de-

cide on a single value. Consensus is defined by the following three

properties. Validity states that a value decided was previously pro-

posed. Agreement states that no two processes decide different

values, and termination states that every correct process eventually

decides. We say that a consensus algorithm decides in an execution

α if a propose(v) function call by some process p returns in α.

3. Defining a leaderless algorithm

We are now ready to define a leaderless consensus algo-

rithm. We define it as a consensus algorithm that terminates

despite an adversary suspending one process per round, defined

as ⋄synchronous−1 in the previous section. To the best of our

knowledge, this is the first formal definition of what “leaderless”

means.

This definition stems from the intuition that a unique process—

the leader—must perform some round for a “leader-based” consen-

sus algorithm to decide. In other words, a leader-based consensus

algorithm cannot terminate if an adversary can selectively suspend

a process the moment it becomes the leader. We thus introduce

termination despite such an adversary as a new liveness property:

Definition 1 (Leaderless termination). A consensus algorithm A sat-

isfies leaderless termination if, in every ⋄synchronous−1 execution

of A, every correct process decides.

Intuitively, an algorithm that decides despite an adversary sus-

pending one process per round has to be leaderless. This is why,

we say that a consensus algorithm is leaderless if it is a consensus

algorithm that satisfies safety (validity and agreement) and leader-

less termination as follows.

Definition 2 (Leaderless algorithm). A consensus algorithm is lead-

erless if it satisfies validity and agreement as well as leaderless

termination.

Leaderless termination implies termination as termination is

simply leaderless termination in a ⋄synchronous−0 execution.

Hence a leaderless algorithm also satisfies termination, but termi-

nation does not imply leaderless termination.

By contrast, a consensus algorithm that is not leaderless, is

called leader based. We extend Definition 2 to the message-passing

model in Section 5. An important aspect of Definition 2 is that it

makes a leaderless consensus algorithm robust against the adap-

tive behavior of a dynamic adversary. In particular, an alternative

definition of a leaderless consensus algorithm as an algorithm that

decides in the exact same number of rounds irrespective of which

process crashes (or gets suspended forever), would not share the

same robustness.

Why leaderless termination is not sufficient. An important re-

mark is now in order. Leaderless termination is not implied

by the classical notion of termination. To illustrate this, we

present Algorithm 1, a consensus algorithm that decides in ev-

ery synchronous−1, but that violates safety (i.e., agreement) when

executed in an ⋄synchronous−1 execution. Clearly, Algorithm 1

does not have a distinguished (leader) process that drives the de-

cision, and the algorithm decides in two rounds if the system is

synchronous−1. However, this algorithm is not leaderless accord-

ing to Definition 1, because it does not tolerate asynchrony: in an

⋄synchronous−1 the algorithm can violate safety.

First, we prove that Algorithm 1 satisfies validity, agreement,

and decides in finite time in every synchronous−1 execution:

• Validity. Each process writes the proposed value in Reg[i]

(line 6) and then collects (line 7) all the values written in

3

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.4 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Algorithm 1 Consensus algorithm that correctly decides in every

synchronous−1 execution.

1: Shared state:

2: Reg[n]← {⊥, . . . ,⊥} ⊲ array of n single-writer multi-reader registers

3: ⊲ process pi proposes value v

4: Procedure propose(v):

5: ⊲ first round

6: Reg[i]← v

7: vals← collect(Reg) \ {⊥}

8: if ∃〈commit, cv〉 ∈ vals then

9: dv← cv ⊲ pi was suspended in the first round, hence adopt committed

value

10: else

11: dv←max({v : v ∈ vals∨ 〈·, v〉 ∈ vals})

12:

13: ⊲ second round

14: Reg[i]← 〈commit,dv〉

15: return dv

Reg. Hence, variable vals contains only proposed values. Then,

if there is a 〈commit, cv〉 pair in vals the algorithm decides cv,

stores 〈commit, cv〉 in Reg[i] and returns (lines 8, 9, and 14).

Otherwise, the algorithm retrieves the maximum value stored

in vals, and hence retrieves a proposed value (line 11). The

process then stores 〈commit, cv〉 in Reg[i] and returns (line 14).

• Agreement. Algorithm 1 satisfies agreement in a model with

n ≥ 3 processes. In a model with n ≥ 3 processes, at least one

process p performs steps in both rounds one and two. Pro-

cess p writes 〈commit, v〉 (line 14) in the second round and the

algorithm decides v . If multiple processes were unsuspended

in the first round, then all of the processes retrieve the same

maximum value (line 11), and hence write the exact same

〈commit,dv〉 pair in the second round (line 14). Any process that

was suspended in the first or second round, reads the commit-

ted value (line 9) and hence decides on the same value.

Then we show how Algorithm 1 could violate agreement with

n= 2 processes, even in a synchronous−1 execution. For example,

assume two processes p1 and p2 that propose v and v ′ respec-

tively (with v < v ′). Then, consider that process p2 is suspended in

the first round and process p1 is suspended in the second round.

Both processes p1 and p2 are unsuspended in the third round. In

such an execution, p1 writes v to Reg[0] and then retrieves the

maximum value in Reg, which is v . Then, in the second round,

process p2 writes v ′ to Reg[1] and retrieves the maximum value

in Reg, which now is v ′ . Hence in the third round, processes p1

and p2 decide v and v ′ respectively.

The challenge is, instead, to devise a leaderless consensus al-

gorithm that decides in finite time in every ⋄synchronous−1 exe-

cution and never violates safety. In the next sections, we present

three leaderless consensus algorithms that tolerate omissions in

shared memory, omissions in message passing and Byzantine fail-

ures.

The pros and cons of being leaderless. With the property of being

leaderless comes various advantages for practical systems: avoid-

ing leader bottlenecks [19,9] and reducing the impact of a single

point of failure on performance [7,45] are well-known advantages

that add to the aforementioned robustness. But are there draw-

backs of being leaderless? For example, are there fault models

for which leaderless algorithms do not exist? Actually, we present

several leaderless consensus algorithms that tolerate classic types

of faults in the partially synchronous model. One might also ask

whether leaderless algorithms induce a higher complexity than

leader-based ones. It turns out that our algorithms are both time

optimal and resilience optimal. In addition, our Byzantine fault tol-

erant leaderless algorithm, BFT-Archipelago, shares the same com-

munication complexity as PBFT [15] and DBFT [19], namely O (n4)

Algorithm 2 Leader-based consensus algorithm.

1: Shared state:

2: R[n]← {〈⊥,0〉, . . . , 〈⊥,0〉} ⊲ 1 SWMR reg. per proc.

3: Local state:

4: ts← i ⊲ for process pi

5: Procedure propose(v): ⊲ process pi proposes value v

6: while true do

7: R[i].ts← ts

8: val← getHighestTspValue(R)

9: if val=⊥ then

10: val← v

11: R[i]← 〈val, ts〉

12: if ts= getHighestTsp(R) then

13: return val

14: ts← ts+ n

bits. Note, however, that a recent leader-based consensus proto-

col [18] achieved O (n2) communication complexity, indicating that

PBFT is not optimal, however, we are not aware of the optimal

communication complexity of a leaderless consensus protocol. Fi-

nally, since BFT-Archipelago can be written as an Abstract [8] (see

Section 7), it is compatible with leader-based consensus instances

and inherits an optimal fast path in good executions.

Paxos: a counter example. Consider Algorithm 2, a leader-based al-

gorithm that, when combined with a leader election, corresponds

to Paxos [31] in shared memory (or more specifically to Disk

Paxos [27] with a single non-faulty disk).

All processes share an array R of n single-writer multi-reader

(SWMR) registers (line 2), each storing a pair 〈a,b〉 associating

value a to timestamp b. Each process also maintains a ballot

number as a local ts value (line 4). When a process pi invokes

propose(v), it executes a prepare phase and a propose phase [32].

During the prepare phase, pi stores its current timestamp value to

R[i] (line 7) and either retrieves the value val of R associated with

the highest timestamp (line 8), or (if no such value exists) sets val

to its own value v . During the propose phase, pi stores the pair

〈val, ts〉 to array R[i] (line 11) and examines whether the highest

timestamp in R is the one that pi wrote (line 12). If this is the

case, the algorithm decides (line 13), otherwise pi increases ts and

repeats the loop (line 14).

According to Definition 2, Algorithm 2 is leader based. In fact,

Algorithm 2 does not terminate if an adversary suspends a process

p when it is about to check whether its timestamp ts is the high-

est timestamp (line 12) and until some other process p′ stores a

timestamp ts′ > ts in array R (line 7).

4. Archipelago: a leaderless consensus algorithm

In the following sections, we present a series of leaderless

consensus algorithms. For pedagogical reason we start, in this

section, by presenting a simple shared memory leaderless con-

sensus algorithm, called Archipelago, before its message-passing

variant. Archipelago satisfies Definition 1 when n ≥ 3 and never

violates safety. It builds upon a new variant of an adopt-commit

object [26], called adopt-commit-max, whose invocations by differ-

ent processes help them converge towards the same output value

without a leader.

Adopt-commit-max implementation. The adopt-commit object [26]

has the following specification. Every process p proposes an input

value to such an object and obtains an output, which consists of a

pair 〈d, v〉; d can be either commit or adopt. The following proper-

ties are satisfied:

• CA-Validity: If a process p obtains output 〈commit, v〉 or

〈adopt, v〉, then v was proposed by some process.

4

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.5 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Algorithm 3 The adopt-commit-max algorithm.

1: Shared state:

2: A and B , two arrays of n single-writer multi-reader

3: registers, all initially ⊥

4: Procedure propose(v): ⊲ taken by a process pi

5: A[i]← v ⊲ step A starts

6: S A← collect(A) ⊲ step A ends

7: if (S A \ {⊥} = {v
′}) then ⊲ step B starts

8: B[i]← 〈commit, v ′〉

9: else B[i]← 〈adopt,max(S A)〉 ⊲ or step B starts

10: SB ← collect(B) ⊲ step B ends

11: if SB \ {⊥} = {〈commit, v ′〉} then

12: return 〈commit, v ′〉

13: else if 〈commit, v ′〉 ∈ SB then return 〈adopt, v ′〉

14: else return 〈adopt,max(SB)〉

• CA-Agreement: If a process p outputs 〈commit, v〉 and a process

q outputs 〈commit, v ′〉 or 〈adopt, v ′〉, then v = v ′ .

• CA-Commitment: If every process proposes the same value,

then no process may output 〈adopt, ·〉.

• CA-Termination: Every correct process eventually obtains an

output.

Algorithm 3 depicts a new implementation of an adopt-commit

object. It differs from the classic implementation [26] in that if

the collect of A by process p that proposes v returns different

values, then p stores 〈adopt,mv〉 to array B (line 9) instead of stor-

ing 〈adopt, v〉, where mv is the maximum of the values collected

from A (max(S A)). Additionally, if all pairs collected from B are

of the form 〈adopt, ·〉, then process p returns 〈adopt,mv〉, where

mv is max(S A) (line 14). Note that Algorithm 3 is just a differ-

ent implementation of the classic implementation [26] and that

the main properties of an adopt-commit object remain the same.

These modifications are crucial for the leaderless termination of

Archipelago.

Correctness of the adopt-commit-max object. We now present the

proof of correctness of Algorithm 3, which is similar to that of

an adopt-commit object [26]. Algorithm 3 satisfies CA-Validity (the

max function preserves validity) and CA-Termination (Algorithm 3

does not use waiting or loops). To prove CA-Agreement and CA-

Commitment, we first prove the following lemma.

Lemma 4.1. If B contains two entries (commit, v1) and (commit, v2),

then v1 = v2 .

Proof. Assume not. Since every process writes in A and B at most

once, it must be that some process p1 wrote (commit, v1) and

some other process p2 wrote (commit, v2). Thus, it must be that

p1 wrote v1 in A, took a collect of A and only saw v1 in that col-

lect. Similarly, it must be that p2 wrote v2 in A, took a collect of A

and only saw v2 in that collect. This is impossible: since the pro-

cesses update A before collecting, it must be that either p1 saw

p2 ’s value, or vice-versa. We have reached a contradiction. 2

• CA-Agreement. In order for a process p to commit v , p must

write v to A, collect A and see only entries equal to v; p must

then write 〈commit, v〉 to B , collect B and see only entries equal

to 〈commit, v〉 and finally return 〈commit, v〉.

Assume by contradiction that process p commits v and some

process q commits or adopts v ′ 6= v . q’s collect of B cannot in-

clude the 〈commit, v〉 entry written by p, otherwise q would

adopt v (remember that by Lemma 4.1, q cannot see any entry

〈commit, v ′〉 with v ′ 6= v in B since p writes 〈commit, v〉 to b).

Therefore, q’s collect of B must happen before p’s write to B .

Furthermore, q’s collect of B must include some entry e = 〈·, v ′〉

with v ′ 6= v (written either by q or some other process). But

Algorithm 4 Archipelago leaderless consensus.

15: Shared state:

16: C[0, . . . ,+∞], an infinite array of adopt-commit-max

17: objects in their initial state

18: m, a max register object that initially contains 〈0,⊥〉.

19: Note that 〈x, y〉> 〈x′, y′〉 if x > x′ or

20: (x= x′ and y > y′)

21: Local state:

22: c ⊲ index of adopt-commit-max object, initially 0

23: Procedure propose(v):

24: while true do

25: m.write(〈c, v〉) ⊲ step R starts

26: 〈c′, v ′〉←m.readmax() ⊲ step R ends

27: 〈control, v ′′〉← C[c′].propose(v ′)

28: c← c′ + 1

29: if control= adopt then v← v ′′

30: else return v ′′

then p’s collect of B (which is after p’s write to B and there-

fore after q’s collect of B) will also include e, and thus p cannot

commit v . We have reached a contradiction.

• CA-Commitment. Assume all proposed values are equal. Then

no process can write 〈adopt, ·〉 in B; B contains only entries of

the form 〈commit, ·〉. By Lemma 4.1, all such entries have equal

values, so all processes that return must commit.

The Archipelago algorithm. Algorithm 4 depicts Archipelago where

all processes share an infinite sequence of adopt-commit-max ob-

jects (C) to ensure safety and a max register m (lines 17 to 20)

to help with convergence. A max register r is a wait-free register

that provides a write operation, as well as a readmax operation

that retrieves back the largest value that was previously written to

r [5]. Its write can be implemented by letting each process write to

a single-writer multi-reader register whereas its readmax can be

implemented by collecting all values written by all processes and

taking the maximum. In a synchronous−1 execution, the processes

converge towards one value and there is an adopt-commit-max ob-

ject where all processes propose this exact single value. Then, due

to CA-commitment property of the adopt-commit-max object, the

adopt-commit-max outputs 〈commit, ·〉 and Archipelago decides in

finite time.

More precisely, Algorithm 4 performs repeatedly three steps (by

writing and collecting as defined in Section 2) called R-step, A-step

and B-step. In the R-step (lines 25-26), each process p first writes

〈c, v〉 to register m (line 25) and then retrieves the maximum tu-

ple 〈c′, v ′〉 stored in m (line 26). Note that values c and v are not

necessarily equal to c′ and v ′ . In the A-step (lines 5-6), process p

proposes value v ′ to adopt-commit-max object C[c′] by invoking

function C[c′].propose(v ′) (line 27) described in Algorithm 3 and

sets c to the next adopt-commit-max object to be used (line 28).

A process starts a B-step either at line 7 or 9 of Algorithm 3 and

the subsequent collect takes place in line 10. If process p receives

a commit response from some adopt-commit-max object (line 30),

then process p decides and returns. Otherwise, when process p re-

ceives an 〈adopt, v ′′〉 response, it stores this result in the m register

(line 29) and restarts.

Difference with eventual leader election, �. The cautious reader

might think that by solving consensus in an ⋄synchronous−1 exe-

cution with Archipelago, we could implement the � failure detec-

tor [16]. Intuitively, � ensures that eventually all correct processes

elect the same process as their leader. More precisely, � satisfies

two properties: (1) eventual accuracy: there is a time after which

every correct process trusts some correct process, and (2) eventual

agreement: there is a time after which no two correct processes

trust different correct processes.

5

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.6 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

We could then augment Algorithm 2 with � so that Algo-

rithm 2 decides in every ⋄synchronous−1 execution. There are

ways to implement � in crash-recovery settings, but only when

a crashed process can recover a finite number of times [24,37,14].

This is in contrast with our model, where a process can be sus-

pended an infinite number of times on an infinite number of

rounds. In other words, in our model every process is unstable [37],

hence the existence of � in our model is impossible.

4.1. Archipelago: proof of correctness

Archipelago is a leaderless consensus algorithm. First we show

that it satisfies the consensus properties (validity, agreement, and

termination under ⋄synchrony) and then we prove that it provides

leaderless termination, which is more interesting and significantly

more challenging. Note that Archipelago solves multi-valued con-

sensus. Naturally, we could have presented and proved correct a

modified version of Archipelago for binary consensus. However, we

do not believe that such an approach would simplify either the

presentation or the proof of Archipelago as we explain later on.

Validity, agreement, termination. Algorithm Archipelago satisfies

validity. We prove that if an adopt-commit-max object C[c] re-

turns a 〈·, v〉 tuple, then v was proposed by some process. We

can easily show this using induction. For c = 0, this is clearly the

case, since all the values that were proposed to C[0] are written

in m and were initially proposed. Let c ≥ 0. Assume that for every

adopt-commit-max object C[c′] with c′ ≤ c, C[c′] returns a value

that was initially proposed by some process. Then, for a value v to

be proposed to C[c + 1], this means that a process read 〈c + 1, v〉

from m (line 26). This implies that at some point, some process p

writes 〈c+ 1, v〉 to m (line 25). But for this to happen, p retrieved

〈adopt, v〉 from an adopt-commit-max object C[c′] with c′ < c + 1

and by induction, this means that v is a proposed value. Since all

the values returned by adopt-commit-max objects are proposed,

and Archipelago decides (line 30) upon a value that Archipelago

retrieves from some adopt-commit-max object, Archipelago satis-

fies validity.

Algorithm Archipelago satisfies agreement. To see this, assume

by way of contradiction that two processes p and p′ decide on

different values v and v ′ respectively. This means that process p

returned v after receiving a 〈commit, v〉 response for an adopt-

commit-max object C[c] and process p′ received a 〈commit, v ′〉 re-

sponse for an adopt-commit-max object C[c′]. Because the adopt-

commit-max object satisfies CA-agreement, it has to be the case

that c 6= c′ , otherwise v = v ′ . Without loss of generality, assume

that c < c′ . All the processes (including p′) that received a re-

sponse from C[c] either received 〈commit, v〉 or 〈adopt, v〉 due to

the agreement property of the adopt-commit-max object. Hence,

all processes that write to m (line 25), write 〈c + 1, v〉, since they

retrieved v from C[c]. Therefore, all possible values that are pro-

posed to the C[c + 1] adopt-commit-max object, propose v , and

hence C[c + 1] returns 〈commit, v〉. Similarly, all upcoming adopt-

commit-max-objects return 〈commit, v〉 contradicting the fact that

C[c′] (c < c′) responds with 〈commit, v ′〉 with v ′ 6= v .

4.2. Archipelago: proof of leaderless termination

It is far from obvious that Archipelago satisfies leaderless ter-

mination. As a matter of fact, Archipelago does not provide leader-

less termination for n= 2 processes. However, Archipelago satisfies

leaderless termination for n ≥ 3 processes. Before we describe the

proof, we introduce some auxiliary notation.

Notation. For an execution α we say that a process p takes a step

Ai(v) when p performs an A step that belongs to adopt-commit-

max object C[i] (lines 5 and 6). We denote with A0
i
(v) the fact

that p is the first process that performed the A step for adopt-

commit-max object C[i] in execution α. Note that a single round

might contain multiple A0
i (v) steps taken by different processes.

We denote with A+
i
(v) the fact that this step is not the first A step

on C[i]. We denote with B i(1, v) the B step of a process on adopt-

commit-max object C[i] that writes 〈commit, v〉 (lines 7 and 10).

With B i(0, v), we denote the B step of a process on adopt-commit-

max object C[i] that writes 〈adopt, v〉 (lines 9 and 10). Similarly

to the notation of an A step, we use the notation B0
i
(1, v), and

B+
i
(1, v). We say that in an execution α values v1, v2, . . . , vk are

proposed to C[i] if there are steps Ai(v j) ∀1 ≤ j ≤ k in α. We

denote with R〈c, v〉 the R step of a process and the fact that the

process read 〈c, v〉 as the maximum value in m (lines 25 and 26).

As with steps A and B , we use the R0〈c, v〉 and R+〈c, v〉 notation.

Specifically, with R0〈i, ·〉 we denote the first R step that reads 〈i, ·〉.

Note that in this notation when we have Ai(v) and B i(·, v), this v

is the value that is written, while in R〈c, v〉 the value v is read

from m. Furthermore, note that R is not part of an adopt-commit-

max operation like the A and B steps and hence has no subscript.

n= 2 processes. For n= 2 processes, we can devise a synchronous

−1 execution in which the Archipelago algorithm never decides.

This execution is depicted in Fig. 2. Fig. 2 has a pattern that re-

peats every 5 rounds (light-green boxes). In Fig. 2, processes p1

and p2 propose values v ′ and v respectively with v ′ > v . In the

first round, process p1 is suspended, so process p2 performs an

R step, writes 〈0, v〉, and retrieves 〈0, v〉 from m. Then, in the

second round both processes p1 and p2 take steps. Process p1

writes 〈0, v ′〉 and retrieves 〈0, v ′〉 since 〈0, v ′〉> 〈0, v〉. In the same

round, p2 writes v to C[0].A[2]. Then, in the third round, when

process p1 takes an A step it writes value v ′ in C[0].A[1] and

when p1 collects the values written in array A (line 6), p1 sees

that there are two different values (v and v ′) in C[0].A. Therefore,

in the fourth round, when process p1 performs a B step, it re-

trieves back 〈adopt, v ′〉. Process p2 takes a B step in the fifth round

after being suspended in the third and fourth rounds, p2 writes

〈commit, v〉 in C[0].B[2], and then during the collect of B , p2 sees

that 〈adopt, v ′〉 is written in C[0].B[1] and p2 returns 〈commit, v〉

(line 13). Afterwards, starting from the sixth round the processes

behave in the exact same way: processes p1 and p2 propose v ′

and v to the next adopt-commit-max object respectively. This can

happen ad infinitum and Archipelago never decides.

n≥ 3 processes. We consider synchronous−1 executions that start

from an arbitrary, albeit valid (i.e., state corresponds to a con-

figuration in a well-formed execution), initial state. We prove

that in every synchronous−1 execution, irrespectively of the ini-

tial state, Archipelago terminates in finite time. Therefore, in ev-

ery ⋄synchronous−1 execution, eventually the execution becomes

synchronous−1 and hence Archipelago decides in finite time.

Theorem 4.2. Archipelago satisfies leaderless termination for n≥ 3.

To prove Theorem 4.2 we first need to prove some auxiliary

lemmas.

Lemma 4.3. If an execution α contains step R0〈i, v〉, then for any step

R〈 j, v ′〉 with j > i that is in α, it is the case that v ′ ≥ v .

Proof. Consider an execution α that contains a step R0〈i, v〉 in a

round r taken by process p. Then, when process p continues, p

proposes value v to adopt-commit-max object C[i]. Similarly and

since each process retrieves the maximum value when reading ar-

ray R (line 26), any later process that performs an R step in round

r or after r reads at least 〈i, v〉, and hence retrieves a value at least

as great as v . Note that a process that performs an R step in round

6

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.7 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

. . .

p1

p2

R+〈0, v ′〉 A+0 (v ′) B0
0(0, v

′) R+〈1, v ′〉 A+1 (v ′) B0
1(0, v

′)

R0〈0, v〉 A0
0(v) B+0 (1, v) R0〈1, v〉 A0

1(v) B+1 (1, v) R0〈2, v〉

X X X X X

X X X X

Fig. 2. With 2 processes, Archipelago might never decide in a synchronous−1 execution (v ′ > v).

r cannot read 〈 j, v ′〉 with j > i and v ′ < v , since process p takes

step R0〈i, v〉. Hence, all values that are proposed to adopt-commit-

max object C[j] (j ≥ i) are ≥ v and therefore for any step R〈 j, v〉

with j > i, it holds that v ′ ≥ v . 2

Lemma 4.4. If an execution α contains step B0
i
(1, v), then Archipelago

decides v in α.

Proof. Assume an execution α contains step B0
i
(1, v) in round r. If

a process p takes a step B i(·, ·), then p definitely takes the step in

a round k with k ≥ r. Therefore, process p sees 〈commit, v〉 when

collecting B (line 10) and either returns 〈commit, v〉 (line 12 and

then line 30) and decides, or returns 〈adopt, v〉 (line 13). Due to

CA-agreement, p cannot return 〈commit, v ′〉 〈adopt, v ′〉 with v ′ 6= v .

Thus, process p proposes v in adopt-commit-max object C[i + 1].

However, when all processes propose the same value v to adopt-

commit-max object C[i + 1], then Archipelago decides v . 2

Lemma 4.5. If an execution α contains at least two steps A0
i
(v) from

processes p and p′ (p 6= p′), and there is no process performing step

A0
i
(v ′) with v ′ 6= v in α, then either p, or p′ , or both perform step

B0
i
(1, v) in α.

Proof. Suppose that a round r contains two A0
i (v) events by pro-

cesses p and p′ respectively. Since in a round, there can be at most

one suspended process, this means that at least one of the pro-

cesses p and p′ take a step in round r + 1. Since both processes

p and p′ write value v in array C[i].A, and no process wrote an-

other value in C[i].A during that round, v is the only value that p

and p′ read when collecting A, and hence in the upcoming step in

round r + 1, at least one of the two processes writes B0
i
(1, v). 2

Roughly speaking, the following lemma states that if an execu-

tion contains a step A0
i
(v ′) where v ′ >min({v : ∃Ai(v) ∈ α}), then

any value proposed to a later adopt-commit-max object (i.e., writ-

ten in A) is greater than min({v : ∃Ai(v) ∈ α}), namely is greater

than the minimum value proposed in adopt-commit-max object

C[i].

Lemma 4.6. In an execution α, consider V f = {v : ∃Ai(v) ∈ α} and let

vm be min(V f). If there is a step A0
i
(v) ∈ α with v > vm , then for any

step A j(v
′) ∈ α with j > i, it is the case that v ′ > vm .

Proof. Because execution α contains step A0
i
(v) with v >min(V f),

any step A j with j > i on adopt-commit-max object C[j] sees

value v written in array A (line 9) and hence adopts a value v ′

with v ′ ≥ v > vm . 2

To prove Theorem 4.2 we show that as Archipelago traverses

adopt-commit-max objects, the current minimal value, among

those values still being proposed to adopt-commit-max objects,

eventually gets eliminated (i.e., processes only propose larger val-

ues in later adopt-commit-max objects). Specifically, we show that

in at most three consecutive adopt-commit-max objects, the min-

imal value gets eliminated. Since we have n processes, we can

have at most n distinct proposed values. Therefore, using at most

3n adopt-commit-max objects, Archipelago decides in finite time.

From the moment of synchrony, Archipelago needs O(n) rounds to

decide.

Towards this goal, the following lemma is useful. Lemma 4.7

captures the idea that if in an execution α, the minimum value

proposed to an adopt-commit-max object C[i] appears in a later

adopt-commit-max object C[j] with j > i, then α contains a spe-

cific execution pattern. By execution pattern we mean, that some

process has to take a step, then be suspended, then another pro-

cess has to take some step, etc.

Fig. 3 captures the fact that there is some process pa that takes

an A0
i (vm) step and before pa performs B i(1, vm) some other pro-

cess pb performs A+i (v) and B0
i (0, v), etc.

Lemma 4.7. In an execution α, consider V f = {v : ∃Ai(v) ∈ α} and let

vm be min(V f). If Archipelago does not decide in α and there is a step

A j(vm) ∈ α with j > i, then ∃x≥ 2 and ∃pa, pb ∈ P and round r such

that pa, pb perform steps as depicted in Fig. 3 and there is no R〈i + 1, ·〉

step taken before round r + x+ 2.

Proof. Suppose that α has no step A0
i (vm) and hence α contains

a step A0
i
(v) with v > vm . Then, due to Lemma 4.6, we know that

for every A j(v
′) with j > i it is the case that v ′ > vm . But this

implies that there is no A j(vm) with j > i in α and this is not the

case we consider. Therefore, for an A j(vm) to exist in α, execution

α must contain A0
i
(vm).

Assume that process pa takes step A0
i
(vm) in some round r.

Lemmas 4.4 and 4.5 imply that if there is another A0
i
(vm) step in

α taken by some process p 6= pa , then the algorithm decides. Since

in the lemma we assume that Archipelago does not decide, we can

exclude this case and consider that there is at most one A0
i
(vm) in

round r.

Suppose that process pa takes a step in round r + 1. Then, pro-

cess pa takes a B0
i (1, vm) step since pa was the process that first

performed an A step on adopt-commit-max object C[i]. However,

if process pa takes a B0
i
(1, vm), due to Lemma 4.4, the algorithm

decides. Again, we do not consider this case. Similarly, if process pa
takes a B step in round r + 2, then process pa takes a B0

i (1, vm)

step and due to Lemma 4.4, the algorithm decides. Therefore, we

need to consider the case where process pa is suspended in both

rounds r + 1 and r + 2. Process pa can potentially be suspended

for more rounds, up to round r + x where x≥ 2. Therefore, for vm
to appear in a later adopt-commit-max object C[j] with j > i with

an A j(vm) step, execution α has to be similar to the execution de-

picted in Fig. 4.

We now show that there cannot be an R〈i + 1, ·〉 step before

round r + x+ 2. Assume by way of contradiction that there exists

an R〈i+1, ·〉 step before round r+x+2 in α. If multiple such steps

exist in α, consider the one that takes place in the earliest round.

Suppose that this R0〈i + 1, v〉 has v > vm . This means that a later

process reads value v > vm and hence when later processes per-

form an R in some later round, they see a value (line 26) greater

than vm and hence propose only values greater than vm to up-

coming adopt-commit-max objects (Lemma 4.3). This contradicts

the fact that there is a j > i with A j(vm).

This means that if an R0〈i+1, v ′〉 step appears before round r+

x+ 2 in α, then it has to be that v ′ = vm . Suppose that this R0〈i+

1, vm〉 is taken by some process p in round r + y. Before round

r + y process p has to take steps Ai and B i since p performs the

7

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.8 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) B+i (1, vm) R〈i+1, vm〉 ·

· · · · A+i (v) B0
i (0, v) ·

· · · · · · · · ·

X X X X

X X

∄ R〈i + 1, ·〉 step before round r + x+ 2.

Fig. 3. Execution pattern that appears when the minimum value propagates to the next adopt-commit-max object (x≥ 2).

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) B i(1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

Fig. 4. Long suspension of process pa with value vm .

∄ R〈i + 1, ·〉 step before round r + x+ 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i
(vm) B i(1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

Fig. 5. Impossibility of an R〈i + 1, ·〉 step before round r + x+ 2.

first R0〈i + 1, vm〉 step. This means that value y has to be greater

than 2, since otherwise it implies that step Ai taken by p occurs

in a round smaller or equal than r. However, process pa is the only

process that takes an A0
i (vm) in round r.

Since R0〈i + 1, vm〉 occurs in round r + y, where 2 < y < x+ 2,

then p must perform an Ai(v) step in round r+ y−2 and a B0
i
(·, ·)

step in round r+ y− 1 (p cannot be suspended between r+ y− 2

and r + y because pa is already suspended). If v = vm , then p’s

B i step will be B0
i
(1, vm) and so, due to Lemma 4.4, the algorithm

decides (line 12 and line 30), which we assume does not happen

in α. If v > vm , then p’s B i step will be B0
i
(0, v), which contradicts

the fact that p does R0〈i + 1, vm〉 immediately afterwards.

Therefore, there cannot be an R〈i + 1, ·〉 step before round r +

x + 2. This is depicted in the Fig. 5 where all rounds less than

r+ x+ 2 highlighted in light-red cannot contain an R〈i+ 1, ·〉 step.

If between rounds r and r + x+ 1 no other process performs a

B0
i
(·, ·) step, then process pa is the first to take a B-Step in adopt-

commit-max object C[i] and thus its B-Step is B0
i
(1, vm). Hence

Archipelago decides due to Lemma 4.4, which contradicts our ini-

tial assumption. Therefore, there is at least one process pb that

performs B0
i
(·, ·) between rounds r+ 1 and r+ x+ 1. If process pb

takes step B0
i
(·, ·) in a round smaller than r + x, then it performs

R〈i+ 1, ·〉 before round r+ x+ 2 since process pb has to take con-

tinuous steps because pa is suspended from round r + 1 to round

r + x + 1, a contradiction. Therefore, process pb performs a step

Ai(v) with v > vm in round r + x− 1 and B0
i
(0, v) in round r + x.

The current execution is depicted in Fig. 6.

Due to Lemma 4.3, process pb must be suspended in round

r + x + 1, as well as in round r + x + 2. Since otherwise, if pro-

cess pb is not suspended in rounds r + x + 1 and r + x + 2, this

implies that process pb takes an R0〈i + 1, v〉 step, where v > vm .

Due to Lemma 4.3, this implies that no process proposes vm to

all upcoming adopt-commit-max objects, because all R〈i+1, ·〉 ap-

pear after round r + x + 1, which contradicts the if-statement of

our lemma. Since process pb is suspended in round r + x+ 2 and

at most one process can be suspended in each round, process pa
takes an R0〈i + 1, vm〉 step in round r + x+ 2.

We are therefore in the setting of Fig. 7 that is exactly the same

execution pattern as the one in Fig. 3.

To conclude, given an adopt-commit-max object C[i] where the

minimum value proposed is vm , for value vm to be proposed in the

next adopt-commit-max object C[i+1], it has to be that the execu-

tion is as shown in Fig. 3. In other words, there is some process pa
that takes an A0

i
(vm) step alone and, before pa performs B i(1, vm),

some other process pb performs A+
i
(v) and B0

i
(0, v), etc. 2

Lemma 4.8. In an execution α, consider V f = {v : ∃Ai(v) ∈ α}, then for

any A j(v) step with j ≥ i + 3 in α, it is the case that v > min(V f) or

the algorithm decides.

Proof. The proof is by contradiction and the idea is to apply

Lemma 4.7 on three consecutive adopt-commit-max objects (C[i],

C[i + 1], and C[i + 2]) and show that either the algorithm de-

cides or that vm (= min(V f)) does not propagate beyond these

three adopt-commit-max objects. Due to Lemma 4.7 we know that

all processes, except pa , pb execute continuously for at least four

rounds. We also know that operating on an adopt-commit-max

object in Archipelago has only three round-steps (R , A, and B). Be-

8

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.9 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

∄ R〈i + 1, ·〉 step before round r + x+ 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i (vm) B i(1, vm) · ·

· · · · A+i (v) B0
i (0, v) · · ·

· · · · · · · · ·

X X X X

Fig. 6. Process pb performs a step Ai(v) with v > vm in round r + x− 1 and B0
i (0, v) in round r + x.

∄ R〈i + 1, ·〉 step before round r + x+ 2.

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i
(vm) B i(1, vm) R0〈i + 1, vm〉 ·

· · · · A+
i
(v) B0

i
(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 7. Execution pattern that appears when the minimum value propagates to the next adopt-commit-max object (x≥ 2).

pa

pb

pc

.

.

.

. . . r− 1 r r+ 1 . . . r+ x−1 r+ x r+ x+1 r+ x+2 r+ x+3 . . .

· A0
i
(vm) B i(1, vm) R0〈i+1, vm〉 ·

· · · · A+
i
(v) B0

i
(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 8. Lemma 4.8 (1).

cause of this, after three adopt-commit-max objects, we can show

that for adopt-commit-max-object C[i + 2], there are r′′ and x′′

such that a process takes a step R〈i+3, ·〉 before some r′′+ x′′+2,

which contradicts Lemma 4.7.

To prove this lemma, assume by way of contradiction that there

is an execution α such that (1) the algorithm does not decide in α,

(2) α contains an Ai(vm) step and (3) α contains an A j(vm) step,

where j ≥ i + 3.

Due to Lemma 4.7, we know that if there is a j ≥ i + 3 with

A j(vm), then the execution looks like Fig. 8. Because x ≥ 2, we

have at least 4 continuous suspensions from round r + 1 to round

r + x+ 2.

Note that, in any execution, a process takes a sequence of steps:

R〈i1, ·〉, Ai1 , B i1 , R〈i2, ·〉, Ai2 , B i2 , . . . where i1 < i2 < We show

that all processes must perform certain steps in this sequence prior

to certain rounds. One of the three steps that pc ’s takes in rounds

r+1, r+2 or r+3 is an R step that returns a value that is at least

〈i, ·〉, since process pa performed an A0
i
step in round r. Thus, by

round r + x+ 2, pc must perform an A j step with j ≥ i. Processes

pa and pb have also performed a step Ai by round r + x+ 2. So,

every process in the system has performed an A j step with j ≥ i

by round r + x+ 2.

By assumption, value vm does not get eliminated, and hence

when the algorithm operates on adopt-commit-max object C[i +

1] we have the exact same execution as in Fig. 3 but for adopt-

commit-max object C[i+1]. See Fig. 9. Again, let pa′ and pb′ be the

processes described in Lemma 4.7 with respect to Ai+1 and let pc′

be any other process. Note that in process pa′ is not necessarily the

same as process pa , etc., since it could be that a different process

is the one that performs the A0
i+1(vm) now. For example, it could

be that pa′ = pc and pb′ = pa . Also, note that round numbers are

now based upon r′ 6= r. By Lemma 4.7, no R〈i + 1, ·〉 occurs before

round r+ x+ 2 and since pa′ does an R〈i+ 1, ·〉 step before round

r′ , we have r′ > r + x+ 2. Thus, pc′ must perform a step A j with

j ≥ i before round r′ . Then, pc′ takes at least four more steps by

round r′ + x′ + 2. So, pc′ must perform a step Bk with k≥ i+ 1 by

round r′ + x′ + 2. Processes pa′ and pb′ have performed step B i+1

by round r′ + x′ + 2. So, every process performs a step Bk with

k≥ i + 1 by round r′ + x′ + 2.

Again, because of Lemma 4.7, this pattern of execution should

appear for adopt-commit-max object C[i + 2]. Consider Fig. 10.

Again, let pa′′ and pb′′ be the processes described in Lemma 4.7

with respect to Ai+2 and let pc′′ be any other process. By

Lemma 4.7, no R〈i + 2, ·〉 step occurs before round r′ + x′ + 2

and since process pa′′ does such a step before round r′′ , we have

r′′ > r′ + x′ + 2. Thus, pc′′ must perform a step Bk with k ≥ i + 1

before round r′′ . Then, pc′′ takes at least four more steps by round

r′′ + x′′ + 2. Hence, by round r′′ + x′′ + 2, pc′′ must perform a step

R〈ℓ, ·〉 with ℓ ≥ i + 3. This contradicts the fact that no R〈i + 3, ·〉

step occurs before step r′′ + x′′ + 2 dictated by Lemma 4.7. 2

Lemma 4.8 implies Theorem 4.2, because either the algorithm

decides or the minimum value proposed to an adopt-commit-max

object C[i] does not propagate in any later adopt-commit-max ob-

ject C[j] with j ≥ i+ 3. Hence, due to the continual elimination of

the current minimal value, eventually only one value gets proposed

to an adopt-commit-max object and hence the algorithm decides.

Finally, note that if we had devised Archipelago for binary consen-

9

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.10 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

pa′

pb′

pc′

.

.

.

. . . r′− 1 r′ r′+ 1 . . . r′+ x′−1 r′+ x′ r′+ x′+1 r′+ x′+2 r′+ x′+3 . . .

· A0
i+1(vm) B i+1(1, vm) R0〈i+2, vm〉 ·

· · · · Ai+1(v) B0
i+1(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 9. Lemma 4.8 (2).

pa′′

pb′′

pc′′

.

.

.

. . . r′′− 1 r′′ r′′+ 1 . . . r′′+ x′′−1 r′′+ x′′ r′′+ x′′+1 r′′+ x′′+2 r′′+ x′′+3 . . .

· A0
i+2(vm) B i+2(1, vm) R0〈i+3, vm〉 ·

· · · · A+
i+2(v) B0

i+2(0, v) ·

· · · · · · · · ·

X X X X

X X

Fig. 10. Lemma 4.8 (3).

sus, this would not substantially simplify the proof. We would still

need to prove that the minimum value, in this case 0, does not

propagate in later adopt-commit objects.

Archipelago in the common case. In this section we show that

Archipelago terminates in any ⋄synchronous execution with up to

f = n−1 faulty processors. Consider such an execution and let r be

a round such that (1) the system has reached synchrony by round

r and (2) each process p is either correct or p has stopped omit-

ting by round r. In such an ⋄synchronous execution, Archipelago

needs at most 5 rounds starting from round r in order to decide.

As in the proof of leaderless termination for Archipelago, we

assume a model with n ≥ 3 processes. In this scenario, since pro-

cesses take steps without omissions starting from round r, every

correct process p takes steps R , A, and B without suspensions

somewhere between round r and r + 5. Each process p performs

an R step at least by round r + 2, because p can perform step

A in round r and then B in round r + 1. Consider a process p

that performs an R0〈i, v〉 step with the greatest 〈i, v〉 value. This

means, that p immediately afterwards performs A0
i
(v) and then

B0
i
(1, v) and due to Lemma 4.4 Archipelago decides. If multiple

such processes perform R0〈i, v〉, then all the processes retrieve

the same maximum value 〈i, v〉 from m (line 26) and hence pro-

pose the same value to adopt-commit-max object C[i] and perform

steps A0
i
(v) and B0

i
(1, v) and hence the algorithm decides (see

Lemma 4.4).

The above discussion implies that Archipelago satisfies termina-

tion, thus meaning that in an ⋄synchronous execution, Archipelago

decides. Furthermore, note that the Archipelago can withstand up

to f = n − 1 faulty processors and decides in an ⋄synchronous

execution. Naturally, the message passing variant of Archipelago

(Section 5) can only withstand up to f = (n− 1)/2 faulty proces-

sors.

5. Leaderless consensus in message passing

We now adapt Archipelago for the message passing model

where f processes among n = 2 f + 1 can fail: f − 1 processes

can fail by crashing (fail-stop) or fail to send or receive messages

when they should (omission faults) and at most 1 additional pro-

cess can be suspended per round. For the sake of clarity, we refer

to this new algorithm as omission fault tolerant Archipelago or OFT-

Archipelago for short. We consider a message passing model with

a point-to-point reliable channel between any pair of processes.

⋄synchronous−k in message passing. To preserve the definition

of ⋄synchronous−k in message passing, we first need to define

the notion of round and suspension in message passing: In each

round r, every (correct, non-suspended) process pi (i) broadcasts a

message (called a request), (ii) delivers all requests that were sent

to pi in r, (iii) sends a message (called a response) for every request

it has delivered in (ii), and (iv) delivers all replies sent to it in r.

Note that this notion of round involves 2 message delays, so it

corresponds to two rounds in the “traditional” sense [23]. We say

that a process p is suspended [4] in a round r, if p does not send

any messages in r and does not receive any messages sent by other

processes in round r.

Adapting Archipelago to message passing. One might be tempted

to apply the Algorithm 4 to the ABD emulation [6], which imple-

ments a shared-memory abstraction from a set of processes that

communicate by message-passing. However, this would require at

least two message-passing rounds for each of the R-step, A-step

and B-step (one round for the write and one round for the parallel

n reads of the collect) and it is unclear whether it would remain

leaderless since Archipelago’s proof hinges on each step taking ex-

actly one round. This is why, Algorithm 5 combines the write and

collect in a single round: the broadcasts in lines 14, 20 and 26 act

as both the write and read invocations whereas the responses in

lines 36, 39 and 42 confirm the write, and return all values written

so far.

We defer the proof of correctness of OFT-Archipelago to Ap-

pendix A.

6. Byzantine leaderless consensus

We finally present BFT-Archipelago, the Byzantine fault tol-

erant (BFT) variant of Archipelago. As BFT consensus cannot be

solved without synchrony with n ≤ 3 f [34], we assume the

⋄synchronous−1 model where f processes among n= 3 f + 1 can

fail: at most one is suspended and f − 1 can behave arbitrarily or

be Byzantine. For simplicity of presentation, we also assume au-

thentication and we produce the proof that the result generalizes

to the ⋄synchronous−k model, where k ≤ f and f − k processes

can be Byzantine.

The R-, A-, and B-Steps. BFT-Archipelago is depicted in Algorithm 6

and follows the same 3-step pattern as Archipelago, with the R-, A-

and B-Steps executed in consecutive loop iterations, called ranks.

10

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.11 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Algorithm 5 OFT-Archipelago: Archipelago in message passing.

1: Local state:

2: i, the current adopt-commit-max object, initially 0

3: R , a set of tuples, initially empty

4: A[0,1, . . .], a sequence of sets, all initially empty

5: B[0,1, . . .], a sequence of sets, all initially empty

6: Procedure propose(v):

7: while true do

8: 〈i, v ′〉← R-Step(v)

9: 〈flag, v ′′〉← A-Step(v ′)

10: 〈control, val〉← B-Step(flag, v ′′)

11: if control= commit then return val

12: else i← i + 1

13: Procedure R-Step(v):

14: broadcast(R, i, v)

15: wait until receive (R-response, i, R) from f + 1 proc.

16: R← R ∪ { union of all Rs received in previous line}

17: 〈i′, v ′〉←max(R)

18: return 〈i′, v ′〉

19: Procedure A-Step(v):

20: broadcast(A, i, v)

21: wait until receive (A-response, i, A[i]) from f + 1 proc.

22: S← union of all A[i]s received

23: if S contains only one value val then return 〈true, val〉

24: else return 〈false,max(S)〉

25: Procedure B-Step(flag, v):

26: broadcast(B, i,flag, v)

27: wait until receive (B-response, i, B[i]) from f + 1 proc.

28: S← union of all B[i]s received

29: if S contains only 〈true, val〉 for some val then

30: return 〈commit, val〉

31: else if S contains some entry 〈true, val〉 then

32: return 〈adopt, val〉

33: else return 〈adopt,max(S)〉

34: Upon reception of (R, j, v) from p:

35: Add 〈 j, v〉 to R

36: send(R-response, j, R) to p

37: Upon reception of (A, j, v) from p:

38: Add v to A[j]

39: send(A-response, j, A[j]) to p

40: Upon reception of (B, j,flag, v) from p:

41: Add 〈flag, v〉 to B[j]

42: send(B-response, j, B[j]) to p

• R-Step: process p gathers the rank and value of other processes

with the aim to settle on a common (rank,value) at lines 17–24.

Processes answer the R-broadcast (if they find it valid as we

explain below) by sending their highest (rank,value).

• A-Step: processes broadcast their values and assess whether

other processes have conflicting values with theirs. Lines 33–40

describe how a process answers to an A-broadcast, by sending

its highest value and another value if it has received one.

• B-Step: a process may broadcast its value with the label true

to force other processes to adopt or commit it (lines 52–58).

A process responds to a B-broadcast by checking the validity

of the broadcast and then responding with its own B-value

(lines 64–71).

Except for the messages containing the value proposed in step 1

of rank 0, each message must be accompanied with a valid partial

certificate (or it is ignored) as we explain below.

Certificates. Lines 73–91 describe how to build and check certifi-

cates. A partial certificate for a response message from pi to p j con-

tains the queries that justify this response. Below we distinguish a

broadcast (i.e., query) from its response even though the response

is itself sent to all. A broadcast from pi justifies a response from

p j for an R-Step if it contains the highest value encountered that

appears in the response from p j . A broadcast from pi justifies a

response from p j for an A-Step, if it contains the highest value v

and, if possible, any value from the response different from v . For

a broadcast from pi to justify a response from p j for a B-Step, it

must ensure the following: if the response contains only true, then

the broadcast should contain true; if the response contains at least

one true and false pair, then the broadcast should contain the true

pair, and any of the false pairs; if the response contains only false

pairs, then the broadcast should contain the pair among them with

the highest value.

A partial certificate for a broadcast contains the union of the

2 f +1 responses received during the previous step with the partial

certificates for these responses. A complementing certificate at pi to

a partial certificate for a broadcast (resp. response) comprises f +1

(resp. 2 f +1) responses received by p j to each of the queries com-

prised in the partial certificate.

6.1. BFT-Archipelago: proof of correctness

Theorem6.1 (Validity). With no faulty processes, if some process decides

v , then v is the input of some process.

Proof. If all processes are correct, given that all values have to be

proposed by some process at some point, then the decided value

was necessarily proposed by a correct process. Indeed, at each rank

i, processes can only adopt a value that was proposed at some

point. 2

Before we can prove Agreement, we need two lemmas to show

some Byzantine behaviors are impossible under our certificate sys-

tem.

Lemma 6.2. If a correct uninterrupted process B-broadcasts 〈true, v1〉

at rank i, then no process, even Byzantine, can R-broadcast a value dif-

ferent from v1 with a valid certificate at rank i + 1 or more.

Proof. Assume the B-broadcast of 〈true, v1〉 happened first. When

a process R-broadcasts at a rank strictly above i, he must add a

certificate of all messages and their signatures. In order to be con-

sidered as correct by correct processes, this process must, at the

very least, provide the B-answers from 2 f + 1 processes that led

him to R-broadcasting this value. Since it is impossible to forge a

signature from another process, this process will have to show un-

altered answers from at least f +1 correct processes, which will all

show the 〈true, v1〉 couple, proving that the process should neces-

sarily either commit or adopt v1 .

Now consider by way of contradiction the case where a B-

broadcast of 〈true, v1〉 by a correct process was to happen after

an R-broadcast of a value v2 different from v1 at a rank i + 1 or

higher. That is not possible, because during its A-step i, the correct

process would see the other value (which has necessarily been A-

broadcast at step i in order to obtain a valid certificate) and return

a 〈 f alse, .〉. 2

Lemma 6.3. Let (i, v) be the tuple that is R-broadcast with the highest

rank i and a valid certificate. Then no valid certificate can be constructed

by a Byzantine process for any R-response (i′, v ′) with i′ > i.

Proof. When sending a R-response, the process has to send with it

a certificate for each value that it sends. In particular, this process

would need to provide a certificate showing that at least one pro-

cess (possibly himself) rightfully R-broadcast such a (rank, value),

which is impossible according to Lemma 6.2. 2

11

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.12 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Algorithm 6 BFT-Archipelago in message passing with n= 3 f + 1.

1: Local state:

2: i, the current rank, initially 0

3: R , a set of tuples, initially empty

4: A[0,1, . . .] and B[0,1, . . .], two

5: sequences of sets, all initially empty

6: C a sequence of broadcasts ID with the

7: number of answers they have received

8: Procedure propose(v):

9: while true do

10: 〈i, v ′〉← R-Step(v)

11: 〈flag, v ′′〉← A-Step(i, v ′)

12: 〈contr, val〉← B-Step(flag, i, v ′′)

13: if contr = commit then return val

14: else i← i + 1, v← val

15: Procedure R-Step(v):

16: compile certificate C (empty at rank 0)

17: broadcast(R, i, v,C)

18: wait until (receive valid (Rresp, i, R,C)

19: from 2 f + 1 processes)

20: R← R ∪ {union of all valid Rs received

21: in previous line}

22: 〈i′, v ′〉←max(R)

23: R←max(R)

24: return 〈i′, v ′〉

25: Upon delivering (R, j, v,C) from p:

26: if reliability check(R, j, v,C) then

27: R←max(〈 j, v〉, R)

28: b← bcast responsible for R[j]’s value

29: send(Rresp, j, R, sig,b) to all

30: else ignore message from p

31: Procedure A-Step(i, v):

32: compile certificate C

33: broadcast(A, i, v,C)

34: wait until receive valid (Aresp, i, A[i])

35: from 2 f + 1 processes

36: S← union of all A[i]s received

37: if (S contains at least 2f+1 A-answers

38: containing only val) then

39: return 〈true, val〉

40: else return 〈false,max(S)〉

41: Upon delivering (A, j, v,C) from p:

42: if reliability check(A, j, v,C) then

43: if v /∈ A[j] and |A[j]|< 2 then

44: add v to A[j]

45: else if v > max(A[j]) then

46: min(A[j])← v

47: b← bcast responsible for A[j]’s value

48: send(Aresp, j, A[j], sig,b) to all

49: else ignore message from p

50: Procedure B-Step(
∫
, i, v):

51: compile certificate C

52: broadcast(B, i,
∫
, v,C)

53: wait until receive valid (Bresp, i, B[i])

54: from 2 f + 1 proc.

55: S← array with all B[i]s received

56: if |{〈true, val〉 ∈ S}| ≥ 2 f + 1 then

57: return 〈commit, val〉

58: else if |{〈true, val〉 ∈ S}| ≥ 1 then

59: return 〈adopt, val〉

60: else return 〈adopt,max(S)〉

61: Upon delivery (B, j,
∫
, v,C) from p:

62: if reliability check(B, j, v,C) then

63: m←max(B[j][0].v, B[j][1].v)

64: if |B[j]|< 2 then add 〈
∫
, v〉 to B[j]

65: else if (
∫
∧ 〈

∫
, v〉 /∈ B[j]∨

66: ¬
∫
∧ v >m) then

67: B[j][0]← 〈
∫
, v〉

68: b← bcast resp. for B[j]’s 〈
∫
,vals〉

69: send(Bresp, j, B[j], sig,b)

70: b← resp. for B[j]’s 〈
∫
,vals〉

71: send(Bresp, j, B[j], sig,b) to all

72: else ignore message from p

73: Reliability check broadcast(X, i, v):

74: if |{bcast-answers ∈ C}|> f then

75: return true

76: check that |C| ≥ 2 f + 1 messages

77: check signatures of those messages

78: check if |{bcast-answers}|> f

79: if X = R then

80: check (i, v) is correct according to

81: signed B-answers received and step B

82: else if X = A then

83: check (i, v) is correct according to

84: signed R-answers received and step R

85: else if X = B then

86: check (i,
∫
, v) is correct according to

87: signed A-answers received and step A

88: return true if all checks pass,

89: false otherwise

90: To compile a broadcast certificate, list all 2 f + 1 answers to the previous step broadcast received during the previous step.

91: To reliably check response (check if a response is valid), check if, for the broadcast(s) originating its value we have received 2 f + 1 responses to that broadcast.

Theorem 6.4 (Agreement). Let p1 and p2 be two correct processes. If p1

and p2 return 〈commit, v1〉 and 〈commit, v2〉 then v1 = v2 .

Proof. Consider that both p1 and p2 are correct. Assume by con-

tradiction that v1 6= v2 .

First, assume they both commit using the same rank i in A and

B. Then this means both p1 and p2 saw, during their B-step line

56, at least 2 f +1 〈true, v1〉 and 〈true, v2〉 respectively. Since pro-

cesses can only ever send one B-answer to each process, it means

that p1 and p2 both received B-answers from at least f +1 correct

processes. If we consider f processes to be possibly Byzantine, this

leaves only 2 f +1 correct processes. Hence, there is at least one of

these correct processes which will answer to both p1 and p2 . One

of them will be answered second and will see the value proposed

by the other, and therefore cannot commit its own value. Hence, it

is impossible for two correct processes to commit different values.

For different ranks i and j, assume now without loss of gen-

erality that one of those two processes, say p1 , commits v1 using

B i and p2 commits v2 using B j with j > i. Then this means p1

saw, during its B-step line 56, at least 2 f + 1 sets containing only

〈true, v1〉, meaning that no other process had yet B-broadcast an-

other value or that any process B-broadcasting in the same round

will have to either adopt or commit v1 (indeed, another process

would see at least one B-answer from a correct process containing

〈true, v1〉 and would hence at least adopt, maybe commit v1).

Now there are two possibilities: either no other process has yet

run an R-step at a rank strictly higher than i. Then the max func-

tion prevents it from jumping directly ahead of rank i. In this case,

12

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.13 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

before advancing to rank i+ 1, p2 has to go through rank i. Notice

that no Byzantine process can pretend to have advanced past rank

i without actually providing the signed messages that led to it, i.e.

actually advancing through steps while acting like a normal pro-

cess (cf. Lemma 6.3). Thus it is certain that p2 will see at least one

〈true, v1〉 in his B-answers from rank i. It will thus either commit

or adopt it. Therefore, all correct processes who reach rank i+1 by

incrementing their rank (line 14) will propose value v1 . Other pro-

cesses who run an R-step after that will be able to jump straight

to the highest R-visited rank and will R-return value v1 , because

there is no value different from v1 past rank i. Hence no two cor-

rect processes can decide on different values. 2

Lemma 6.5. The R-Step satisfies the following properties:

• Validity For a fixed i, if some correct process returns v , then v was

the input of some process.

• Monotonicity If a correct process p returns (i, v i) in an R-Step and

p returns (j, v j) in a later R-Step, then j ≥ i and v j ≥ v i .

Proof. • Validity At line 24 (i′, v ′) (the value returned by the R-

Step) is computed as the maximum of all tuples ever received,

which must in turn have been broadcast at line 17 by some

process (we can be sure that there are at least f + 1 correct

processes that proposed a value because there at most f faulty

processes and we wait for a quorum of 2 f + 1 answers). Hence

all values that appear have been proposed by some process.

• Monotonicity Assume by contradiction that some correct pro-

cess p returns (i, v i) in R-Step r1 and later returns (j, v j) in

R-Step r2 such that (j, v j) < (i, v i). Because R always keeps the

maximum element, it is impossible to later R-return a smaller

element, thanks to the max function. 2

6.2. BFT-Archipelago: proof of leaderless termination

In this section we prove that BFT-Archipelago satisfies leader-

less termination.

The key idea of the proof is that in order to prevent termina-

tion, processes have to release some higher value during the A-step

to prevent processes from seeing only “true” messages. But this

means the value will be seen by O (n) processes and hence the

smaller value will be discarded. As it consumes a value to delay

the algorithm by O (1) rounds, and there are at most n different

values, after O (n) rounds there will be only one value left, which

will be committed. Before we prove that BFT-Archipelago (Theo-

rem 6.10) satisfied leaderless termination, we need to prove the

following lemmas.

Lemma 6.6 (Commitment). If no process R-broadcast anything other

than the same (i, v), then all correct processes must output 〈commit, v〉.

Proof. Since all the ranks and values coming in R-answers are

identical, all correct processes will R-return (i, v) and Byzantine

processes cannot present a valid A-broadcast with any value other

than v .

Hence all correct processes will A-broadcast v . All valid A-

answers will contain only v and hence all correct processes will

A-return 〈true, v〉. Therefore, no Byzantine process can present a

valid B-broadcast with anything other than 〈true, v〉.

Hence all correct processes B-broadcast 〈true, v〉 and can only

receive valid B-responses containing only 〈true, v〉 or invalid B-

responses which will be ignored. Therefore, all correct processes

will B-return 〈commit, v〉. 2

Lemma 6.7. All correct processes eventually receive 2 f + 1 replies to

their R, A or B-broadcasts.

Proof. Once GST is reached, all messages eventually arrive. The

certificate of a correct process p will therefore eventually get ac-

cepted by any correct process as (i) all calculations made are

correct and (ii) all broadcasts referenced in the certificate can be

checked as valid by all correct processes as soon as they receive

f + 1 responses to each of those broadcasts. As p checked be-

fore accepting responses in the previous step that all broadcasts

referenced in the next certificate had received 2 f +1 responses re-

ceived by p, amongst which f +1 were made by correct processes

and hence were sent to all processes (and eventually received). 2

Lemma 6.8.With the hypothesis that processes only get interrupted for

whole rounds, it is not possible for a Byzantine process to make correct

processes R-return different values after GST and round synchronization.

Proof. Let us recall that all messages are signed, therefore Byzan-

tine processes cannot make up fake messages that are not coming

from themselves.

If a Byzantine process sends its proposed (rank, value) to all

correct processes, either the certificate is invalid and it is ignored,

either it is valid and all correct processes will see the (rank, value)

in at least f + 1 R-answers and all R-return the same value.

If the Byzantine process decides to R-broadcast only to some

correct processes, there are 2 cases. If the Byzantine process R-

broadcasts to f or less correct awake processes, then some pro-

cesses may not see this value at all, and those who see it will see

at least f + 1 R-answers not containing that value, and can there-

fore deduce it was sent fraudulently and ignore it.

If the Byzantine process R-broadcasts to f + 1 or more awake

processes, then all correct processes will receive at least one R-

answer containing that value. Hence if the value is big enough to

be the max of the values R-broadcast, it will be R-returned by all

correct awake processes. 2

Lemma 6.9. There cannot be a 〈true, v1〉 and a 〈true, v2〉 B-broadcasts

with valid certificates and v1 6= v2 .

Proof. In order to have a valid certificate, a process would need

to show proof of 2 f + 1 different processes providing A-answers

containing only v1 (respectively v2), which amounts to 4 f + 2

different answers. Since there are only f Byzantine processes, it

means that at least one correct process answered to both and will

therefore show at least one A-answer containing (v1, v2). Hence,

no valid certificate for two different values with the true flag can

be produced. 2

Theorem 6.10. In every ⋄synchronous−1 execution of BFT-Archipelago,

every correct process decides.

Proof. Assume we have reached GST. We will study what happens

during the B-step and the following R-step. Remember that be-

cause of Lemma 6.9, no two different values can be B-broadcast

with the label “true” and a valid certificate. Hence only two cases

are available: either all values B-broadcast at rank i are flagged as

“false”, or only one of them is flagged as true.

Assume all processes only B-broadcast values flagged as false.

Either all those values are the same, in which case we already have

only one value that can be R-broadcast with a valid certificate. Ei-

ther there are some different values. Let us call vmin the smallest of

those values. The fact that all values are flagged as false indicates

that all correct processes have encountered at least two different

values during their previous A-step, and thus have discarded the

minimum one(s). As processes can only ever R-broadcast greater

or equal values due to the max function at every step, it means

13

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.14 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

that all correct processes have discarded at least one value dur-

ing the A-step. As the number of values and processes are finite,

there will eventually be only one value left. Assume now all val-

ues B-broadcasted are flagged as false but one (if all values are

flagged as true, all correct processes commit). Let us call that value

vtrue . The number of processes with flag false at rank i is either

O (n), in which case we only need to mention that those processes

have each encountered different values at step A (which is why

they have a “false” flag) and hence have all discarded at least one

value. Now let us assume by way of contradiction that there are

only O (1) of those processes. We will show that this is impos-

sible. Without loss of generality, we are considering the group of

processes which are in the highest rank i. The fact that those O (1)

processes delivered some answers to receive the flag “false” means

that there were 2 f + 1 correct uninterrupted processes to deliver

those answers. Those processes (which total amounts to O (n)) can

be either in steps R, A or B. We will now explore what happens

if a O (n) of those processes are in those three cases. As there are

at least 2 different values delivered by each 2 f + 1 different pro-

cesses, then there are at least f + 1 processes that delivered both

values. Let us consider those processes. Consider the O (n) pro-

cesses in step R. those processes will take step A afterwards and

will therefore see the (at least two) values they have delivered.

Hence they will also A-return a false, and hence there were O (n)

processes with flag “false”, which is a contradiction. Consider the

O (n) processes in step A. Then those processes have delivered dif-

ferent values in their A-responses, hence they will also A-return a

false, and hence there were O (n) processes with flag “false”, which

is a contradiction. Consider the O (n) processes in step B. At the

same round where they were uninterrupted and they delivered the

A-responses that led to the “false”, they must have B-broadcast the

value with flag “true”. When uninterrupted, the 2 f + 1 processes

will process the reliable-B-broadcast of the “true” at the same pace

as the reliable-B-broadcast of the values in “false” but with some

overhead. Hence the value with flag “true” will be delivered before

the ones with “false”, and all the processes with “false” will have

to adopt that value and at the next R-step only the value flagged

“true” can be R-broadcast with valid certificate.

Hence at each suite of 3 steps R, A and B taken by all processes

there are O (n) processes which discard at least one value each. As

there are only O (n) different values at most, there will be at most

O (n) rounds before there is only one value left to be R-broadcast

(with a valid certificate).

Due to Lemma 6.6, when that happens all correct processes will

commit within 5 rounds. 2

7. Discussion and complexity analysis

Termination. In addition to leaderless termination (Theorem 4.2),

Archipelago satisfies termination for n ≥ 3, meaning that in an

eventually synchronous [14] execution, every correct process even-

tually decides. In such an execution, Archipelago needs at most 5

rounds, after the global stabilization time [23] and round synchro-

nization (i.e., all processes start and end a round at the same time).

Fast path of BFT-Archipelago. The common-case performance of

BFT-Archipelago can be improved by executing an optimistic fast

path under favorable conditions (e.g., synchrony, no failures, no

contention), and falling back to a robust path when these con-

ditions are not met. This can be achieved with the Abstract

scheme [8] as it allows chaining multiple BFT protocols, called Ab-

stract instances, that can abort and fall back to the next instance.

In particular, the Backup wrapper allows any full BFT protocol to

become an Abstract instance. Since BFT-Archipelago is a full BFT

protocol, it is amenable to a Backup instance, and thus can be ac-

celerated with Quorum fast path that can decide in two message

delays.

Complexity of BFT-Archipelago. BFT-Archipelago terminates deter-

ministically by exchanging and storing at most O (n4) messages

and bits (each message is of length O (1) bits), and terminates

within O (n) rounds and O (n4) calculations and signature checks.

BFT-Archipelago is resilient optimal [23] and time optimal [25,22].

BFT-Archipelago also has the same communication complexity as

PBFT [15] and DBFT [19].

In particular, the message length is O (1) bits because the al-

gorithm broadcasts (i) a local register (R, A or B) of size O (1)

messages, each containing a certificate, (ii) i and v of fixed length

O (1), (iii) a flag of length 1= O (1) and a (iv) signature of length

O (1). A response contains O (1) messages (one or two to be pre-

cise). Each of these messages is certified as having been rightfully

broadcast, but only by the (2 f + 1) answers that the processes

have received. Hence the length of an answer is O (1). The full

proof of complexity can be found in the proof of Theorem 6.10,

which depicts the number and sizes of messages sent. Below, we

give a quick additional sketch of the complexity for pedagogical

purposes:

For all correct processes to complete the calculations necessary

to truthfully go through a whole rank, it takes (at worst) each of

the O (n) processes O (n) broadcasts, which leads in total to O (n2)

broadcasts, each of length O (1) bits. For each broadcast there are

O (n2) responses exchanged of length O (1) bits each, for a total

amount of O (n)∗ (O (n2)∗ O (1)+ O (n2)∗ O (n)∗ O (1))= O (n4) bits

exchanged in the worst case in order to have all of the processes

proceed through a rank. After GST, we need at most O (n) rounds

taken by all processes to decide. However, as can be read in the

proof of Theorem 6.10, each process will not have to perform the

computations executed above more than O (1) time; most of the

rounds are only performed by one process that has been delayed

either by byzantine processes or simply because it was interrupted,

and hence most of the processes, although alive, do not broadcast

and only respond. This is why we have a total complexity of O (n4).

8. Evaluation

In this section, we implement BFT-Archipelago as a state ma-

chine replication (SMR) and compare it against the HotStuff BFT

SMR [47] also used by Libra, the blockchain designed by Face-

book [1], because it is the most communication-efficient SMR

we know of. Specifically, our experiments aim at answering two

questions: (a) is the performance BFT-Archipelago suitable for a

real world setup? and (b) can we confirm empirically that BFT-

Archipelago is more robust than a leader-based approach? We

answer the first question in Section 8.2 by showing that BFT-

Archipelago exhibits better performance than HotStuff in a WAN

setup. We answer the second question in Section 8.3 by showing

that faults impact negatively the throughput of HotStuff but not

BFT-Archipelago’s.

8.1. Experimental setup

We implement BFT-Archipelago in Java using the BouncyCastle2

library for cryptographic operations, using ecdsa with the curve

secp256k1 and sha256 cryptographic primitives and the stan-

dard java.nio library for network primitives. We optimized our

BFT-Archipelago SMR implementation using batching and pipelin-

ing. As BFT-Archipelago is leaderless, we benefited from the dis-

tributed pipelining [45] to have distributed nodes spawning P = 3

BFT-Archipelago consensus instances in parallel. By contrast, Hot-

Stuff centrally pipelines up to two consensus instances due to its

2 https://www.bouncycastle.org/.

14

https://www.bouncycastle.org/

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.15 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 11. Throughput and Latency of BFT-Archipelago and HotStuff in Europe.

Fig. 12. Throughput of BFT-Archipelago and HotStuff in Europe with two crash faults.

leader-based nature. Instead of proposing a single value, each BFT-

Archipelago replica accumulates up to B = 20000 transactions in

a batch and then proposes this batch as a single value. When

a replica transfers the same batch to another replica more than

once, it sends the hash of this batch instead of the batch itself to

save bandwidth. As HotStuff requires instead dedicated clients to

request all servers, it can only exploit hashes to encode each indi-

vidual transaction.

We deploy BFT-Archipelago and HotStuff on Amazon EC2 and

evaluate their performance utilizing 4 or 8 nodes distributed

evenly in four datacenters in Frankfurt, London, Ireland and Paris.

For every experiment we use c5.xlarge instances. Each instance has

4 vCPU and 8 GB of memory. In each datacenter, we also deploy an

additional c5.xlarge instance to act as a set of clients. The RTT be-

tween two datacenters is consistently between 10 ms and 30 ms.

The RTT between two machines in the same datacenter is negligi-

ble.

We use the official version of HotStuff written in C++. It uses

the Salticidae library for network communication and its cryp-

tographic primitives, which are the same as for BFT-Archipelago.

HotStuff also uses batching and pipelining as an optimization. Each

HotStuff replica proposes a batch of B transaction hashes as a sin-

gle value in its consensus instances. Additionally, HotStuff replicas

always execute P consensus instances in parallel. In all experi-

ments, we use B = 400 and P = 3 for HotStuff which are the de-

fault values and the ones described in the original publication [47].

8.2. Performance in WAN

In a first experiment, we compare the throughput and latency

of BFT-Archipelago against HotStuff when deployed on 4 server

nodes located in different data centers. The Fig. 11a shows the

throughput of BFT-Archipelago and HotStuff during a 50 seconds

experiment. The throughput is averaged over time in a 5 sec-

onds sliding window. We observe that the throughput of BFT-

Archipelago is between 2× and 3× higher than the throughput

of HotStuff. We explain this difference by two factors: the absence

of a single point of contention in BFT-Archipelago and the batch-

ing optimization of BFT-Archipelago which consumes less band-

width than in HotStuff. Moreover, we observe that the throughput

BFT-Archipelago oscillates with an amplitude of 20 Kops/s. This

is because the BFT-Archipelago implementation uses very large

batches whose transmission time tends to vary a lot in WAN se-

tups. Additionally, Fig. 11b shows the average transaction latency

of BFT-Archipelago and HotStuff. We observe that the latency of

BFT-Archipelago is consistently lower than 0.7× the latency of Hot-

Stuff. This shows that for a small network, BFT-Archipelago pro-

vides a good throughput, even compared to a state of the art BFT

SMR. Note that we do not evaluate the algorithms with a large

number of nodes, this is because HotStuff is known to not scale:

its performance decreases with the system size [47] and similarly

the size of certificates in BFT-Archipelago also prevents us from

scaling to very large number of nodes.

8.3. Fault tolerance

In a second experiment, we compare the throughput of BFT-

Archipelago against HotStuff under crash failures. To this end we

deploy both SMR on 8 server nodes, 2 in each datacenters. At

t = 60 seconds, we simulate the crash of one server with id 0,

in the Frankfurt datacenter, by killing the server process with

SIGKILL. At t = 80 seconds, we also crash the server with id

1, still in the Frankfurt datacenter. The Fig. 12 shows the evo-

lution of throughput over time for BFT-Archipelago and HotStuff.

The throughput is averaged over time in a 5 seconds sliding win-

dow. We observe that after the crash of the first server, which is

the leader in HotStuff, the throughput of HotStuff falls from 22.5

Kops/s to 14.5 Kops/s while the throughput of BFT-Archipelago os-

cillates between 15 Kops/s and 33 Kops/s before and after the first

crash. We explain the performance drop in HotStuff by the fact it

is a leader-based system and the crash of its leader negatively im-

pacts the whole system throughput. In contrast, BFT-Archipelago

which is leaderless is left unaffected by the crash of one server.

Additionally, we observe that after the crash of the second server,

the throughput of HotStuff collapses to 0 and never recovers while

the throughput of BFT-Archipelago increases to an interval be-

tween 30 Kops/s and 35.5 Kops/s. The complete crash of HotStuff

is unexpected since the HotStuff algorithm tolerates t = 2 faults

when n = 8. We conjecture that the increased throughput of BFT-

15

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.16 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Archipelago after the second crash is caused by the batch broadcast

made faster by the reduced number of nodes.

9. Related work

Given the notorious impact of a leader on consensus perfor-

mance [36,10,30,7,39,29,28,2,13,19,46,45,9], it is surprising that the

leaderless concept has never been precised.

The leader has become a limitation to scale consensus to large

blockchain networks. Crain et al. [19] consider the Democratic BFT

(DBFT) consensus algorithm as leaderless. DBFT is a multivalue

consensus algorithm at the heart of the Red Belly Blockchain [20]

whose n proposers bypass the leader bottleneck. It spawns n con-

current binary consensus instances, each relying on a weak coor-

dinator to help converge when many correct processes propose

distinct values. Although DBFT could use n different weak coor-

dinators, its binary consensus is not leaderless according to our

definition.

Dispel [45] is a pipelined SMR invoking the Democratic BFT

consensus algorithm. An empirical comparison of Dispel with Hot-

Stuff also confirms our observation: isolated failures affect the per-

formance of HotStuff significantly.

In a brief announcement [35], Lamport proposed a high level

transformation of a class of leader-based consensus algorithms into

a class of leaderless algorithms using repeatedly a synchronous vir-

tual leader election algorithm where all processes try to agree on a

set of proposals. In a corresponding patent document [33], Lamport

explains that during a period of asynchrony, if the virtual leader

election fails, then the consensus algorithm may not progress [35].

Our adopt-commit-max object of Archipelago allows processes to

converge towards a unique value, hence sharing similarities with

the proposal of some virtual leader. Yet, neither a leaderless defi-

nition nor a virtual leader specification were given by Lamport.

Borran and Schiper proposed a so-called “leader-free” consen-

sus algorithm [10] without presenting however any precise leader-

freedom definition. The algorithm has an exponential complexity,

which limits its applicability.

Interestingly, SMR algorithms that rely on multiple leaders (e.g.,

Mencius [36], RBFT [7]) do not necessarily rely on a leaderless con-

sensus algorithm.

Moraru et al. [39] used multiple “command leaders” in EPaxos.

Each leader tries to commit one command. When commands have

dependencies only one of the leaders can get its command com-

mitted at a time, as if there were successive leader-based consen-

sus instances. If a leader fails after receiving a positive acknowl-

edgment from a fast quorum of n − 1 processes, it rejoins with a

new identifier and a greater ballot without being able to acknowl-

edge the previous commit message.

Recently, some errors [44,43] were found in both random-

ized [40,38] and multi-leader consensus algorithms [39], indicating

that getting rid of the leader is error prone.

10. Conclusion

In this paper, we demonstrated the existence of leaderless in-

dulgent consensus algorithms. Our definition of leaderless is gen-

eral. It relies on the ability to terminate despite a specific kind of

fault, interruption, which complements the classical crash, omission

or Byzantine faults. An interruption can be seen as a form of weak

synchrony. Our evaluation of a pipelined state machine replication

built on top of the Byzantine fault tolerant consensus algorithm

demonstrates the applicability of such algorithms to the permis-

sioned blockchain context.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supportef in part by the Australian Research Coun-

cil Future Fellowship funding scheme (180100496).

Appendix A. OFT-Archipelago: proof of correctness in message

passing

We now prove the correctness of OFT-Archipelago or Archipel-

ago in its message-passing version. All results and line numbers in

this sub-section refer to Algorithm 5.

Lemma Appendix A.1. The R-Step satisfies the following properties:

• Validity For a fixed i, if some process returns v , then v was the input

of some process.

• Monotonicity If process p returns (i, v i) in an R-Step and p returns

(j, v j) in a later R-Step, then j ≥ i and v j ≥ v i .

Proof. • Validity At line 17 (i, v ′) (the value returned by the R-

Step) is computed as the maximum of all tuples ever received,

which must in turn have been broadcast at line 14 by some

process.

• Monotonicity Assume by contradiction that some process p re-

turns (i, v i) in R-Step r1 and later returns (j, v j) in R-Step r2
such that (j, v j) < (i, v i). During r1 , p selected and returned

(i, v i) as the maximum element of its local R set. Since ele-

ments can only be appended to a process’s R set, (i, v i) will

still be in R during r2 . Thus, p cannot select and return a tuple

smaller than (i, v i) during r2 . We have reached a contradic-

tion. 2

Lemma Appendix A.2. For a fixed i, an A-Step followed by a B-Step

corresponds to an adopt-commit object.

Proof. Validity holds because at lines 23, 24, 30, 32, and 33, pro-

cesses only return values that were sent at lines 39 or 42. In turn,

these values must be input values of some process who broadcast

them at lines 20 or 26.

Termination holds because the only waiting is done at lines 21

and 27; processes always wait for f + 1 responses; since f + 1=

n− f , processes eventually receive these responses.

Commitment holds because if all processes enter A-Step with

the same value v , then the check at line 23 will succeed and all

processes will enter B-Step with (true, v); thus the check at line 29

will succeed and all processes will return (commit, v) in the B-Step.

Agreement. Assume by contradiction that process p outputs

(commit, v) and process p′ outputs (·, v ′) with v 6= v ′ . Then p must

have received B-responses containing only (true, v) from a set R p

of f +1 distinct processes; p′ must have also received B-responses

from a set R p′ of f + 1 distinct processes. Since f + 1 > n/2, R p

and R p′ must intersect in at least one process q.

Let S be the union of all B[i]s received by p′ in B-responses.

We distinguish three cases, based on the number of distinct values

val for which the S contains (true, val).

16

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.17 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

• S does not contain any (true, val) tuples. In this case, q’s B-

response to p′ must contain a (f alse, val) tuple. If q responded

to p before p′ , then by Lemma Appendix A.3 q’s B-response

to p′ must include a (true, v) tuple — a contradiction. If q

responded to p′ before p, then by Lemma Appendix A.3 q’s B-

response to p must include (f alse, val) — a contradiction.

• S contains (true, val) tuples for a single value val. Then val 6=

v , otherwise p′ would either commit v or adopt v . Assume

wlog the q responds to p before it responds to p′ . Then q’s

response to p′ must contain both (true, v) and (true, val), con-

tradicting Lemma Appendix A.4.

• S contains more than one value v . This is impossible by

Lemma Appendix A.4. 2

Lemma Appendix A.3. For a fixed i, if a process p sends a B-response

(B-response, i, B[i]) to some process q at time t and p sends a B-

response (B-response, i, B[i]′) to some process q′ at time t′ > t , then

B[i] ⊆ B[i]′ .

Proof. This is because items can only be added to B[i] (line 41). 2

Lemma Appendix A.4. For a fixed i, if two processes p and q broadcast

(true, v) and (true, v ′) at line 26, then v = v ′ .

Proof. Assume not, then p must have received A-responses con-

taining only v from a set R p of f + 1 processes and q must have

received A-responses containing only v ′ from a set R p′ of f + 1

processes. Since f + 1 > n/2, R p and R p′ must intersect in at least

one process r. Assume without loss of generality r responded to p

first and then to q: then the response to q must also include v by

Lemma Appendix A.3. We have reached a contradiction. 2

Theorem Appendix A.5 (Validity). With no faulty processes, if some

process decides v , then v is the input of some process.

Proof. The theorem follows by induction from the validity proper-

ties of the R-Step (Lemma Appendix A.1) and of the A- and B-Steps

(Lemma Appendix A.2). 2

Theorem Appendix A.6 (Agreement). Let p1 and p2 be two correct

processes. If p1 and p2 return 〈commit, v1〉 and 〈commit, v2〉 then

v1 = v2 .

Proof. Consider that both p1 and p2 are correct, the proof is by

contradiction. Assume that v1 6= v2 .

First, assume they both commit using the same rank i in A and

B. By Lemma Appendix A.2, an A-Step followed by a B-Step corre-

spond to (enforce the same properties as) an adopt-commit object.

Thus, the theorem follows from the agreement property of adopt-

commit.

For different ranks i and j, assume now without loss of gener-

ality one of those two processes, say p1 , commits v1 using B i and

p2 commits v2 using B j with j > i. Then this means p1 saw, dur-

ing its B-step line 29, at least f +1 sets containing only 〈true, v1〉,

meaning that no other process had yet B-broadcast another value

or that any process B-broadcasting in the same round will have

to either adopt or commit v1 (indeed, another process would see

at least one B-answer from a correct process containing 〈true, v1〉

and would hence at least adopt, maybe commit v1).

Now there are two possibilities: either no other process has yet

run an R-step at a rank strictly higher than i. Then the max func-

tion prevents it from jumping directly ahead of rank i. In this case,

before advancing to rank i + 1, p2 has to go through rank i. Thus

it is certain that p2 will see at least 1 〈true, v1〉 in his B-answers

from rank i. It will thus either commit it or adopt it. Therefore, all

correct processes who reach rank i+1 by incrementing their rank

(line 12) will propose value v1 . Other processes who run an R-

step after that will be able to jump straight to the highest R-visited

rank and will R-return value v1 , because there is no value different

from v1 past rank i. Hence no two correct processes can decide on

different values. 2

A.1. OFT-Archipelago: leaderless termination in message passing

We now prove that OFT-Archipelago satisfies leaderness termi-

nation.

Lemma Appendix A.7 (Commitment). If no process R-broadcast any-

thing other than the same (i, v), then all correct processes output

〈commit, v〉.

Proof. Since all the ranks and values coming in R-answers are

identical, all correct processes will R-return (i, v). Hence all cor-

rect processes will A-broadcast v . All A-answers will contain only

v and thus, all correct processes will A-return 〈true, v〉. As a result,

all correct processes B-broadcast 〈true, v〉 and can only receive

valid B-responses containing only 〈true, v〉. Therefore, all correct

processes B-return 〈commit, v〉. 2

Lemma Appendix A.8 (Iterative elimination of values). Eventually only

one value can be R-broadcast or all correct processes commit.

Proof. Assume we have reached GST. We study what happens dur-

ing the B-step and the following R-step. Remember that no two

different values can be B-broadcast at the same rank with the label

true (that would mean that two different processes had each seen

during the A-step f + 1 answers containing only one value, which

is impossible as there are only 2 f +1 processes in all). Hence only

two cases are available: either all values B-broadcast at rank i are

flagged as f alse, or only one of them is flagged as true.

Assume all processes only B-broadcast values flagged as false.

Either all those values are the same, in which case we already have

only one value that can be R-broadcast with a valid certificate. Ei-

ther there are some different values. The fact that all values are

flagged as f alse indicates that all correct processes have encoun-

tered at least two different values during their previous A-step, and

thus have discarded the minimum one(s). As processes can only

ever R-broadcast greater or equal values due to the max function

at every step, it means that all correct processes have discarded

at least one value during the A-step. As the number of values and

processes are finite, there will eventually be only one value left.

Assume now all values B-broadcast are flagged as false but one

(if all values are flagged as true, all correct processes commit; no

two different values can be flagged as true). Let us call that value

vtrue . The number of processes with flag false at rank i is either

O (n), in which case we only need to mention that those processes

have each encountered different values at step A (which is why

they have a “false” flag) and hence have all discarded at least one

value. Now let us assume by way of contradiction that there are

only O (1) of those processes. We will show that this is impos-

sible. Without loss of generality, we are considering the group of

processes which are in the highest rank i. The fact that those O (1)

processes delivered some answers to receive the flag “false” means

that there were f + 1 correct uninterrupted processes to deliver

those answers. Those processes (which total amounts to O (n)) can

be either in steps R, A or B at the time of sending the message.

We will now explore what happens if a O (n) of those processes

are in any of those three cases. If there are at least 2 different val-

ues each delivered by f + 1 different processes, then there is at

least 1 process that delivered both values. Let us consider those

processes.

17

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.18 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Consider the O (n) processes in step R. those processes will take

step A afterwards and will therefore see the (at least two) val-

ues they have delivered. Hence they will also A-return a false, and

hence there were O (n) processes with flag “false”, which is a con-

tradiction.

Consider the O (n) processes in step A. Then those processes

have delivered different values in their A-responses, hence they

will also A-return a f alse, and hence there were O (n) processes

with flag “false”, which is a contradiction. Consider the O (n) pro-

cesses in step B. At the same round where they were uninterrupted

and they delivered the A-responses that led to the “false”, they

must have B-broadcast the message with flag “true”. When unin-

terrupted, the f + 1 processes will process the B-broadcast of the

“true” at the same pace as the B-broadcast of the values in “false”

but with some overhead. Hence the value with flag “true” will be

delivered before the ones with “false”, and all the processes with

“false” will have to adopt that value and at the next R-step only

the value flagged “true” can be R-broadcast.

Hence at each series of 3 steps R, A and B taken by all pro-

cesses there are O (n) processes which discard at least one value

each. As there are only O (n) different values at most, there will

be at most O (n) rounds before there is only one value left to be

R-broadcast. 2

Theorem Appendix A.9 (Leaderless termination). In every ⋄syn-

chronous−1 execution of OFT-Archipelago, every correct process decides.

Proof. Assume by the time we reach GST for every correct, unin-

terrupted process, and no process has yet committed (otherwise all

processes are R-broadcasting the same value and Lemma Appendix

A.7 ensures termination within 3 steps).

The only way for processes not to commit is for some process

to A-return a false flag. One way for that to happen is for two dif-

ferent processes (at least) to return different values from an R-step.

This may happen if a higher value is received after the f + 1 first

ones by some processes which will ignore it while some other will

receive it as part of the f + 1 first ones and take it in considera-

tion. If that happens, however, that higher value will be disclosed

to some new process. Either the value is A-broadcast to all pro-

cesses, in which case all processes will adopt it and the lowest

value is discarded (in which case within O (n) rounds all values

will be discarded and termination will happen due to Lemma Ap-

pendix A.7). Either some process does not receive that value (or

receives it too late), and B-broadcasts another value with true. In

this case, all processes will adopt that value and commit at the

next B-step due to Lemma Appendix A.7. In both cases, termina-

tion happens within O (n) rounds. 2

References

[1] Z. A., et al., The Libra blockchain, Tech. Rep., Calibra, revised version of Septem-

ber 25, 2019.

[2] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, J.-P. Martin, Revisiting fast

practical Byzantine fault tolerance, Tech. Rep., 2017, arXiv:1712.01367.

[3] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Communication-

efficient leader election and consensus with limited link synchrony, in: PODC,

2004.

[4] K. Antoniadis, R. Guerraoui, D. Malkhi, D.-A. Seredinschi, State machine repli-

cation is more expensive than consensus, in: DISC, 2018.

[5] J. Aspnes, H. Attiya, K. Censor, Max registers, counters, and monotone circuits,

in: PODC, 2009.

[6] H. Attiya, A. Bar-Noy, D. Dolev, Sharing memory robustly in message-passing

systems, J. ACM 42 (1) (1995) 124–142.

[7] P. Aublin, S.B. Mokhtar, V. Quéma, RBFT: redundant Byzantine fault tolerance,

in: ICDCS, 2013, pp. 297–306.

[8] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, M. Vukolić, The next 700 BFT

protocols, TOCS 32 (4) (2015) 12:1–12:45.

[9] L. Bonniot, C. Neumann, F. Taïani, PnyxDB: a lightweight leaderless democratic

Byzantine fault tolerant replicated datastore, in: SRDS, 2020.

[10] F. Borran, A. Schiper, A leader-free Byzantine consensus algorithm, in: ICDCN,

2010.

[11] Z. Bouzid, A. Mostfaoui, M. Raynal, Minimal synchrony for Byzantine consensus,

in: PODC, 2015.

[12] E. Buchman, Tendermint: Byzantine fault tolerance in the age of blockchains,

MSc Thesis, 2016.

[13] E. Buchman, J. Kwon, Z. Milosevic, The latest gossip on BFT consensus, Tech.

Rep., 2018, arXiv:1807.04938.

[14] C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to Reliable and Secure Dis-

tributed Programming, Springer, 2011.

[15] M. Castro, B. Liskov, Practical Byzantine fault tolerance and proactive recovery,

ACM Trans. Comput. Syst. 20 (4) (2002) 398–461.

[16] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed sys-

tems, J. ACM 43 (2) (1996) 225–267.

[17] P. Civit, S. Gilbert, V. Gramoli, Brief announcement: polygraph: accountable

Byzantine agreement, in: DISC, 2020.

[18] P. Civit, M.A. Dzulfikar, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic, M.

Vidigueira, Byzantine Consensus Is Theta(n2): The Dolev-Reischuk Bound Is

Tight Even in Partial Synchrony! 2022.

[19] T. Crain, V. Gramoli, M. Larrea, M. Raynal, DBFT: efficient leaderless Byzantine

consensus and its application to blockchains, in: NCA, 2018.

[20] T. Crain, C. Natoli, V. Gramoli, Red Belly: a secure, fair and scalable open

blockchain, in: S&P, 2021.

[21] K. Croman, C. Decker, I. Eyal, A.E. Gencer, A. Juels, A.E. Kosba, A. Miller, P.

Saxena, E. Shi, E.G. Sirer, D. Song, R. Wattenhofer, On scaling decentralized

blockchains, in: Financial Cryptography, 2016, pp. 106–125.

[22] D. Dolev, H.R. Strong, Authenticated algorithms for Byzantine agreement, SIAM

J. Comput. 12 (4) (1983) 656–666.

[23] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial syn-

chrony, J. ACM 35 (2) (1988) 288–323.

[24] C. Fernández-Campusano, M. Larrea, R. Cortiñas, M. Raynal, Eventual leader

election despite crash-recovery and omission failures, in: PRDC, 2015.

[25] M.J. Fischer, N.A. Lynch, A lower bound for the time to assure interactive con-

sistency, Inf. Process. Lett. 14 (4) (1982) 183–186.

[26] E. Gafni, Round-by-round fault detectors: unifying synchrony and asynchrony,

in: PODC, 1998.

[27] E. Gafni, L. Lamport, Disk Paxos, Distrib. Comput. 16 (1) (2003) 1–20.

[28] V. Gramoli, L. Bass, A. Fekete, D. Sun, Rollup: non-disruptive rolling up-

grade with fast consensus-based dynamic reconfigurations, TPDS 27 (9) (2016)

2711–2724.

[29] D. Gupta, L. Perronne, S. Bouchenak, BFT-Bench: Towards a practical evaluation

of robustness and effectiveness of BFT protocols, in: DAIS, 2016.

[30] P. Hunt, M. Konar, F.P. Junqueira, B. Reed, Zookeeper: wait-free coordination for

Internet-scale systems, in: ATC, 2010.

[31] L. Lamport, The part-time parliament, TOCS 16 (2) (1998) 133–169.

[32] L. Lamport, Paxos made simple, SIGACT News 32 (4) (2001) 18–25.

[33] L. Lamport, Brief announcement: leaderless Byzantine paxos, in: DISC, 2011.

[34] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Trans.

Program. Lang. Syst. 4 (3) (1982) 382–401.

[35] L. Lamport Leaderless Byzantine consensus, United States Patent 2010 Mi-

crosoft, Redmond, WA (USA).

[36] Y. Mao, F.P. Junqueira, K. Marzullo, Mencius: building efficient replicated state

machines for WANs, in: OSDI, 2008.

[37] C. Martín, M. Larrea, E. Jiménez, Implementing the omega failure detector in

the crash-recovery failure model, J. Comput. Syst. Sci. 75 (3) (2009) 178–189.

[38] A. Miller, Y. Xia, K. Croman, E. Shi, D. Song, The honey badger of BFT protocols,

in: ACM CCS, 2016, pp. 31–42.

[39] I. Moraru, D.G. Andersen, M. Kaminsky, There is more consensus in egalitarian

parliaments, in: SOSP, 2013.

[40] A. Mostefaoui, H. Moumen, M. Raynal, Signature-free asynchronous byzantine

consensus with t < n/3 and o(n2) messages, in: PODC, 2014.

[41] D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm,

in: ATC, 2014.

[42] T.F. Rezende, P. Sutra, Leaderless state-machine replication: Specification, prop-

erties, limits (extended version), Tech. Rep., 2020, arXiv:2008.02512.

[43] P. Sutra, On the correctness of egalitarian paxos, Inf. Process. Lett. 156 (2020)

105901.

[44] P. Tholoniat, V. Gramoli, Formally verifying blockchain Byzantine fault toler-

ance, in: FRIDA, 2019, available at https://arxiv.org/pdf/1909.07453.pdf.

[45] G. Voron, V. Gramoli, Dispel: Byzantine SMR with distributed pipelining, Tech.

Rep., 2019, arXiv:1912.10367.

[46] M. Yin, D. Malkhi, M.K. Reiter, G. Golan-Gueta, I. Abraham, HotStuff: BFT con-

sensus with linearity and responsiveness, in: PODC, 2019.

[47] M. Yin, D. Malkhi, M.K. Reiter, G.G. Gueta, I. Abraham, Hotstuff: Bft consensus

with linearity and responsiveness, in: Proceedings of the 2019 ACM Sympo-

sium on Principles of Distributed Computing, 2019, pp. 347–356.

18

https://arxiv.org/pdf/1909.07453.pdf

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.19 (1-19)

K. Antoniadis, J. Benhaim, A. Desjardins et al. Journal of Parallel and Distributed Computing ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Karolos Antoniadis obtained the PhD degree from

EPFL.

Julien Benhaim was a Master’s student at EPFL.

Elias Poroma was a Master’s student at EPFL.

Antoine Desjardins was a Master’s student at

EPFL.

Vincent Gramoli is a visting professor at EPFL. He

received a Future Fellowship from the Australian Re-

search Council and leads the Concurrent Systems Re-

search Group at the University of Sydney. He is the

Founder and CTO of Redbelly Network. His expertise

is in distributed computing and security. In the past,

Gramoli has been affiliated with INRIA, Cornell and

CSIRO. He received his PhD from Université de Rennes

and his Habilitation from UPMC Sorbonne University.

Rachid Guerraoui has been affiliated with Ecole

des Mines of Paris, the Commissariat à l’Energie

Atomique of Saclay, Hewlett Packard Laboratories

and the Massachusetts Institute of Technology. He

has worked in a variety of aspects of distributed

computing, including distributed algorithms and dis-

tributed programming languages. He is most well

known for his work on (e-)Transactions, epidemic in-

formation dissemination and indulgent algorithms. He

co-authored a book on Transactional Systems (Hermes) and a book on reli-

able distributed programming (Springer). He was appointed program chair

of ECOOP 1999, ACM Middleware 2001, IEEE SRDS 2002, DISC 2004 and

ACM PODC 2010.

Gauthier Voron is a postdoctoral fellow at EPFL.

Igor Zablotchi obtained the PhD degree from EPFL.

He is now a postdoctoral fellow at the Massachusetts

Institute of Technology, MA, USA.

19

ARTICLE IN PRESS
JID:YJPDC AID:4672 /FLA [m5G; v1.333] P.20 (1-19)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Highlights

• Eventually synchronous consensus algorithms are leader-based. We show that they can be leaderless.

• We propose a formal definition of leaderless consensus algorithm.

• We propose a didactic construction of a byzantine fault tolerant consensus algorithm.

• We prove correctness.

	Leaderless consensus
	1 Introduction
	2 Preliminaries
	3 Defining a leaderless algorithm
	4 Archipelago: a leaderless consensus algorithm
	4.1 Archipelago: proof of correctness
	4.2 Archipelago: proof of leaderless termination

	5 Leaderless consensus in message passing
	6 Byzantine leaderless consensus
	6.1 BFT-Archipelago: proof of correctness
	6.2 BFT-Archipelago: proof of leaderless termination

	7 Discussion and complexity analysis
	8 Evaluation
	8.1 Experimental setup
	8.2 Performance in WAN
	8.3 Fault tolerance

	9 Related work
	10 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A OFT-Archipelago: proof of correctness in message passing
	A.1 OFT-Archipelago: leaderless termination in message passing

	References

