
As easy as ABC:

Optimal (A)ccountable (B)yzantine (C)onsensus is easy!

Pierre Civit
a,∗
, Seth Gilbert

b
, Vincent Gramoli

c,d
, Rachid Guerraoui

d
and Jovan Komatovic

d,∗∗

a
Sorbonne Université, CNRS, LIP6, 4 place Jussieu, Paris, 75005, France

b
NUS Singapore, 21 Lower Kent Ridge Road, 119077, Singapore

c
University of Sydney, 1 Cleveland St, Darlington NSW, 2008, Australia

d
École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, Lausanne, 1015, Switzerland

ART I C L E IN FO

Keywords:

distributed consensus

accountability

fault detection

Byzantine fault tolerance

ABSTRACT

In a non-synchronous system with 𝑛 processes, no 𝑡0-resilient (deterministic or probabilistic)

Byzantine consensus protocol can prevent a disagreement among correct processes if the

number of faulty processes is ≥ 𝑛 − 2𝑡0. Therefore, the community defined the accountable

Byzantine consensus problem: the problem of (i) solving Byzantine consensus whenever

possible (e.g., when the number of faulty processes does not exceed 𝑡0), and (ii) allowing

correct processes to obtain proofs of culpability of 𝑛 − 2𝑡0 faulty processes whenever a

disagreement occurs. This paper presents , a simple yet efficient transformation of any

non-synchronous 𝑡0-resilient (deterministic or probabilistic) Byzantine consensus protocol

into its accountable counterpart. In the common case (up to 𝑡0 faults),  introduces an

additive overhead of two communication rounds and 𝑂(𝑛2) exchanged bits. Whenever they

disagree, correct processes detect culprits by exchanging 𝑂(𝑛3) messages, which we prove

optimal. Lastly, is not limited to Byzantine consensus: provides accountability for

other essential distributed problems (e.g., reliable and consistent broadcast).

1. Introduction

Byzantine consensus [40] is a fundamental problem of distributed computing. It plays a major role in state

machine replication (SMR) [1, 6, 45, 52, 42, 20], particular cryptographic protocols [9, 34], and blockchain systems [3,

14, 26, 33]. In brief, Byzantine consensus enables processes to agree on a common value despite Byzantine (arbitrary)

failures. Concretely, the problem is defined among 𝑛 processes, out of which some processes can misbehave in

an arbitrary manner (these processes can crash, send different messages to different processes, fail to send some

messages, etc.); processes that misbehave are said to be faulty, whereas non-faulty processes are said to be correct.

The following interface is exposed:

• input 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣): A process proposes a value 𝑣; the cardinality of the values processes can proposed can be

arbitrary (i.e., we consider multivalue consensus). Each correct process proposes exactly one value.

• output 𝖽𝖾𝖼𝗂𝖽𝖾(𝑣′): A process decides a value 𝑣′. Each correct process decides at most one value (i.e., decisions

are irrevocable).

∗
Corresponding author

∗∗
Principal corresponding author

pierre.civit@lip6.fr (P. Civit); seth.gilbert@comp.nus.edu.sg (S. Gilbert);

vincent.gramoli@sydney.edu.au (V. Gramoli); rachid.guerraoui@epfl.ch (R. Guerraoui);

jovan.komatovic@epfl.ch (J. Komatovic)

orcid(s): 0000-0003-2394-1201 (P. Civit); 0000-0003-3298-7412 (S. Gilbert); 0000-0001-5632-8572 (V. Gramoli);

0000-0002-4794-8902 (R. Guerraoui)

First Author et al.: Preprint submitted to Elsevier Page 1 of 40



Accountable Byzantine Consensus

The following properties characterize the problem:

• Agreement: No two correct processes decide different values.

• Validity: If all correct processes propose the same value 𝑣, then no correct process decides a value 𝑣′ ≠ 𝑣.

• Deterministic termination: Every correct process eventually decides.

• Probabilistic termination: Every correct process eventually decides with probability 1.

Definition 1 (Byzantine consensus protocol). A protocol is a 𝑡0-resilient deterministic (resp., probabilistic) Byzantine

consensus protocol if it satisfies agreement, validity and deterministic (resp., probabilistic) termination while

tolerating up to 𝑡0 faulty processes.

In this paper, we are particularly interested in non-synchronous Byzantine consensus protocols: protocols that

operate in an environment without (permanent) timely communication. Dwork, Lynch and Stockmeyer proved that

non-synchronous Byzantine consensus cannot be solved with 𝑛∕3 (or more) faulty processes [31]. By adapting their

technique, we prove another negative result: the safety of Byzantine consensus can always be compromised in

severely corrupted systems. (The following theorem is proven in Appendix A.)

Theorem 1 (Unavoidable disagreement). For any non-synchronous 𝑡0-resilient (deterministic or probabilistic) Byzan-

tine consensus protocol among 𝑛 processes, there exists an execution with 𝑡 ≥ 𝑛 − 2𝑡0 faulty processes in which correct

processes disagree (i.e., decide different values).

A direct consequence of Theorem 1 is that no blockchain based on a non-synchronous Byzantine consensus

protocol can prevent its divergence if the system is overly corrupted. Real-life consequences of such unlucky

scenarios can be substantial. For example, people might lose valuable assets due to a fork created in a blockchain –

such an attack is called double-spending.

While disagreements (and, thus, double-spending attacks) are unavoidable in severely corrupted systems (by

Theorem 1), can we at least detect faulty processes which are responsible for disagreements? Such a detection would

naturally stimulate processes to behave correctly, thus increasing the security of the entire system. Luckily, Civit

et al. [24] answered this question affirmatively by introducing accountability to Byzantine consensus protocols.

Namely, they defined the accountable Byzantine consensus problem: the problem of (i) solving Byzantine consensus

whenever possible (e.g., when the number of faulty processes does not exceed some predefined threshold), and (ii)

allowing correct processes to obtain proofs of culpability of (some) faulty processes whenever a disagreement occurs.

Definition 2 (Accountable Byzantine consensus protocol). A protocol is a 𝑡0-resilient deterministic (resp., probabilis-

tic) accountable Byzantine consensus protocol if it satisfies the following two properties:

• Byzantine consensus solvability: In all executions with up to 𝑡0 faults, the protocol solves the Byzantine

consensus problem, i.e., it satisfies agreement, validity and deterministic (resp., probabilistic) termination.
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• Accountability: If two correct processes decide different values, every correct process eventually irrefutably

detects (at least) 𝑛 − 2𝑡0 faulty processes and obtains a proof of culpability of each detected process. A proof

of culpability of a process can be independently verified by a third party, and it is impossible to produce such

a proof for a correct process.

Informally, a protocol is an accountable Byzantine consensus protocol if (1) it solves the Byzantine consensus

problem when the system is not overly corrupted (Byzantine consensus solvability), and (2) it allows each correct

process to detect (at least) 𝑛 − 2𝑡0 culprits whenever a disagreement occurs (accountability). Moreover, detection

of culprits in the case of a disagreement implies an attainment of their culpability proofs. Importantly, no proof of

culpability of a correct process can ever be obtained. Note that, if there are more than 𝑡0 faulty processes, correct

processes might never decide and accountability is not provided in this case. In other words, accountability is

guaranteed only in the case of a disagreement.

1.1. Contributions

In this paper, we present the following contributions:

1. We introduce a generic and simple transformation –  – that maps any non-synchronous 𝑡0-resilient

(deterministic or probabilistic) Byzantine consensus protocol into its accountable counterpart. Additionally,

our transformation is efficient: in the common case (i.e., in all executions with up to 𝑡0 faulty processes),

introduces an additive overhead of (1) two all-to-all communication rounds, and (2) 𝑂(𝑛2) exchanged bits.

In the case of a disagreement, correct processes achieve accountability by exchanging 𝑂(𝑛3) “accountability-

specific” messages; we refer to this metric as the accountability complexity. Our transformation relies on (1) a

public-key infrastracture [43, 19], and (2) a threshold signature scheme [49].

 owes its simplicity and efficiency to an observation that the simple composition presented in Algorithm 1

solves the Byzantine consensus problem in a non-synchronous environment. Indeed, if the number of faults

does not exceed 𝑡0, all correct processes eventually decide the same value from Byzantine consensus (line 2).

Therefore, all correct processes eventually receive 𝑛 − 𝑡0 matching confirm messages (line 4), and decide

(line 5). The critical mechanism illustrated in Algorithm 1 is that faulty processes must send conflicting

confirmmessages in order to cause a disagreement. Hence, whenever correct processes disagree, an exchange

of received confirm messages is sufficient for obtaining accountability.

Algorithm 1 Intuition behind transformation

1: function 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) do
2: 𝑣′ ← 𝑏𝑐.𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) ⊳ 𝑏𝑐 is any non-synchronous 𝑡0-resilient Byzantine consensus protocol
3: broadcast [confirm, 𝑣′]
4: wait for [confirm, 𝑣′] from 𝑛 − 𝑡0 processes
5: return 𝑣′
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2. We prove a lower bound on the accountability complexity in a non-synchronous environment: any accountable

Byzantine consensus protocol incursΩ(𝑛3) accountability complexity, with 𝑡0 ∈ Ω(𝑛). As a consequence,

suffices for achieving optimal accountability complexity.

3. We show that the applicability of  is not limited to Byzantine consensus. Specifically, we define a

class of easily-accountable agreement tasks, and demonstrate that generalized  transformation provides

accountability for such tasks. Important distributed problems, such as Byzantine reliable and consistent

broadcast [13, 17], fall into the class of easily-accountable agreement tasks.

1.2. Related Work

The work on accountability in distributed systems was pioneered in [36]: PeerReview, a generic accountability

layer for distributed systems, was presented. Importantly, PeerReview does not allow correct processes to irrefutably

detect faulty processes in non-synchronous environments: faulty processes might be suspected forever (i.e., processes

strongly “believe” that the accused process is faulty, but no definitive proof is obtained), yet never conclusively

detected. Hence, PeerReview does not suffice for accountability in non-synchronous Byzantine consensus. The

formal study of Byzantine failures in the context of accountability was initiated by Haeberlen and Kuznetsov [37].

Recently, with the expansion of blockchain systems, the interest in accountable distributed protocols resurfaced

once again. Polygraph [23], the first accountable Byzantine consensus protocol, was introduced by Civit et al. The

Polygraph protocol is based on the DBFT consensus protocol [26] used in blockchains [27], tolerates up to 𝑛 faulty

processes in achieving accountability, and has the communication complexity of 𝑂(𝑛4) in the common case. It is

worth observing that Polygraph worsens the communication complexity of (the binary-value version of) the DBFT

base protocol by an 𝑂(𝑛) multiplicative factor. Casper [16] is another system designed around the goal of obtaining

accountability in blockchains, while Trap [47] combines accountability with game theory to increase the Byzantine

fault tolerance of blockchains.

Recently, the possibility of obtaining accountability in protocols based on PBFT [20] was investigated [48].

Specifically, accountable variants of PBFT [20] and HotStuff [53] were presented; however, these protocols allow

for accountability only if up to 2𝑛∕3 processes are faulty, which implies that their “accountability threshold” is

lower than the one of Polygraph. A generic transformation 𝜏𝑠𝑐𝑟 of any protocol solving a Byzantine decision

task into its accountable equivalent was introduced in [25]. Thus, 𝜏𝑠𝑐𝑟 suffices for obtaining accountability in

any Byzantine consensus protocol. The drawback of the proposed transformation is its cost: 𝜏𝑠𝑐𝑟 worsens the

communication complexity of a Byzantine consensus protocol by a multiplicative factor of 𝑂(𝑛2) (or 𝑂(𝑛) in

“broadcast-based” protocols
1
). The commonality between the discussed prior work is employing sophisticated

1
The 𝜏𝑠𝑐𝑟 transformation [25] modifies each protocol by reliably-broadcasting [13, 17] its messages. Therefore, if the original protocol

exclusively sends its messages to all processes (i.e., no unicasts are present), 𝜏𝑠𝑐𝑟 introduces an overhead of an 𝑂(𝑛) multiplicative factor.
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Base Consensus
Protocol

Communication Complexity
of the Base Consensus Protocol

Communication Complexity
of the Accountable Counterpart

in the Common Case

Accountability
Threshold

Paper

PBFT 𝑂(𝑛4) 𝑂(𝑛4) 2𝑛∕3 Sheng et al. [48]
HotStuff 𝑂(𝑛3) 𝑂(𝑛3) 2𝑛∕3 Sheng et al. [48]

Binary DBFT 𝑂(𝑛3) 𝑂(𝑛4) 𝑛 Civit et al. [23]
Multivalue DBFT 𝑂(𝑛4) 𝑂(𝑛4) 𝑛 Civit et al. [23]

Any 𝑋 𝑋 ⋅ 𝑂(𝑛2)
(

or 𝑋 ⋅ 𝑂(𝑛)
)

𝑛 Civit et al. [25]
Any 𝑋 𝑋 𝑛 this paper

Table 1
Overview of the main properties of existing accountable Byzantine consensus protocols.

mechanisms for achieving accountability. Indeed, the prior work achieves accountability with the help of non-trivial

modifications applied to the base consensus protocol.

In contrast, we take a fundamentally different approach that allows us to treat the base consensus protocol as a

“closed box”, thus obtaining simpler andmore efficient accountable Byzantine consensus protocols. Table 1 compares

accountable Byzantine consensus protocols obtained by  with the existing alternatives.

Roadmap. We present the necessary preliminaries in §2. We devote §3 to our  transformation. In §4, we

prove a cubic lower bound on the accountability complexity. We define easily-accountable agreement tasks, and

prove the applicability of generalized  to such tasks in §5. We conclude the paper in §6. Optional appendix

includes (1) a proof of Theorem 1 (Appendix A), and (2) a detailed specification of the cryptographic primitives we

use (Appendix B).

2. Preliminaries

System model. We consider a system Ψ = {𝑃1, ..., 𝑃𝑛} of 𝑛 processes that communicate by exchanging messages

through a point-to-point authenticated network. Concretely, a message is a sequence of bits whose semantics is

application-specific. The system is non-synchronous: there is no known bound that always holds on message delays

and relative speed of the processes. Non-synchronous systems include:

• asynchronous systems, where the bound does not exist; and

• partially synchronous systems [31], where the bound holds only after some unknown Global Stabilization

Time (GST).

Each process is assigned its local protocol. A local protocol of a process defines the steps to be taken during a run

of the system. The collection of all local protocols is a distributed protocol (or simply a protocol).

Some processes might be faulty: these processes may arbitrarily deviate from their local protocol (e.g., by

crashing, failing to receive or send messages, sending different messages to different processes, performing arbitrary
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state transitions). That is, this paper considers the Byzantine failure model [40]. If a process is not faulty, the process

is correct. We assume that the communication is reliable: a message sent by a correct process to a correct process is

eventually received.

An execution is a single run of the system. We denote by 𝑡 the actual number of faulty processes in an execution.

Best-effort broadcast. Throughout the entire paper, we extensively rely on the best-effort broadcast primitive [17].

This primitive exposes the following interface:

• input 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑚): A process broadcasts a message 𝑚; each correct process can broadcast its messages

arbitrarily many times.

• output 𝖽𝖾𝗅𝗂𝗏𝖾𝗋(𝑠, 𝑚′): A process delivers a message 𝑚′
with sender 𝑠.

The following properties are satisfied:

• Validity: If a correct process broadcasts a message 𝑚, then every correct process eventually delivers 𝑚.

• Integrity: If a correct process delivers a message 𝑚 with sender 𝑠 and 𝑠 is correct, then 𝑠 has previously

broadcast 𝑚.

Best-effort broadcast can easily be implemented in an asynchronous environment assuming a reliable point-to-point

network: the sender sends its message to every process. In the rest of the paper, we exclusively rely on the best-effort

broadcast primitive for protocol designs. Hence, whenever we say that “a process broadcasts a message”, we mean

that the process broadcasts the message using the best-effort broadcast primitive.

Cryptographic primitives. This paragraph outlines the cryptographic primitives we use throughout the paper. For

the completeness, these primitives are formally treated in Appendix B.

We assume a public-key infrastructure (PKI): each process is associated with its public/private key pair that is

used to sign messages and verify signatures of other processes. Crucially, the following holds:

• If a correct process 𝑃 signs a message 𝑚, every correct process successfully verifies that 𝑚 was signed by 𝑃 .

• If a message 𝑚 is accompanied by a signature of a correct process 𝑃 , then 𝑃 has indeed signed 𝑚.

A message 𝑚 signed by the PKI private key of a process 𝑃𝑖 is denoted by 𝑚𝜎𝑖 .

Additionally, we assume a (𝑘, 𝑛)-dual threshold signature scheme [49], where 𝑘 is a parameter of the scheme.

In this scheme, each process holds a distinct private key, and there exists a single public key. Each process 𝑃𝑖 can

use its private key to produce a partial signature of a message 𝑚 by invoking 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇𝑖(𝑚). Moreover, a partial

signature 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of a message 𝑚 produced by process 𝑃𝑖 could be verified by 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒𝑖(𝑚, 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) (as

is the case for the PKI). Finally, a set 𝑆 = {𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒1, 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒2, ..., 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑘} of partial signatures, where

|𝑆| = 𝑘 and, for each 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑖 ∈ 𝑆 , 𝑡𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑖 = 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇𝑖(𝑚), could be combined into a single digital

signature by invoking 𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝑆). A combined digital signature 𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 of message 𝑚 could be verified by
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𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑); if 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) = ⊤ (true), then 𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 was obtained by combining 𝑘 partial

signatures of 𝑚. For obtaining the threshold signature scheme, we can either rely on (1) a trusted setup, or (2) a

distributed key generation protocol [28, 2]. In the latter case, the best known solution [28] incurs 𝑂(𝑛3) (expected)

communication cost; in this paper, we assume the cost is amortized (i.e., the threshold signature scheme is setup

only once for a sequence of consensus instances).

Crucially, we assume that the PKI private key of a correct process is never revealed (irrespectively of the number

of faulty processes in the system). Therefore, if a message 𝑚 is signed by the PKI private key of a process 𝑃𝑖 and 𝑃𝑖

is correct, then the message 𝑚 was certainly sent by 𝑃𝑖. Conversely, if the number of faulty processes exceeds 𝑛− 𝑘,

the threshold private key of a process can be revealed, and a partial signature of a correct process might be forged.
2

In other words, we assume a computationally-bounded adversary for which the following holds:

• The adversary cannot forge a PKI signature of a correct process.

• If 𝑡 ≤ 𝑛 − 𝑘, the adversary cannot forge a partial signature of a correct process.

For the full details, refer to Appendix B.

Why cryptography? As accountability implies a proof of culpability which can be independently verified by a third

party, cryptography is irreplaceable in the accountable protocols. Indeed, cryptography is able to provide unforgeable

association between any message and its sender. If such association is non-existent, one cannot verify that a proof

of culpability is genuine, i.e., not manufactured by a faulty process whose goal is to falsely accuse correct processes.

Proof of culpability. In order for correct processes to satisfy accountability (Definition 2), they need to obtain a

proof of culpability of each detected process. Let us formally define a proof of culpability of a process.

Definition 3 (Proof of culpability). A set Σ𝑖 of messages properly signed by the PKI private key of a process 𝑃𝑖 is a

proof of culpability of 𝑃𝑖 if and only if there does not exist an execution such that (1) 𝑃𝑖 is correct, and (2) 𝑃𝑖 sends

all the messages from the Σ𝑖 set.

Intuitively, a proof of culpability of a process is a set of messages which are properly signed (by the PKI private

key) such that, if the process is correct, the process could not have sent all of those messages. Therefore, a proof of

culpability undeniably proves that the concerned process is faulty (and this proof can be verified by a third party). A

proof of culpability includes only messages signed by the PKI private key as the private PKI key of a correct process

is never revelead (as opposed to the threshold private key of a correct process which might be revelead if the number

of faulty processes exceeds 𝑛 − 𝑘; see the paragraph “Cryptographic primitives”). Thus, a proof of culpability of a

correct process can never be obtained.

2
The fact that the threshold private key of a correct process can be revealed if the system is overly corrupted allows us to not assume a trusted

setup in obtaining the threshold signature scheme, i.e., the scheme might be obtained via a distributed key generation protocol (e.g., [2, 28]).
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Let us give an example of a proof of culpability. Suppose that a correct process 𝑃𝑖 never sends two conflicting

proposal messages in some protocol. Hence, a set Σ𝑖 = {[proposal, 𝑣]𝜎𝑖 , [proposal, 𝑣
′ ≠ 𝑣]𝜎𝑖} is a proof of

culpability of 𝑃𝑖 as Σ𝑖 demonstrates that 𝑃𝑖 has sent two conflicting proposal messages.

Lastly, if a correct process detects a process 𝑃𝑖 and accompanies a proof of culpability Σ𝑖 of 𝑃𝑖 to the detection,

we say that the process detects 𝑃𝑖 using Σ𝑖.

Communication complexity. In this work, as in many in distributed computing [51, 4, 22], we care about the

number of exchanged bits of information. To this end we define a word: a word contains a constant number of

signatures and values. Each message contains at least a single word.

For deterministic protocols, we are interested in the worst-case communication complexity.

Definition 4 (Worst-case communication complexity). The worst-case communication complexity of a deterministic

protocol is the maximum number of words sent in messages by correct processes across all possible executions. If

the protocol operates in the partially synchronous model, the worst-case communication complexity considers only

the messages sent after GST.

We underline that Definition 4 only counts words sent after GST as it is known that, prior to GST, an unbounded

number of words can be exchanged in any deterministic partially synchronous consensus protocol [32, 51]. For

probabilistic protocols, we are interested in the expected communication complexity.

Definition 5 (Expected communication complexity). The expected communication complexity of a probabilistic

protocol is the maximal expected number of words sent in messages by correct processes across all possible

executions, over all possible adversaries.
3
If the protocol operates in the partially synchronous model, the expected

communication complexity considers only the messages sent after GST.

Accountability complexity. The accountability complexity is a novel complexity metric designed for measuring the

accountability-specific performance of protocols. We define the accountability complexity since the communication

complexity is not a suitable metric for measuring the performance of accountable Byzantine consensus protocols

in the degraded case (i.e., when the number of faults exceeds a predefined threshold). For example, Polygraph [24]

and accountable variants of PBFT and Hotstuff [48] suffer from the infinite worst-case communication complexity

in the degraded case: Byzantine processes force correct processes to constantly execute “one more round”, thus

constructing an infinite execution where correct processes never decide.

In order to define the accountability complexity, we first define the accountability-specific messages.

3
An adversary defines a probability distribution over executions of the algorithm [39].
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Definition 6 (Accountability-specific message). We denote by  the set of all “used” culpability proofs across all

executions of an accountable Byzantine consensus protocol. Formally:

 = {a proof of culpability Σ𝑖 of 𝑃𝑖 | there exists an execution in which a correct process detects 𝑃𝑖 using Σ𝑖}.

A message 𝑚 is an accountability-specific message if and only if there exists a proof of culpability Σ ∈  such that

𝑚 ∈ Σ.

Intuitively, a message is accountability-specific if it is used (in any execution) by a correct process to detect a

faulty process. For example, if a correct process detects a faulty process 𝑃𝑖 using Σ𝑖 in some execution, then all

messages that belong to Σ𝑖 are accountability-specific messages.

Finally, we are ready to formally define the accountability complexity.

Definition 7 (Accountability complexity). The accountability complexity of an accountable Byzantine consensus

protocol is the maximum number of accountability-specific messages sent by correct processes across all executions

with at least two correct processes.

Intuitively, the accountability complexity represents the number of messages correct processes exchange with

the goal of achieving accountability.

3.  Transformation

This section presents, our transformation that enables any non-synchronous (deterministic or probabilistic)

Byzantine consensus protocol to obtain accountability. We first introduce the accountable confirmer problem, and

give its asynchronous implementation (§3.1). Then, we construct our  transformation around the accountable

confirmer (§3.2). Finally, we discuss the applicability and limitations of  (§3.3).

3.1. Accountable Confirmer

The accountable confirmer problem is a distributed problem defined among 𝑛 processes, out of which some can

be faulty (i.e., Byzantine). It exposes the following interface:

• input 𝗌𝗎𝖻𝗆𝗂𝗍(𝑣): A process submits a value 𝑣. Each correct process submits exactly one value.

• output 𝖼𝗈𝗇𝖿 𝗂𝗋𝗆(𝑣′): A process confirms a value 𝑣′. Each correct process confirms at most one value.

• output 𝖽𝖾𝗍𝖾𝖼𝗍(𝐹 , 𝑝𝑟𝑜𝑜𝑓 ): A process detects processes from the set 𝐹 such that 𝑝𝑟𝑜𝑜𝑓 contains a proof of

culpability of each process included in 𝐹 . Each correct process triggers 𝖽𝖾𝗍𝖾𝖼𝗍(⋅, ⋅) at most once.

A 𝑡𝑎𝑐0 -resilient accountable confirmer protocol satisfies the following properties:
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• Terminating convergence: If (1) the number of faulty processes does not exceed 𝑡𝑎𝑐0 , and (2) all correct processes

submit the same value, then that value is eventually confirmed by all correct processes.
4

• Validity: The value confirmed by a correct process was submitted by a correct process.

• Accountability: If two correct processes confirm different values, every correct process eventually irrefutably

detects (at least) 𝑛 − 2𝑡𝑎𝑐0 faulty processes and obtains a proof of culpability of each detected process.

We give an asynchronous implementation of the accountable confirmer problem in Algorithm 2. Importantly, our

implementation (Algorithm 2) works under any computationally-bounded adversary.

Intuition behind Algorithm 2. Consider the following algorithm (described in prose). (1) Once a correct process

submits its value, it broadcasts a signed (by the PKI private key) message containing the submitted value. (2) The

process waits for 𝑛− 𝑡𝑎𝑐0 messages containing the same value. (3) Once this happens, the process confirms the value,

and broadcasts the received 𝑛 − 𝑡𝑎𝑐0 messages to all processes in the system.

This simple algorithm ensures terminating convergence since, when there are up to 𝑡𝑎𝑐0 faults and all correct

processes submit the same value, all correct processes eventually receive 𝑛− 𝑡𝑎𝑐0 messages containing the submitted

value; thus, all correct processes confirm the value. As for the accountability property, if two correct processes

disagree, every correct process eventually receives two conflicting sets of 𝑛 − 𝑡𝑎𝑐0 messages. Every process whose

messages belong to both sets is faulty as no correct process submits multiple values.

Description of Algorithm 2. The actual implementation (Algorithm 2) of a 𝑡𝑎𝑐0 -resilient accountable confirmer

protocol builds upon the presented intuition. We emphasize that Algorithm 2 implements a 𝑡𝑎𝑐0 -resilient accountable

confirmer for any 𝑡𝑎𝑐0 ≤ ⌈𝑛∕3⌉− 1. It takes advantage of a (𝑘, 𝑛)-dual threshold signature scheme (see §2, paragraph

“Cryptographic primitives”), where 𝑘 = 𝑛 − 𝑡𝑎𝑐0 , in order to achieve quadratic communication complexity in the

common case (i.e., in all executions with up to 𝑡𝑎𝑐0 faults). Note that an implementation which completely follows

the presented intution would suffer from a cubic communication complexity in the common case as each correct

process would rebroadcast 𝑂(𝑛) messages after confirming its value.

Each process initially broadcasts the value it submitted in a submit message (line 19): the submit message

contains the value and a partial signature of the value. Moreover, the entire message is signed by the PKI private

key of the sender. Once a process receives such a submit message, the process (1) checks whether the message is

properly signed (line 7), (2) verifies the partial signature (line 21), and (3) checks whether the received value is equal

to its submitted value (line 21). If all checks pass, the process stores the received partial signature (line 23) and the

entire message (line 24). Once a process stores partial signatures from (at least) 𝑛− 𝑡𝑎𝑐0 processes (line 26), the process

confirms its submitted value (line 28) and informs other processes about its confirmation by combining the received

4
Note that it is not guaranteed that any correct process confirms a value if correct processes submit different values (even if the number of

faulty processes does not exceed 𝑡𝑎𝑐0 ).
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partial signatures into a light certificate (line 29). The role of threshold signatures in our implementation is to allow

every light certificate to contain a single signature (rather than 𝑛− 𝑡𝑎𝑐0 signatures), thus obtaining a quadratic overall

communication complexity if 𝑡 ≤ 𝑡𝑎𝑐0 .

Once a process receives two conflicting light certificates (line 34), the process concludes that correct processes

might have confirmed different values. If the process has already confirmed its value, the process broadcasts the set

of (at least) 𝑛− 𝑡𝑎𝑐0 properly signed [submit, 𝑣, ∗]messages (line 35), where 𝑣 is the value confirmed (and submitted)

by the process; such a set of messages is a full certificate for value 𝑣. Finally, once a process receives two conflicting

full certificates (line 40), the process obtains proof of culpability of (at least) 𝑛−2𝑡𝑎𝑐0 faulty processes (line 48), which

ensures accountability. Indeed, each full certificate contains 𝑛 − 𝑡𝑎𝑐0 properly signed messages: every process whose

messages belong to the conflicting full certificates is faulty and these messages represent a proof of its misbehavior.

(Recall that no faulty process ever obtains the PKI private key of a correct process.)

Definitions for Algorithm 2

1) A combined digital signature 𝑡𝑠𝑖𝑔 is a valid light certificate for value 𝑣 if and only if 𝖵𝖾𝗋𝗂𝖿𝗒(𝑣, 𝑡𝑠𝑖𝑔) = ⊤.

2) A set  of properly signed [submit, 𝑣, ∗]𝜎∗ messages is a valid full certificate for value 𝑣 if and only if:

a) || ≥ 𝑛 − 𝑡𝑎𝑐0
b) Each message 𝑚 is sent (i.e., signed) by a distinct process.

3) Let 𝑡𝑠𝑖𝑔𝑣 be a valid light certificate for value 𝑣 and let 𝑡𝑠𝑖𝑔𝑣′ be a valid light certificate for value 𝑣′. 𝑡𝑠𝑖𝑔𝑣 conflicts with 𝑡𝑠𝑖𝑔𝑣′ if and only if

𝑣 ≠ 𝑣′.

4) Let 𝑣 be a valid full certificate for value 𝑣 and let 𝑣′ be a valid full certificate for value 𝑣′. 𝑣 conflicts with 𝑣′ if and only if 𝑣 ≠ 𝑣′.

5) Let (𝑚1, 𝑚2) be a pair of messages properly signed by some process 𝑃𝑖. (𝑚1, 𝑚2) is a proof of culpability of 𝑃𝑖 if and only if:

a) 𝑚1 = [submit, 𝑣, 𝑠ℎ𝑎𝑟𝑒1]𝜎𝑖 , and
b) 𝑚2 = [submit, 𝑣′, 𝑠ℎ𝑎𝑟𝑒2]𝜎𝑖 , and
c) 𝑣 ≠ 𝑣′.

Theorem2. Algorithm 2 is an asynchronous 𝑡𝑎𝑐0 -resilient accountable confirmer protocol safe under any computationally-

bounded adversary, where 𝑡𝑎𝑐0 ≤ ⌈𝑛∕3⌉ − 1, with:

• 𝑂(𝑛2) worst-case communication complexity in the common case (i.e., when 𝑡 ≤ 𝑡𝑎𝑐0 ), and

• 𝑂(𝑛3) submit messages being sent by correct processes.

Proof. We start by proving the terminating convergence and validity properties. If 𝑡 ≤ 𝑡𝑎𝑐0 and all correct processes

submit the same value 𝑣, the rule at line 26 eventually triggers at every correct process. Since every correct process

confirms only the value it has submitted (line 28), terminating convergence and validity are satisfied by Algorithm 2.

Next, let us prove accountability. Let a correct process 𝑃𝑖 confirm a value 𝑣 and let another correct process 𝑃𝑗

confirm a value 𝑣′ ≠ 𝑣. The rule at line 34 is eventually triggered at each correct process that confirms a value.

Once the rule is triggered at 𝑃𝑖 and 𝑃𝑗 , these processes broadcast their full certificates (line 35). Eventually, the rule

at line 40 is triggered at each correct process, which ensures accountability. Indeed, every process whose submit
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Algorithm 2 𝑡𝑎𝑐0 -Resilient Accountable Confirmer: Code for process 𝑃𝑖

1: Implements:
2: 𝑡𝑎𝑐0 -Resilient Accountable Confirmer, instance 𝑎𝑐
3: Uses:
4: Best-Effort Broadcast [17], instance 𝑏𝑒𝑏 ⊳ Unreliable broadcast with no guarantees if the sender is faulty

5: (𝑘, 𝑛)-Threshold Signature Scheme, where 𝑘 = 𝑛 − 𝑡𝑎𝑐0
6: Rules:
7: 1) Any submit message that is not properly signed is discarded.

8: 2) Rules at lines 26, 34 and 40 are activated at most once.

9: upon event ⟨𝑎𝑐, 𝖨𝗇𝗂𝗍⟩ do
10: 𝑣𝑎𝑙𝑢𝑒𝑖 ← ⊥
11: 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑖 ← 𝖿𝖺𝗅𝗌𝖾
12: 𝑓𝑟𝑜𝑚𝑖 ← ∅
13: 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ← ∅
14: 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ← ∅
15: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐿𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ← ∅
16: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐹𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ← ∅
17: upon event ⟨𝑎𝑐, 𝖲𝗎𝖻𝗆𝗂𝗍 | 𝑣⟩ do ⊳ 𝑃𝑖 submits a value

18: 𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑣
19: trigger ⟨𝑏𝑒𝑏,𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 | [submit, 𝑣, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇𝑖(𝑣)]𝜎𝑖 ⟩
20: upon event ⟨𝑏𝑒𝑏,𝖣𝖾𝗅𝗂𝗏𝖾𝗋 |𝑃𝑗 , [submit, 𝑣𝑎𝑙𝑢𝑒, 𝑠ℎ𝑎𝑟𝑒]𝜎𝑗 ⟩ do
21: if 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒𝑗 (𝑣𝑎𝑙𝑢𝑒, 𝑠ℎ𝑎𝑟𝑒) = ⊤ and 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒𝑖 and 𝑃𝑗 ∉ 𝑓𝑟𝑜𝑚𝑖 then
22: 𝑓𝑟𝑜𝑚𝑖 ← 𝑓𝑟𝑜𝑚𝑖 ∪ {𝑃𝑗}
23: 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ← 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ∪ {𝑠ℎ𝑎𝑟𝑒}
24: 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ← 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖 ∪ {[submit, 𝑣𝑎𝑙𝑢𝑒, 𝑠ℎ𝑎𝑟𝑒]𝜎𝑗 }
25: end if
26: upon |𝑓𝑟𝑜𝑚𝑖| ≥ 𝑛 − 𝑡𝑎𝑐0 do
27: 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑖 ← 𝗍𝗋𝗎𝖾
28: trigger ⟨𝑎𝑐,𝖢𝗈𝗇𝖿 𝗂𝗋𝗆 | 𝑣𝑎𝑙𝑢𝑒𝑖⟩ ⊳ 𝑃𝑖 confirms a value

29: trigger ⟨𝑏𝑒𝑏,𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 | [light-certificate, 𝑣𝑎𝑙𝑢𝑒𝑖,𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖)]⟩
30: upon event ⟨𝑏𝑒𝑏,𝖣𝖾𝗅𝗂𝗏𝖾𝗋 |𝑃𝑗 , [light-certificate, 𝑣𝑎𝑙𝑢𝑒𝑗 , 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗 ]⟩ do
31: if 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗 is a valid light certificate for 𝑣𝑎𝑙𝑢𝑒𝑗 then
32: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐿𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐿𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ∪ {[light-certificate, 𝑣𝑎𝑙𝑢𝑒𝑗 , 𝑙𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗 ]}
33: end if
34: upon 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1, 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2 ∈ 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐿𝑖𝑔ℎ𝑡𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 where 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1 conflicts with 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2

and 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑖 = 𝗍𝗋𝗎𝖾 do
35: trigger ⟨𝑏𝑒𝑏,𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 | [full-certificate, 𝑣𝑎𝑙𝑢𝑒𝑖, 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑖]⟩
36: upon event ⟨𝑏𝑒𝑏,𝖣𝖾𝗅𝗂𝗏𝖾𝗋 |𝑃𝑗 , [full-certificate, 𝑣𝑎𝑙𝑢𝑒𝑗 , 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗 ]⟩ do
37: if 𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗 is a valid full certificate for 𝑣𝑎𝑙𝑢𝑒𝑗 then
38: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐹𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐹𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 ∪ {𝑓𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑗}
39: end if
40: upon 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1, 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2 ∈ 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝐹𝑢𝑙𝑙𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒𝑠𝑖 where 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1 conflicts with 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2 do
41: 𝑝𝑟𝑜𝑜𝑓 = ∅
42: for each process 𝑃𝑖 such that 𝑃𝑖’s messages belong to both 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1 and 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2:
43: 𝑚1 ← the submit message signed by 𝑃𝑖 which belongs to 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒1
44: 𝑚2 ← the submit message signed by 𝑃𝑖 which belongs to 𝑐𝑒𝑟𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑒2
45: Σ𝑖 ← (𝑚1, 𝑚2)
46: 𝑝𝑟𝑜𝑜𝑓 = 𝑝𝑟𝑜𝑜𝑓 ∪ {Σ𝑖}
47: 𝐹 ← the set of processes detected using 𝑝𝑟𝑜𝑜𝑓
48: trigger ⟨𝑎𝑐,𝖣𝖾𝗍𝖾𝖼𝗍 |𝐹 , 𝑝𝑟𝑜𝑜𝑓⟩ ⊳ 𝑃𝑖 detects faulty processes

messages belong to both conflicting full certificates is detected (line 42 - line 46); moreover, such a process is indeed

faulty since no correct process submits different values, i.e., no correct process ever sends different submit messages.

Finally, we prove the claimed complexity:
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• If 𝑡 ≤ 𝑡𝑎𝑐0 , the communication complexity of the algorithm is quadratic because (1) light certificates are sent

only once and they contain a single threshold signature, and (2) no correct process broadcasts a full certificate

as no two conflicting light certificates can be produced.

• Each correct process sends 𝑛 submit messages at line 19. Moreover, each correct process includes (at most) 𝑛

submit messages in each full-certificate message it sends (line 35). Therefore, each correct process sends

(at most) 𝑂(𝑛) + 𝑂(𝑛2) = 𝑂(𝑛2) submit messages, which implies that (at most) 𝑛 ⋅ 𝑂(𝑛2) = 𝑂(𝑛3) submit

messages are sent by all correct processes.

The theorem holds.

3.2. : Byzantine Consensus + Accountable Confirmer = Accountable Byzantine Consensus

We now present our transformation (Algorithm 3), the main contribution of our work. is built on the

observation that any non-synchronous (deterministic or probabilistic) Byzantine consensus protocol paired with the

accountable confirmer solves the accountable Byzantine consensus problem. Specifically, we prove that Algorithm 3

solves the accountable Byzantine consensus problem, which implies that  indeed enables non-synchronous

Byzantine consensus protocols to obtain accountability.

Algorithm 3  Transformation: Code for process 𝑃𝑖
1: Implements:
2: 𝑡0-Resilient Accountable Byzantine Consensus, instance 𝑎𝑏𝑐
3: Uses:
4: ⊳ Deterministic or probabilistic Byzantine consensus protocol to be transformed

5: 𝑡0-Resilient Byzantine Consensus, instance 𝑏𝑐
6: 𝑡0-Resilient Accountable Confirmer implemented by Algorithm 2, instance 𝑎𝑐
7: upon event ⟨𝑎𝑏𝑐, 𝖯𝗋𝗈𝗉𝗈𝗌𝖾 | 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙⟩ do ⊳ Proposal

8: trigger ⟨𝑏𝑐, 𝖯𝗋𝗈𝗉𝗈𝗌𝖾 | 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙⟩
9: upon event ⟨𝑏𝑐,𝖣𝖾𝖼𝗂𝖽𝖾 | 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩ do
10: trigger ⟨𝑎𝑐, 𝖲𝗎𝖻𝗆𝗂𝗍 | 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩
11: upon event ⟨𝑎𝑐,𝖢𝗈𝗇𝖿 𝗂𝗋𝗆 | 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⟩ do
12: trigger ⟨𝑎𝑏𝑐,𝖣𝖾𝖼𝗂𝖽𝖾 | 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⟩ ⊳ Decision

13: upon event ⟨𝑎𝑐,𝖣𝖾𝗍𝖾𝖼𝗍 |𝐹 , 𝑝𝑟𝑜𝑜𝑓⟩ do
14: trigger ⟨𝑎𝑏𝑐,𝖣𝖾𝗍𝖾𝖼𝗍 |𝐹 , 𝑝𝑟𝑜𝑜𝑓⟩ ⊳ Detection

The following theorem proves that the transformation (Algorithm 3) is correct.

Theorem 3 (Correctness of ). Let 𝑏𝑐 be a non-synchronous 𝑡0-resilient deterministic (resp.,probabilistic)

Byzantine consensus protocol, where 𝑡0 ≤ ⌈𝑛∕3⌉ − 1. Let 𝑎𝑏𝑐 be a protocol obtained by applying  (Algorithm 3)

to 𝑏𝑐. Then, 𝑎𝑏𝑐 is a non-synchronous 𝑡0-resilient deterministic (resp., probabilistic) accountable Byzantine consensus

protocol which tolerates the same computationally-bounded adversary as 𝑏𝑐.

Proof. Consider an execution where 𝑡 ≤ 𝑡0. Let 𝑏𝑐 is a deterministic (resp., probabilistic) Byzantine consensus

protocol. All correct processes eventually decide (resp., decide with probability 1) the same value 𝑣 from Byzantine

consensus at line 9 by deterministic (resp., probabilistic) termination and agreement of Byzantine consensus.
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Moreover, if all correct processes have proposed the same value (line 7), then the proposed value is indeed 𝑣

(ensured by validity of Byzantine consensus). Terminating convergence of accountable confirmer ensures that all

correct processes eventually confirm 𝑣 (line 11) and decide from accountable Byzantine consensus (line 12). Hence,

Algorithm 3 satisfies deterministic (resp., probabilistic) termination, agreement and validity.

If correct processes disagree (i.e., decide different values at line 12), then these processes have confirmed different

values from the accountable confirmer (line 11). Thus, every correct process detects (and obtains proofs of culpability

of) 𝑛−2𝑡0 processes at line 13 (by the accountability property of the accountable confirmer). Finally, as Algorithm 2

solves the accountable confirmer problem under any computationally-bounded adversary (by Theorem 2), 𝑎𝑏𝑐 is

safe under the same computationally-bounded adversary as 𝑏𝑐.

Theorem 3 shows that Algorithm 3 is an (asynchronous) implementation of an accountable Byzantine consensus

protocol. Therefore, any Byzantine consensus protocol can be transformed into an accountable one by “inserting”

that protocol into the composition presented by Algorithm 3 (line 5). Importantly, the upper bound on tolerated

Byzantine processes for deterministic and probabilistic protocols is ⌈𝑛∕3⌉− 1 [31, 12], which implies that the

transformation is applicable to Byzantine consensus protocols with every possible resilience. Furthermore, we note

that provides maximal resilience against disagreement: if is applied to a 𝑡0-resilient Byzantine consensus

protocol, a disagreement in the resulting protocol cannot occur with less than 𝑛 − 2𝑡0 faulty processes.

Next, we show that does not worsen the communication complexity in the common case of sup-quadratic

Byzantine consensus protocols and induces a cubic accountability complexity.

Theorem 4. Let 𝑏𝑐 be a 𝑡0-resilient deterministic (resp., probabilistic) Byzantine consensus protocol, where 𝑡0 ≤

⌈𝑛∕3⌉−1, with the worst-case (resp., expected) communication complexity 𝑐𝑐 in the common case (with up to 𝑡0 faults).

Let 𝑎𝑏𝑐 be a protocol obtained by applying  to 𝑏𝑐. Then, 𝑎𝑏𝑐 has the worst-case (resp., expected) communication

complexity 𝗆𝖺𝗑
(

𝑐𝑐, 𝑂(𝑛2)
)

in the common case and 𝑂(𝑛3) accountability complexity.

Proof. As the communication complexity of the accountable confirmer is𝑂(𝑛2) in the common case (by Theorem 2),

the worst-case (resp., expected) communication complexity of 𝑎𝑏𝑐 is𝗆𝖺𝗑
(

𝑐𝑐, 𝑂(𝑛2)
)

in the common case. Moreover,

as the only accountability-specific messages sent by 𝑎𝑏𝑐 are the submit messages of the accountable confirmer and

𝑂(𝑛3) submit messages are sent by correct processes (by Theorem 2), the accountability complexity is 𝑂(𝑛3).

Lastly, we remark that does not worsen the communication complexity of any (1) deterministic Byzantine

consensus protocol, or (2) (possibly probabilistic) Byzantine consensus protocol safe under a strongly adaptive

adversary. Namely, Dolev and Reischuk [29] proved that any deterministic Byzantine consensus protocol incurs

a quadratic worst-case communication complexity in the common case. Similarly, Abraham et al. [5] showed that
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the quadratic lower bound for expected communication complexity holds against an adaptive adversary. However,

we underline that  worsens the communication complexity of partially synchronous probabilistic Byzantine

consensus protocols with sub-quadratic expected complexity (e.g., [46]).
5

3.3. Discussion

In this subsection, we discuss’s applicability to different variants of the consensus problem, as well as some

of’s limitations.

’s applicability to different variants of Byzantine consensus. The (accountable) Byzantine consensus

problem (as defined in §1) specifies the validity property, which ensures that, if all correct processes propose the

same value, then only that value could be decided by a correct process. In the literature, this is not the only variant

of the validity property; the variant we use is traditionally called strong validity. Other most notable variants of the

validity property include:

• Weak Validity: If all processes are correct and if a correct process decides value 𝑣, then 𝑣 is proposed by a

(correct) process [44, 53, 15].

• External Validity: A value decided by a correct process satisfies a predefined 𝑣𝑎𝑙𝑖𝑑 predicate [18].

Importantly, the correctness of  does not depend on a specific variant of the validity property: the

“connection” between proposed values and the decided value is preserved by. In other words, an accountable

Byzantine consensus protocol which is a product of  satisfies the same validity property as the original

consensus protocol.

Limitations of. We now list a few limitations of:

1.  is not optimized for the best-case scenarios: It is possible to devise Byzantine consensus protocols

that exhibit 𝑜(𝑛2) communication in some favourable scenarios. For instance, HotStuff [53] achieves only

linear communication if no faulty processes exist and the execution is synchronous from the very beginning.

However, this linear communication is lost when is applied to HotStuff as processes “always” exchange

the submit messages, which leads to the inevitable 𝑂(𝑛2) communication cost.

2.  (more precisely, our implementation of the accountable confirmer) uses threshold signatures [41] to

obtain 𝑂(𝑛2) communication complexity in the common case. As we have already mentioned in §2, we do

not need to assume a trusted setup to obtain a threshold signature scheme: an asynchronous distributed

key generation (ADKG) protocol [2], executed on top of a PKI setup, provides a threshold signature scheme.

Importantly, we are not aware of an ADKG protocol whose communication complexity is quadratic. Therefore,

 introduces a quadratic overhead only if (1) a trusted setup is assumed, or (2) the communication cost of

5
We emphasize that [46] assumes a static adversary, thus allowing itself to circumvent the quadratic lower bound [5].
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an ADKG protocol is amortized. An alternative is to use compressed𝛴 protocols [8], which allow us to obtain

a transparent threshold signature scheme (without trusted setup) with a logarithmic overhead per threshold

signature: communication overhead of  would be 𝑂
(

𝑛2 ⋅ log(𝑛)
)

.

In practice, it is worth considering multi-signatures [30, 10] instead of the aforementioned threshold

signatures. Multi-signatures have an accompanying bit-mask of 𝑛 bits. In summary, if 𝜅 denotes the size of a

signature (usually, 𝜅 = 256), the communication overhead of would be:

• 𝑂(𝜅 ⋅ 𝑛2 + 𝑛3) in the case of multi-signatures;

• 𝑂(𝜅 ⋅ 𝑛2) in the case of threshold signatures (assuming a trusted setup or a cost-amortized ADKG); and

• 𝑂(𝜅 ⋅ 𝑛2 ⋅ 𝗅𝗈𝗀(𝑛)) in the case of compressed 𝛴-protocols.

A formal treatment of all of the aforementioned cryptographic primitives is available in Appendix B.

4. Lower Bound on Accountability Complexity

In this section, we prove that any non-synchronous 𝑡0-resilient accountable Byzantine consensus protocol incurs

cubic accountability complexity (when 𝑡0 ∈ Ω(𝑛)). Throughout the entire subsection, we fix any non-synchronous

𝑡0-resilient (deterministic or probabilistic) accountable Byzantine consensus protocol 𝑎𝑏𝑐. Without loss of generality,

we assume that 𝑛 = 3𝑡0 + 1.

We prove the lower bound by showing that the accountability complexity of 𝑎𝑏𝑐 is Ω(𝑛3). Specifically, we prove

that there exists an execution  such that correct processes send Ω(𝑛3) accountability-specific messages in  .

Execution Λ. First, we construct a specific (finite) execution Λ. We fix three disjoint groups of processes: (1) group

𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑡0}, where |𝐴| = 𝑡0, (2) group 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑡0 , 𝑏𝑡0+1}, where |𝐵| = 𝑡0+1 = 𝑛−2𝑡0, and (3) group

𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑡0}, where |𝐶| = 𝑡0. Throughout the entire subsection, we rely on the aforementioned groups.

Since 𝑎𝑏𝑐 solves Byzantine consensus if there are up to 𝑡0 faults, the following two infinite executions exist:

1. 𝑒1: All processes from the group 𝐶 are faulty, and these processes are silent throughout the entire execution

(i.e., they send no messages). Moreover, all processes from the 𝐴∪𝐵 set propose the same value 𝑣. Since there

are 𝑡0 faulty processes (as |𝐶| = 𝑡0), 𝑎𝑏𝑐 ensures that all processes from the 𝐴 ∪ 𝐵 set eventually decide the

same value 𝑣 (by Byzantine consensus solvability of 𝑎𝑏𝑐) by some global time 𝑡1.

2. 𝑒2: All processes from the group 𝐴 are faulty, and these processes are silent throughout the entire execution.

Moreover, all processes from the 𝐵 ∪ 𝐶 set propose the same value 𝑣′ ≠ 𝑣. As there are 𝑡0 faulty processes

(since |𝐴| = 𝑡0), 𝑎𝑏𝑐 ensures that all processes from the 𝐵 ∪𝐶 set eventually decide the value 𝑣′ ≠ 𝑣 by some

global time 𝑡2.

The existence of the executions 𝑒1 and 𝑒2 allows us to devise another infinite execution 𝑒, where:
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• Processes from the group 𝐴 and processes from the group 𝐶 are correct, whereas processes from the group 𝐵

are faulty. Moreover, all processes from the group 𝐴 propose 𝑣, and all processes from the group 𝐶 propose

𝑣′ ≠ 𝑣.

• The processes from the group 𝐵 behave towards the processes from the group 𝐴 as in execution 𝑒1, and the

processes from the group 𝐵 behave towards the processes from the group 𝐶 as in 𝑒2. Moreover, if an event

𝜖 (e.g., reception of a message, sending of a message, local computation) occurs at global time 𝑡𝜖 in 𝑒1 or 𝑒2,

then 𝜖 occurs at the same time 𝑡𝜖 in execution 𝑒.

• All messages between processes from the group 𝐴 and the group 𝐶 are delayed until after time 𝑇0 =

max(𝑡1, 𝑡2).

Importantly, execution 𝑒 is indistinguishable from execution 𝑒1 to processes from the group𝐴, which implies that all

processes from the group 𝐴 decide value 𝑣 by time 𝑡1. Similarly, all processes from the group 𝐶 decide value 𝑣′ ≠ 𝑣

by time 𝑡2. Thus, correct processes disagree in 𝑒.

We denote by Λ the prefix of execution 𝑒 until time 𝑇0 = max(𝑡1, 𝑡2).6 Note that the following holds for Λ:

• All processes from the group 𝐴 decide 𝑣 in Λ.

• All processes from the group 𝐶 decide 𝑣′ ≠ 𝑣 in Λ.

• No message is exchanged between any two processes (𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶).

The first intermediate result we prove is that no correct process 𝑝 ∈ 𝐴 ∪ 𝐶 can obtain a proof of culpability of

any process from the messages it received in Λ. Informally, the reason is that all processes seem correct in the eyes

of a correct process; recall that the groups 𝐴 and 𝐶 do not communicate with each other in Λ.

Lemma 1. Consider a process 𝑝 ∈ 𝐴 ∪ 𝐶 . Given the messages 𝑝 receives in Λ, 𝑝 is unable to construct a proof of

culpability of any process.

Proof. Without loss of generality, let 𝑝 ∈ 𝐴. Recall that Λ is indistinguishable from 𝑒1 until time 𝑇0 to 𝑝. Assume

that, by the means of contradiction, 𝑝 obtains a proof of culpability of some process from the messages received in

Λ.

We now construct an infinite execution 𝑒∗1 by relying on 𝑒1:

1. All processes are correct in 𝑒∗1 .

2. All messages sent by the processes from the group 𝐶 to any process from the groups 𝐴 or 𝐵 are delayed until

after time 𝑇0.

3. The execution 𝑒∗1 unfolds in the exact same way as 𝑒1 until time 𝑇0.

Due to the construction of 𝑒∗1 , 𝑝 cannot distinguish 𝑒∗1 (until time 𝑇0) from Λ. Thus, 𝑝 obtains a proof of culpability

of some process in 𝑒∗1 . However, this is impossible as all processes are correct.

6
Recall that 𝑒 is an infinite execution. On the other hand, Λ is a finite execution.
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Intuition. Now that we have designed the finite execution Λ, we can present the intuition behind the construction

of  . Let us fix any process 𝑎 ∈ 𝐴.

First, note that there exists a continuation 𝑒1𝑎 of Λ in which (1) only 𝑎 and 𝑐1 ∈ 𝐶 are correct, and (2) these two

processes do not receive messages from any other process after 𝑇0. Importantly, all processes in 𝐴 ⧵ {𝑎} are silent

after 𝑇0; note that their behavior is correct, except that sent messages which are not received by 𝑇0 are omitted (this

will play an important role in the conclusion of the proof intuition). As Lemma 1 proves, 𝑐1 is unable to build any

proof of culpability given the messages it has received in Λ. As accountability must be satisfied in 𝑒1𝑎, 𝑎must help 𝑐1

in obtaining (at least) 𝑡0+1 proofs of culpability. Therefore, 𝑎must send (at least) 𝑡0+1 = Ω(𝑛) accountability-specific

messages to 𝑐1. Let 𝑇1 denote the time by which 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐1.

However, if 𝑎 receives a message from 𝑐2 ∈ 𝐶 after 𝑇1, 𝑎 must help 𝑐2 in satisfying accountability. Indeed, 𝑎

cannot rely on 𝑐1 helping 𝑐2 as 𝑐1 might be faulty. Thus, 𝑎 needs to sendΩ(𝑛) accountability-specific messages to 𝑐2.

Following the same logic, we construct a finite execution 𝑒𝑎 in which 𝑎 sends Ω(𝑛) accountability-specific messages

to each process 𝑐 ∈ 𝐶 ; hence, 𝑎 sends Ω(𝑛2) accountability-specific messages in 𝑒𝑎. We denote by 𝑇𝑎 the time by

which 𝑎 sends Ω(𝑛2) messages in 𝑒𝑎. Figure 1 gives a visual depiction of the intuition behind the design of 𝑒𝑎.

Figure 1: Intuition behind the execution 𝑒𝑎.

At this point, for every process 𝑎 ∈ 𝐴, we have an execution 𝑒𝑎 in which (1) 𝑎 sendsΩ(𝑛2) accountability-specific

messages, and (2) all other processes from the group 𝐴 are silent. Therefore, we can “merge” all of these execution

into  in the following manner:

1. Only processes from the group 𝐴 are correct. All other processes (i.e., 𝐵 ∪ 𝐶) are faulty.

2. Message between processes from the group 𝐴 which are not received by 𝑇0 (i.e., in Λ) are delayed until after

max(𝑇𝑎1 , 𝑇𝑎2 , ..., 𝑇𝑎𝑡0 ).

3. Each process 𝑐 ∈ 𝐶 behaves towards each process 𝑎 ∈ 𝐴 as it does in 𝑒𝑎.

As no process 𝑎 ∈ 𝐴 can distinguish  from 𝑒𝑎 until 𝑇𝑎, 𝑎 sends Ω(𝑛2) messages in  . Thus, Ω(𝑛3) accountability-

specific messages are sent in  , which suffices for proving the lower bound.
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Construction of  (part 1): In the first part of the construction, we build an execution 𝑒𝑎 in which (1) only a fixed

process 𝑎 ∈ 𝐴 is correct, and (2) 𝑎 sends (at least) 𝑡0 + 1 ∈ Ω(𝑛) accountability-specific messages to each process

from the group 𝐶 . Thus, 𝑎 sends a quadratic number of accountability-specific messages in 𝑒𝑎. As constructing 𝑒𝑎 is

non-trivial, we construct 𝑒𝑎 incrementally (through a sequence of steps).

Step 1: Construction of an infinite execution 𝑒1𝑎 in which 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐1.

We construct 𝑒1𝑎 by relying on the previously described execution Λ. Specifically, we construct 𝑒1𝑎 as follows:

1. Only processes 𝑎 and 𝑐1 are correct.

2. We construct the prefix 𝜋1
𝑎 of 𝑒1𝑎 until time 𝑇0 in the following way:

(a) Let 𝜋1
𝑎 be Λ.

(b) For every message 𝑚 such that (1) 𝑚 is sent by a process 𝑠 in 𝜋1
𝑎 with 𝑠 ≠ 𝑎 and 𝑠 ≠ 𝑐1, and (2) 𝑚 is not

received in 𝜋1
𝑎 (i.e., Λ), the sending event of 𝑚 is removed from 𝜋1

𝑎 . In other words, each message which

is sent by a process other than 𝑎 and 𝑐1 and not received by 𝑇0 is removed from 𝜋1
𝑎 . This step ensures

that processes can only receive messages from 𝑎 and 𝑐1 after 𝑇0.

3. Each process 𝑝 ∈ Ψ ⧵ {𝑎, 𝑐1} is silent after time 𝑇0, i.e., it does not send any message after time 𝑇0.

Figure 2 depicts the devised execution 𝑒1𝑎.

Figure 2: Execution 𝑒1𝑎.

Let us analyze 𝑒1𝑎 (the summary of the analysis can be seen in Figure 2):

• No process receives any message from a process 𝑠 after time 𝑇0, where 𝑠 ≠ 𝑎 and 𝑠 ≠ 𝑐1 (step 2b). In other

words, if any process receives a message after time 𝑇0, then the message was sent either by 𝑎 or 𝑐1.

First Author et al.: Preprint submitted to Elsevier Page 19 of 40



Accountable Byzantine Consensus

• Until time 𝑇0, 𝑒1𝑎 is indistinguishable from Λ to both 𝑎 and 𝑐1 (step 2a and step 2b). Thus, 𝑎 decides 𝑣 in 𝑒1𝑎,

whereas 𝑐 decides 𝑣′ ≠ 𝑣 in 𝑒1𝑎. Moreover, 𝑐1 does not obtain any proof of culpability until time 𝑇0 in 𝑒1𝑎 (due

to Lemma 1).

• For every process 𝑞 ∈ (𝐴∪𝐶)⧵ {𝑎, 𝑐1}, 𝑞 does not behave correctly until time 𝑇0 solely because it omits some

messages (step 2b).

Finally, we prove that 𝑎 sends (at least) 𝑡0+1 ∈ Ω(𝑛) accountability-specific messages in 𝑒1𝑎. Intuitively, 𝑎 does so

to ensure that 𝑐1 is able to obtain a proof of culpability of 𝑡0 + 1 = 𝑛− 2𝑡0 processes in 𝑒1𝑎 (to satisfy accountability).

Lemma 2. Process 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐1 in 𝑒1𝑎.

Proof. Given the messages 𝑐1 receives until time 𝑇0 in 𝑒1𝑎, 𝑐1 is not able to construct a proof of culpability of any

process (by Lemma 1). However, as 𝑎𝑏𝑐 satisfies accountability, 𝑐1 eventually obtains proofs of culpability of 𝑡0 + 1

processes. Hence, 𝑐1 obtains the proofs after time 𝑇0. As 𝑐1 only receives messages from 𝑎 (and itself) after time 𝑇0,

𝑐1 must have incorporated (at least) 𝑡0 + 1 messages sent by 𝑎 into the obtained proofs of culpabilities; thus, all of

these messages are accountability-specific. Therefore, 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐1 in 𝑒1𝑎.

We denote by 𝑇1 be the first time such that (1) 𝑇1 > 𝑇0, and (2) 𝑎 sends Ω(𝑛) accountability-specific messages to

𝑐1 by time 𝑇1 in 𝑒1𝑎.

Step 2: Construction of an infinite execution 𝑒2𝑎 in which 𝑎 sends Ω(𝑛) accountability-specific messages to both 𝑐1

and 𝑐2.

This step of the construction is purely demonstrative. Namely, we show how to construct 𝑒2𝑎 by relying on 𝑒1𝑎. In the

next step of the construction, we will generalize the construction from 𝑒𝑖𝑎 (in which 𝑎 sends Ω(𝑛) accountability-

specific messages to each process in {𝑎1, ..., 𝑎𝑖}) to 𝑒𝑖+1𝑎 (in which 𝑎 sends Ω(𝑛) accountability-specific messages to

each process in {𝑎1, ..., 𝑎𝑖, 𝑎𝑖+1}.

We construct 𝑒2𝑎 in the following way:

1. Only processes 𝑎 and 𝑐2 are correct.

2. We construct the prefix 𝜋2
𝑎 of 𝑒2𝑎 until time 𝑇1 in the following manner:

(a) Let 𝜋2
𝑎 be the prefix of 𝑒1𝑎 until time 𝑇1.

(b) We correct the behavior of 𝑐2 until time 𝑇0 by inserting all the messages omitted in 𝑒1𝑎 (i.e., 𝑐2 behaves

exactly as it behaves in Λ). After time 𝑇0, the behavior of 𝑐2 is correct (as 𝑐2 is correct in 𝑒2𝑎).

(c) For every message 𝑚 sent by 𝑐1 in 𝜋2
𝑎 such that (1) 𝑚 is sent to a process 𝑟 with 𝑟 ≠ 𝑎 and 𝑟 ≠ 𝑐1, and (2)

𝑚 is not received by time 𝑇0, the sending event of 𝑚 is removed from 𝜋2
𝑎 . In other words, only 𝑎 (and 𝑐1)

receive messages from 𝑐1 after 𝑇0.
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(d) For every message 𝑚 sent by 𝑐1 in 𝜋2
𝑎 such that (1) 𝑚 is sent to 𝑎, and (2) 𝑚 is not received by time 𝑇1,

the sending event of 𝑚 is removed from 𝜋2
𝑎 . This step of the construction ensures that 𝑎 only receives

messages from 𝑐1 until time 𝑇1; after 𝑇1, 𝑎 receives no messages from 𝑐1.

3. Process 𝑐2 does not receive any message from any other process between times 𝑇0 and 𝑇1.

4. Each process 𝑝 ∈ Ψ ⧵ {𝑎, 𝑐2} is silent after time 𝑇1, i.e., it does not send any message after time 𝑇1. Recall that

processes in Ψ ⧵ {𝑎, 𝑐1, 𝑐2} are silent after time 𝑇0 (due to the construction of 𝑒1𝑎).

Figure 3 depicts 𝑒2𝑎.

Figure 3: Execution 𝑒2𝑎. All modifications introduced to 𝑒1𝑎 (in order to obtain 𝑒2𝑎) are noted in red.

The following holds for 𝑒2𝑎 (summarized in Figure 3):

• After 𝑇0, only 𝑎 and 𝑐1 receive messages from 𝑐1 (step 2c). Moreover, even 𝑎 stops receiving messages from 𝑐1

after time 𝑇1 (step 2d).

• After time 𝑇0, 𝑐2 only receives messages from 𝑎 and itself (step 2c). Furthermore, between 𝑇0 and 𝑇1, 𝑐2 only

receives messages from itself (step 3).

• Until time 𝑇0, 𝑒2𝑎 is indistinguishable from Λ to both 𝑎 and 𝑐2 (step 2a). Thus, 𝑎 decides 𝑣, whereas 𝑐2 decides

𝑣′ ≠ 𝑣.

• For every process 𝑞 ∈ (𝐴 ∪ 𝐶) ⧵ {𝑎, 𝑐1, 𝑐2}, 𝑞 does not behave correctly until time 𝑇0 solely because it omits

some messages.

We conclude this step of the construction of 𝑒𝑎 by proving that 𝑎 sends Ω(𝑛) accountability-specific messages

both to 𝑐1 and 𝑐2 in 𝑒2𝑎.
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Lemma 3. Process 𝑎 sends Ω(𝑛) accountability-specific messages both to 𝑐1 and 𝑐2 in 𝑒2𝑎.

Proof. First, 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐1 in 𝑒2𝑎 as (1) 𝑒2𝑎 is indistinguishable from 𝑒1𝑎 to 𝑎

until time 𝑇1 (due to the construction of 𝑒2𝑎), and (2) 𝑎 sends Ω(𝑛) accountability-specific messages by 𝑇1 in 𝑒1𝑎 (by

Lemma 2). Hence, it is left to prove that 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐2 in 𝑒2𝑎, as well.

As already noted, 𝑎 and 𝑐2 disagree in 𝑒2𝑎. Since 𝑎𝑏𝑐 satisfies accountability, 𝑐2 eventually obtains proofs of

culpability of (at least) 𝑡0 + 1 processes. Moreover, due to Lemma 1, given the messages 𝑐2 receives until time 𝑇0, 𝑐2

is unable to form a proof of culpability of any process. Therefore, 𝑐2 obtains the culpability proofs after 𝑇0. Given

that 𝑐2 only receives messages from 𝑎 (and itself) after 𝑇0, 𝑐2 must have “used” Ω(𝑛) messages received from 𝑎 to

form the culpability proofs (in order to satisfy accountability). Thus, 𝑎 indeed sends Ω(𝑛) accountability-specific

messages to 𝑐2 in 𝑒2𝑎, which concludes the proof.

We denote by 𝑇2 the first time such that (1) 𝑇2 > 𝑇1, and (2) 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐2

by time 𝑇2 in 𝑒2𝑎. Note that 𝑎 sends Ω(𝑛) messages to both 𝑐1 and 𝑐2 by 𝑇2 in 𝑒2𝑎 as 𝑇2 > 𝑇1.

Step 3: Construction of an infinite execution 𝑒𝑖+1𝑎 in which 𝑎 sends Ω(𝑛) accountability-specific messages to each

process in {𝑐1, 𝑐2, ..., 𝑐𝑖, 𝑐𝑖+1}, where 𝑖 ∈ [1, 𝑡0 − 1].

We construct 𝑒𝑖+1𝑎 from 𝑒𝑖𝑎. In order to do so, we describe the execution 𝑒𝑖𝑎:

• Property 1: Only processes 𝑎 and 𝑐𝑖 are correct in 𝑒𝑖𝑎.

• Property 2: Until time 𝑇0, 𝑒𝑖𝑎 is indistinguishable from Λ to both 𝑎 and 𝑐𝑖.

• Property 3: For every process 𝑐 ∈ {𝑐𝑖+1, 𝑐𝑖+2, ..., 𝑐𝑡0}, 𝑐 behaves correctly in 𝑒𝑖𝑎 until time 𝑇0 except that some

messages are omitted.

• Property 4: For every process 𝑓 ∈ Ψ ⧵ {𝑎, 𝑐1, 𝑐2, ..., 𝑐𝑖−1, 𝑐𝑖}, no process receives any message from 𝑓 after 𝑇0.

• Property 5: For every process 𝑐 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑖−1}, only processes 𝑎 and 𝑐 receive any message from 𝑐 after 𝑇0.

• Property 6: There exists a time 𝑇𝑖 > 𝑇0 such that 𝑎 has sent Ω(𝑛) messages to each process 𝑐 ∈

{𝑐1, 𝑐2, ..., 𝑐𝑖−1, 𝑐𝑖}.

• Property 7: For every 𝑗 ∈ [1, 𝑖 − 1], there exists a time 𝑇𝑗 such that, if a process 𝑎 receives a message from 𝑐𝑗

after 𝑇0, the reception happens between 𝑇𝑗−1 and 𝑇𝑗 (𝑇𝑗 > 𝑇𝑗−1).

• Property 8: Process 𝑐𝑖 does not receive any message from another process between 𝑇0 and 𝑇𝑖−1.

• Property 9: If process 𝑎 receives a message from 𝑐𝑖 after 𝑇0, the reception happens after 𝑇𝑖−1.

The execution 𝑒𝑖𝑎 is summarized in Figure 4. Observe that 𝑒1𝑎 and 𝑒2𝑎 satisfy the aforementioned properties.

Now, we construct 𝑒𝑖+1𝑎 from 𝑒𝑖𝑎 in the same way we constructed 𝑒2𝑎 from 𝑒1𝑎:

1. Only processes 𝑎 and 𝑐𝑖+1 are correct.

2. We construct the prefix 𝜋𝑖+1
𝑎 of 𝑒𝑖+1𝑎 until time 𝑇𝑖 in the following manner:
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Figure 4: A summary of the execution 𝑒𝑖𝑎.

(a) Let 𝜋𝑖+1
𝑎 be the prefix of 𝑒𝑖𝑎 until time 𝑇𝑖.

(b) We correct the behavior of 𝑐𝑖+1 until time 𝑇0 by inserting all the messages omitted in 𝑒𝑖𝑎 (i.e., 𝑐𝑖+1 behaves

exactly as it behaves in Λ). After time 𝑇0, the behavior of 𝑐𝑖+1 is correct (as 𝑐𝑖+1 is correct in 𝑒𝑖+1𝑎 ).

(c) For every message 𝑚 sent by 𝑐𝑖 in 𝜋𝑖
𝑎 such that (1) 𝑚 is sent to a process 𝑟 with 𝑟 ≠ 𝑎 and 𝑟 ≠ 𝑐𝑖, and (2)

𝑚 is not received by time 𝑇0, the sending event of 𝑚 is removed from 𝜋𝑖
𝑎. In other words, only 𝑎 (and 𝑐𝑖)

receive messages from 𝑐𝑖 after 𝑇0.

(d) For every message 𝑚 sent by 𝑐𝑖 in 𝜋𝑖
𝑎 such that (1) 𝑚 is sent to 𝑎, and (2) 𝑚 is not received by time 𝑇𝑖,

the sending event of 𝑚 is removed from 𝜋𝑖
𝑎. This step of the construction ensures that 𝑎 only receives

messages from 𝑐𝑖 until time 𝑇𝑖; after 𝑇𝑖, 𝑎 receives no messages from 𝑐𝑖.

3. Process 𝑐𝑖+1 does not receive any message from any other process between times 𝑇0 and 𝑇𝑖.

4. Each process 𝑝 ∈ Ψ ⧵ {𝑎, 𝑐𝑖+1} is silent after time 𝑇𝑖, i.e., it does not send any message after time 𝑇1. Recall

that processes in Ψ ⧵ {𝑎, 𝑐1, 𝑐2, ..., 𝑐𝑖−1, 𝑐𝑖, 𝑐𝑖+1} are silent after time 𝑇0 (due to the property 4 of 𝑒𝑖𝑎).

Figure 5 depicts 𝑒𝑖+1𝑎 .

First, let us prove that all nine introduced properties are preserved for 𝑒𝑖+1𝑎 :

• Property 1: Only processes 𝑎 and 𝑐𝑖+1 are correct by construction of 𝑒𝑖+1𝑎 .

• Property 2: For 𝑐𝑖+1, this property is satisfied due to the construction of 𝑒𝑖+1𝑎 (step 2b). For 𝑎, the property is

satisfied as (1) 𝑎 cannot distinguish 𝑒𝑖+1𝑎 from 𝑒𝑖𝑎 until time 𝑇𝑖 > 𝑇0, and (2) 𝑎 cannot distinguish 𝑒𝑖𝑎 from Λ

until time 𝑇0.

• Property 3: This property is satisfied as it is satisfied for 𝑒𝑖𝑎.

• Property 4: This property is satisfied as it is satisfied for 𝑒𝑖𝑎.
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Figure 5: Execution 𝑒𝑖+1𝑎 . All modifications introduced to 𝑒𝑖𝑎 (in order to obtain 𝑒𝑖+1𝑎 ) are noted in red.

• Property 5: For every process 𝑐 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑖−1}, the property is satisfied as it is satisfied for 𝑒𝑖𝑎. For 𝑐𝑖, the

property holds due to the construction of 𝑒𝑖+1𝑎 (step 2c).

• Property 6: We prove the property by proving Lemma 4.

• Property 7: For every process 𝑐 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑖−1}, the property holds as it holds for 𝑒𝑖𝑎. For 𝑐𝑖, if 𝑎 receives a

message from 𝑐𝑖 after 𝑇0, that happens after 𝑇𝑖−1 (as 𝑒𝑖+1𝑎 is indistinguishable from 𝑒𝑖𝑎 until 𝑇𝑖 > 𝑇𝑖−1 to 𝑎 and 𝑎

receives messages from 𝑐𝑖 only after 𝑇𝑖−1 due to the property 9 of 𝑒𝑖𝑎). Moreover, 𝑎 receives no messages from

𝑐𝑖 after time 𝑇𝑖 due to the construction of 𝑒𝑖+1𝑎 (step 2d).

• Property 8: This property is ensured due to the step 3 of the construction.

• Property 9: The property is ensured by construction. Namely, 𝑎 cannot distinguish 𝑒𝑖+1𝑎 from 𝑒𝑖𝑎 until time 𝑇𝑖

and 𝑎 does not receive any message from 𝑐𝑖+1 in 𝑒𝑖𝑎 (as the property 4 holds for 𝑒𝑖𝑎).

Finally, let us prove that 𝑎 sends Ω(𝑛) messages to each process 𝑐 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑖, 𝑐𝑖+1} in 𝑒𝑖+1𝑎 ; the following

lemma ensures that the property 6 is satisfied for 𝑒𝑖+1𝑎 .

Lemma 4. Process 𝑎 sends Ω(𝑛) accountability-specific messages to each process 𝑐 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑖, 𝑐𝑖+1} in 𝑒𝑖+1𝑎 .

Proof. First, 𝑎 sends Ω(𝑛) accountability-specific messages to each process in the {𝑐1, 𝑐2, ..., 𝑐𝑖−1, 𝑐𝑖} set in 𝑒𝑖+1𝑎

as (1) 𝑒𝑖+1𝑎 is indistinguishable to 𝑎 from 𝑒𝑖𝑎 until time 𝑇𝑖 (due to the construction of 𝑒𝑖+1𝑎 ), and (2) 𝑎 sends Ω(𝑛)

accountability-specific messages to each process in {𝑐1, 𝑐2, ..., 𝑐𝑖} by 𝑇𝑖 in 𝑒𝑖𝑎 (by the property 6 of 𝑒𝑖𝑎). Hence, it is

left to prove that 𝑎 sends Ω(𝑛) accountability-specific messages to 𝑐𝑖+1 in 𝑒𝑖+1𝑎 , as well.

Processes 𝑎 and 𝑐𝑖+1 disagree in 𝑒𝑖+1𝑎 . Since 𝑎𝑏𝑐 satisfies accountability, 𝑐𝑖+1 eventually obtains proofs of

culpability of (at least) 𝑡0 + 1 processes. Moreover, due to Lemma 1, given the messages 𝑐𝑖+1 receives until time
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𝑇0, 𝑐𝑖+1 is unable to form a proof of culpability of any process. Therefore, 𝑐𝑖+1 obtains the culpability proofs after 𝑇0.

Given that 𝑐𝑖+1 only receives messages from 𝑎 (and itself) after 𝑇0 (due to the properties 4 and 5 of 𝑒𝑖+1𝑎 ), 𝑐𝑖+1 must

have “used” Ω(𝑛) messages received from 𝑎 to form the culpability proofs (to satisfy accountability). Thus, 𝑎 indeed

sends Ω(𝑛) accountability-specific messages to 𝑐𝑖+1 in 𝑒𝑖+1𝑎 , as well.

We denote by 𝑇𝑖+1 the first time such that (1) 𝑇𝑖+1 > 𝑇𝑖, and (2) 𝑎 sends Ω(𝑛) accountability-specific messages to

𝑐𝑖+1 by time 𝑇𝑖+1 in 𝑒𝑖+1𝑎 . Note that 𝑎 sends Ω(𝑛) messages to each process in the {𝑐1, ..., 𝑐𝑖, 𝑐𝑖+1} set by 𝑇𝑖+1.

Step 4: Construction of a finite execution 𝑒𝑎 in which (1) 𝑎 sends Ω(𝑛2) accountability-specific messages, and (2) 𝑎

is the only correct process.

We construct 𝑒𝑎 in the following manner:

1. Only process 𝑎 is correct in 𝑒𝑎.

2. We build the prefix 𝜋𝑎 of 𝑒𝑎 until time 𝑇𝑡0 in the following manner, where 𝑇𝑡0 is the time specified explicitly

in the construction of 𝑒𝑡0𝑎 (constructed by the generic transformation introduced in the previous step):

(a) Let 𝜋𝑎 be the prefix of 𝑒
𝑡0
𝑎 until time 𝑇𝑡0 .

(b) For every message 𝑚 sent by 𝑐𝑡0 in 𝜋𝑎 such that (1) 𝑚 is sent to a process 𝑟 with 𝑟 ≠ 𝑎 and 𝑟 ≠ 𝑐𝑡0 , and

(2) 𝑚 is not received by time 𝑇0, the sending event of 𝑚 is removed from 𝜋𝑎. In other words, only 𝑎 (and

𝑐𝑡0 ) receive messages from 𝑐𝑡0 after 𝑇0.

(c) For every message 𝑚 sent by 𝑐𝑡0 in 𝜋𝑎 such that (1) 𝑚 is sent to 𝑎, and (2) 𝑚 is not received by time 𝑇𝑡0 ,

the sending event of 𝑚 is removed from 𝜋𝑎. This step of the construction ensures that 𝑎 only receives

messages from 𝑐𝑡0 until time 𝑇𝑡0 ; after 𝑇𝑡0 , 𝑎 receives no messages from 𝑐𝑡0 .

3. Each process 𝑝 ∈ Ψ ⧵ {𝑎} is silent after time 𝑇𝑖, i.e., it does not send any message after time 𝑇𝑡0 . Recall that

processes in Ψ ⧵ {𝑎, 𝑐1, 𝑐2, ..., 𝑐𝑡0} are silent after time 𝑇0.

Since 𝑎 cannot distinguish 𝑒𝑡0𝑎 from 𝑒𝑎 until time 𝑇𝑡0 , 𝑎 sendsΩ(𝑛
2) accountability-specific messages in 𝑒𝑎. Lastly, we

associate 𝑒𝑎 with 𝑇𝑎 = 𝑇𝑡0 .

Construction of  (part 2): The first part of the proof was devoted to constructing 𝑒𝑎, an execution in which a fixed

correct process 𝑎 ∈ 𝐴 sends a quadratic number of accountability-specific messages. The second part “merges” all

of these executions in order to obtain an execution with a cubic number of sent accountability-specific messages.

Theorem5. The accountability complexity of 𝑎𝑏𝑐, where 𝑎𝑏𝑐 is a 𝑡0-resilient (deterministic or probabilistic) accountable

Byzantine consensus protocol and 𝑡0 ∈ Ω(𝑛), is Ω(𝑛3).
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Proof. We prove the theorem by constructing an execution  with a cubic number of accountability-specific

messages. Recall that, for each process 𝑎 ∈ 𝐴, time 𝑇𝑎 > 𝑇0 is associated with 𝑒𝑎; 𝑎 sends Ω(𝑛2) accountability-

specific messages by 𝑇𝑎 in 𝑒𝑎.

We construct  in the following manner. First, we “merge” executions 𝑒𝑎 until time 𝑇0, for every 𝑎 ∈ 𝐴. More

formally, we build a prefix 𝜌 of  until time 𝑇0 using the following construction:

1. Let 𝜌 be the prefix of 𝑒𝑎1 until time 𝑇0, where 𝑎1 ∈ 𝐴.

2. For every process 𝑎 ∈ 𝐴 ⧵ {𝑎1}:

(a) If there exists a message 𝑚 sent by a process 𝑝 ∈ Ψ in the prefix of 𝑒𝑎 until time 𝑇0 such that 𝑚 is not

sent in 𝜌, add 𝑚 to be sent in 𝜌 at the exact same time as in 𝑒𝑎.

Intuitively, we create 𝜌 as the “union” of the prefixes of 𝑒𝑎 until time 𝑇0, for every 𝑎 ∈ 𝐴. Observe that all processes

from the group 𝐴 are correct in 𝜌.

After time 𝑇0, we do the following:

1. Processes from the 𝐶 set behave towards a process 𝑎 as they do in 𝑒𝑎, for every 𝑎 ∈ 𝐴.

2. Processes from the group 𝐵 are silent, i.e., they do not send any messages.

3. Messages between processes from the group 𝐴 that are not received by time 𝑇0 are delayed until after time

𝑇 ∗ = max(𝑇𝑎1 , 𝑇𝑎2 , ..., 𝑇𝑎𝑡0 ).

Given that no process 𝑎 ∈ 𝐴 distinguishes  from 𝑒𝑎 until time 𝑇 ∗ > 𝑇𝑎, each process 𝑎 ∈ 𝐴 sends a quadratic

number of accountability-complexity messages in  . Since |𝐴| = 𝑡0 ∈ Ω(𝑛), the overall accountability complexity

of execution  is Ω(𝑛3), which concludes the proof.

5. Generalized Transformation

We have shown that  enables Byzantine consensus protocols to obtain accountability. This section gener-

alizes our  transformation and defines its applicability. Namely, we specify a class of distributed computing

problems named easily-accountable agreement tasks, and we prove that generalized  enables accountability in

such tasks.

We introduce agreement tasks in §5.1. Then, we define the class of easily-accountable agreement tasks (§5.2),

and prove the correctness of generalized transformation applied to such agreement tasks (§5.3).

5.1. Agreement Tasks

Agreement tasks represent an abstraction of distributed input-output problems performed in a Byzantine

environment. Specifically, each process has its input value. We assume that “⊥” denotes the special input value

of a process that specifies that the input value is non-existent. A process may eventually halt; if a process halts, it
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produces its output value. The “⊥” output value of a process means that the process has not yet halted (and produced

its output value). We denote by 𝐼𝑖 (resp.,𝑂𝑖) the input (resp., output) value of process 𝑃𝑖. We note that some processes

might never halt if permitted by the definition of an agreement task. We provide the formal explanation in the rest

of the subsection.

An agreement task is parameterized with the upper bound 𝑡 on number of faulty processes that are tolerated.

In other words, the specification of an agreement task assumes that no more than 𝑡 processes are faulty in any

execution.

Any agreement task could be defined as a relation between input and output values of processes. Sincewe assume

that processes might fail, we only care about input and output values of correct processes. Hence, an agreement task

could be defined as a relation between input and output values of correct processes.

An input configuration of an agreement task is 𝜈𝐼 = {(𝑃𝑖, 𝐼𝑖) with 𝑃𝑖 is correct}, where |𝜈𝐼 | ≥ 𝑛− 𝑡: an input

configuration consists of input values of all correct processes. Similarly, an output configuration of an agreement task

is 𝜈𝑂 = {(𝑃𝑖, 𝑂𝑖) with 𝑃𝑖 is correct}, where |𝜈𝑂| ≥ 𝑛− 𝑡: it contains output values of correct processes. We denote

by 𝜃(𝜈𝑂) = |{𝑂𝑖 | (𝑃𝑖, 𝑂𝑖) ∈ 𝜈𝑂 ∧ 𝑂𝑖 ≠ ⊥}| the number of distinct non-⊥ values in the 𝜈𝑂 output configuration.

Finally, we define an agreement task  as tuple (,,Δ, 𝑡), where:

•  denotes the set of all input configurations of .

•  denotes the set of all output configurations of  such that 𝜃(𝜈𝑂) ≤ 1, for every 𝜈𝑂 ∈ .

• Δ ∶  → 2, where 𝜈𝑂 ∈ Δ(𝜈𝐼 ) if and only if the output configuration 𝜈𝑂 ∈  is valid given the input

configuration 𝜈𝐼 ∈ .

• 𝑡 ≤ ⌈𝑛∕3⌉ − 1 denotes the maximum number of faulty processes the task assumes.

As seen from the definition, correct processes that halt always output the same value in agreement tasks. Moreover,

we define agreement tasks to tolerate less than 𝑛∕3 faults. Without loss of generality, we assume that Δ(𝜈𝐼 ) ≠ ∅, for

every input configuration 𝜈𝐼 ∈ . Moreover, for every 𝜈𝑂 ∈ , there exists 𝜈𝐼 ∈  such that 𝜈𝑂 ∈ Δ(𝜈𝐼 ).

We note that some problems that are traditionally considered as “agreement” problems do not fall into our

classification of agreement tasks. For instance, Byzantine lattice agreement [50] or 𝑘-set agreement [21] are not

agreement tasks per our definition since the number of distinct non-⊥ values that can be outputted is greater than

1.

Solutions. The following definitions specifies solutions of agreement tasks.

Definition 8 (Solution of an agreement task). A protocol Π deterministically (resp., probabilistically) solves an

agreement task  = (,,Δ, 𝑡) if and only if, in every execution with up to 𝑡 faults, there exists (resp., exists

with probability 1) an unknown time 𝑇𝐷 such that 𝜈𝑂 ∈ Δ(𝜈𝐼 ), where 𝜈𝐼 ∈  denotes the input configuration that
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consists of input values of all correct processes and 𝜈𝑂 ∈  denotes the output configuration that (1) consists of

output values (potentially ⊥) of all correct processes, and (2) no correct process 𝑃𝑖 with 𝑂𝑖 = ⊥ updates its output

value after 𝑇𝐷.

Lastly, we define accountable solutions of agreement tasks.

Definition 9 (Accountable solution of an agreement task). A protocol Π𝐴𝑐𝑐
 deterministically (resp., probabilisti-

cally) solves an agreement task = (,,Δ, 𝑡) with accountability if and only if the following holds:

• -Solvability: Π𝐴𝑐𝑐
 deterministically (resp., probabilistically) solves.

• Accountability: If two correct processes output different values, then every correct process eventually detects

(at least) 𝑛 − 2𝑡 faulty processes and obtains a proof of culpability of each detected process.

5.2. Easily-Accountable Agreement Tasks

Fix an agreement task = (,,Δ, 𝑡). We say that is an easily-accountable agreement task if and only if one

of the following conditions is satisfied:

1. “All-or-None-Decidability”: There does not exist 𝜈𝑂 ∈  such that (𝑃𝑖, 𝑂𝑖 ≠ ⊥) ∈ 𝜈𝑂 and (𝑃𝑗 , 𝑂𝑗 = ⊥) ∈ 𝜈𝑂;

or

2. “Partial-Decidability”: For every 𝜈𝐼 ∈  such that there exists 𝜈𝑂 ∈ Δ(𝜈𝐼 ), where (𝑃𝑖, 𝑂𝑖 = 𝑣 ≠ ⊥) ∈ 𝜈𝑂 and

(𝑃𝑗 , 𝑂𝑗 = ⊥) ∈ 𝜈𝑂, the following holds:

for every 𝑐 ∈ ℙ({𝑃𝑖 | (𝑃𝑖, 𝐼𝑖) ∈ 𝜈𝐼}),∃𝜈′𝑂 ∈ Δ(𝜈𝐼 ),where ∀𝑃𝑖 ∈ 𝑐 ∶ (𝑃𝑖, 𝑂𝑖 = 𝑣) ∈ 𝜈′𝑂 and

∀𝑃𝑗 ∈ {𝑃𝑘 | (𝑃𝑘, 𝐼𝑘) ∈ 𝜈𝐼} ⧵ 𝑐 ∶ (𝑃𝑗 , 𝑂𝑗 = ⊥) ∈ 𝜈′𝑂.

“All-or-None-Decidability” characterizes all the problems in which either every process halts or none does. For

instance, Byzantine consensus [40] and Byzantine reliable broadcast [17] satisfy “All-or-None-Decidability”.

On the other hand, some agreement tasks permit that some processes halt, whereas others do not. We say that

these tasks satisfy “Partial-Decidability” if and only if it is allowed for any subset of correct processes to halt (and

output a value). Note that “Partial-Decidability” covers the case where no correct process ever halts. Byzantine

consistent broadcast [17] is the only agreement task we are aware of that satisfies “Partial-Decidability” (in the

case of a Byzantine sender). However, the significance of Byzantine consistent broadcast (e.g., for implementing

cryptocurrencies [35]) motivated us to consider the “Partial-Decidability” property.

5.3. Correctness of Generalized Transformation

We now prove the correctness of our generalized  transformation (Algorithm 4). First, we show that

Algorithm 4 solves an easily-accountable agreement task  if satisfies “All-or-None-Decidability”.
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Algorithm 4 Generalized Transformation - Code For Process 𝑃𝑖
1: Implements:
2: Agreement TaskWith Accountability, instance 𝑎 −
3: Uses:
4: ⊳ Protocol to be transformed

5: Protocol that (deterministically or probabilistically) solves agreement task, instance Π
6: 𝑡-Resilient Accountable Confirmer, where 𝑡 is the resilience of, instance 𝑎𝑐
7: upon event ⟨𝑎 −, 𝖨𝗇𝗉𝗎𝗍 | 𝑖𝑛𝑝𝑢𝑡⟩ do ⊳ Input

8: trigger ⟨Π, 𝖨𝗇𝗉𝗎𝗍 | 𝑖𝑛𝑝𝑢𝑡⟩
9: upon event ⟨Π,𝖮𝗎𝗍𝗉𝗎𝗍 | 𝑜𝑢𝑡𝑝𝑢𝑡⟩ do
10: trigger ⟨𝑎𝑐, 𝖲𝗎𝖻𝗆𝗂𝗍 | 𝑜𝑢𝑡𝑝𝑢𝑡⟩
11: upon event ⟨𝑎𝑐,𝖢𝗈𝗇𝖿 𝗂𝗋𝗆 | 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⟩ do
12: trigger ⟨𝑎 −,𝖮𝗎𝗍𝗉𝗎𝗍 | 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⟩ ⊳ Output

13: upon event ⟨𝑎𝑐,𝖣𝖾𝗍𝖾𝖼𝗍 |𝐹 , 𝑝𝑟𝑜𝑜𝑓⟩ do
14: trigger ⟨𝑎 −,𝖣𝖾𝗍𝖾𝖼𝗍 |𝐹 , 𝑝𝑟𝑜𝑜𝑓⟩ ⊳ Detection

Lemma 5. Let = (,,Δ, 𝑡) be an easily-accountable agreement task that satisfies “All-or-None-Decidability”.

Algorithm 4 deterministically (resp., probabilistically) solves  if Π (line 5) deterministically (resp., probabilisti-

cally) solves .

Proof. If no correct process ever outputs a value at line 9, then no correct process confirms any value from

accountable confirmer (because no correct process submits any value to accountable confirmer at line 10). Hence,

no correct process produces any output at line 12, which concludes the proof in this scenario.

Otherwise, each correct process eventually outputs a value at line 9. Moreover, all correct processes output

the exact same value 𝑣 (since  is an agreement task). Therefore, all correct processes submit the same value

𝑣 to accountable confirmer (line 10). By terminating convergence of accountable confirmer, all correct processes

eventually confirm value 𝑣 (line 11) and output it (line 12). Once this happens, the agreement task  is solved,

which concludes the lemma.

Now, we prove that Algorithm 4 solves an easily-accountable agreement task  if  satisfies “Partial-

Decidability”.

Lemma 6. Let  = (,,Δ, 𝑡) be an easily-accountable agreement task that satisfies “Partial-Decidability”. Al-

gorithm 4 deterministically (resp., probabilistically) solves if Π (line 5) deterministically (resp., probabilistically)

solves.

Proof. Let 𝜈𝐼 denote a specific input configuration of . We consider two cases:

• If no or all correct processes output a value at line 9, the proof is identical to the proof of Lemma 5.

• Otherwise, there exists a correct process that outputs a value 𝑣 at line 9 and another correct process that does

not output any value at line 9. Since is an agreement task, any correct process that outputs a value at line 9

outputs the value 𝑣. Moreover, any correct process that outputs a value at line 12 outputs the value 𝑣 (ensured
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by validity of accountable confirmer). Finally, once the system stabilizes at time 𝑇𝐷 (the system stabilizes at

time 𝑇𝐷 if and only if no correct process 𝑃𝑖 with 𝑂𝑖 = ⊥ updates its output value after 𝑇𝐷), the fact that any

subset of correct processes could halt and that all halted processes output 𝑣 implies that Algorithm 4 solves

.

The lemma holds.

Finally, we are ready to prove that Algorithm 4 solves  with accountability, where  is an easily-accountable

agreement task, which means that generalized  is correct.

Theorem 6. Let  = (,,Δ, 𝑡) be an easily-accountable agreement task. Algorithm 4 deterministically (resp.,

probabilistically) solves  with accountability if Π (line 5) deterministically (resp., probabilistically) solves .

Proof. Algorithm 4 satisfies -solvability by lemmas 5 and 6. Finally, Algorithm 4 ensures accountability since the

accountable confirmer ensures detection of (at least) 𝑛− 2𝑡 faulty processes whenever a disagreement occurs.

6. Concluding Remarks

We presented , a generic and simple transformation that allows non-synchronous (deterministic or

probabilistic) Byzantine consensus protocols to obtain accountability. Besides its simplicity,  is efficient:

it introduces an additive overhead of only two all-to-all communication rounds and 𝑂(𝑛2) exchanged bits of

information in the common case. Furthermore, we show that  can easily be generalized to other agreement

problems (e.g., Byzantine reliable broadcast, Byzantine consistent broadcast). Future work includes (1) designing

similarly simple and efficient transformations for problems not covered by the generalized  transformation,

like Byzantine lattice and 𝑘-set agreement problems, and (2) circumventing the cubic accountability complexity

bound using randomization techniques.
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A. Formal Proof of Theorem 1

Theorem 1 (Unavoidable disagreement; restated). For any non-synchronous 𝑡0-resilient (deterministic or proba-

bilistic) Byzantine consensus protocol among 𝑛 processes, there exists an execution with 𝑡 ≥ 𝑛−2𝑡0 faulty processes

in which correct processes disagree (i.e., decide different values).

Proof. As we need to have at least two correct processes (in order for a disagreement to occur), 𝑡 ≤ 𝑛 − 2. Let 𝐵

denote the group of faulty processes; |𝐵| = 𝑡 ≥ 𝑛− 2𝑡0. We denote by 𝐴 a group of any ⌈

𝑛−𝑡
2 ⌉ correct processes and

by 𝐶 the group of “other” ⌊
𝑛−𝑡
2 ⌋ correct processes. Note that (1) 𝐴 ∩ 𝐶 = ∅, (2) 𝐴 ≠ ∅ (as 𝑛 − 𝑡 ≥ 2), and (3) 𝐶 ≠ ∅

(as 𝑛 − 𝑡 ≥ 2).

Consider the following two executions:

• Execution 𝑒1: In this execution, processes in 𝐴 ∪ 𝐵 are correct, whereas processes in 𝐶 are faulty and silent

(i.e., they do not send any messages). All correct processes propose the same value 𝑣. The number of faulty

processes in 𝑒1 is |𝐶| = ⌊

𝑛−𝑡
2 ⌋ ≤ 𝑡0. Due to the fact that the Byzantine consensus protocol is 𝑡0-resilient and

the number of faulty processes is ≤ 𝑡0, all correct processes decide 𝑣 by some time 𝑇1.

• Execution 𝑒2: In this execution, processes in 𝐵 ∪ 𝐶 are correct, whereas processes in 𝐴 are faulty and silent.

All correct processes propose the same value 𝑣′. The number of faulty processes in 𝑒1 is |𝐴| ≤ 𝑡0. Hence, all

correct processes decide 𝑣′ by some time 𝑇2.

Now, we build an execution 𝑒3:

1. Processes in 𝐴 ∪ 𝐶 are correct, whereas processes in 𝐵 are faulty.
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2. Processes in 𝐴 propose 𝑣, whereas processes in 𝐶 propose 𝑣′.

3. Processes in 𝐵 behave (1) towards processes in 𝐴 as in 𝑒1, and (2) towards processes in 𝐶 as in 𝑒2. Moreover,

all messages between groups 𝐴 and 𝐶 are delayed until after 𝗆𝖺𝗑(𝑇1, 𝑇2).

Until time 𝑇1, processes in 𝐴 cannot distinguish 𝑒3 from 𝑒1; thus, processes in 𝐴 decide 𝑣 in 𝑒3. Similarly, until time

𝑇2, processes in 𝐶 cannot distinguish 𝑒3 from 𝑒2; thus, processes in 𝐶 decide 𝑣′ in 𝑒3. Therefore, a disagreement

occurs in 𝑒3, and there are 𝑛 − 2𝑡0 ≤ 𝑡 ≤ 𝑛 − 2 faulty processes in 𝑒3, which concludes the proof.

B. Cryptographic Primitives: Formal Overview

This subsection recalls the formal definitions of the cryptographic schemes we rely upon for constructing.

A family of real numbers (𝑥𝑘)𝑘∈ℕ ∈ ℝℕ
is said to belong to 𝑝𝑜𝑙𝑦(𝑘) if there exists 𝑐 ∈ ℕ such that 𝑥𝑘 =

𝑘→∞
𝑂(𝑘𝑐).

A family of real numbers (𝑥𝑘)𝑘∈ℕ ∈ ℝℕ
is said to be negligible, denoted by (𝑥𝑘)𝑘∈ℕ ∈ 𝑛𝑒𝑔(𝑘), if for every 𝑐 ∈ ℕ,

𝑥𝑘 =
𝑘→∞

𝑜( 1
𝑘𝑐 ). A probabilistic Turing Machine is 𝑘-bounded for some 𝑘 ∈ ℕ if (1) it can be described with 𝑘 bits,

assuming a standard bit-string representation, and (2) it halts after 𝑘 transitions.

The cryptographic schemes and their properties are defined with respect to a security parameter 𝜅 ∈ ℕ. A (local)

protocol is said to be efficient if its complexity belongs to 𝑝𝑜𝑙𝑦(𝜅). A real number 𝑥 (which, traditionally, describes a

probability) is said to be negligible if it is parametrized with the security parameter 𝜅 and 𝑥 ∈ 𝑛𝑒𝑔(𝜅). An adversary

is said to be polynomially-bounded if it is parametrized with the security parameter 𝜅 and is 𝑝𝑜𝑙𝑦(𝜅)-bounded. A

property of a cryptographic scheme is said to hold if it cannot be violated by a polynomially-bounded adversary

with more than a negligible probability.

Throughout the section, we denote by 𝖲𝗍𝗋𝗂𝗇𝗀 ≜ {0, 1}∗ the set of all strings.

B.1. Digital Signatures

A digital signature scheme is a tuple of efficient local protocols (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒), with:

• 𝖦𝖾𝗇: a probabilistic algorithm that takes the security number 𝜅 as the input, and randomly selects a

pair (𝑠𝑘𝑖, 𝑝𝑘𝑖) composed of a secret (i.e., private) key 𝑠𝑘𝑖 and a public (i.e., verification) key 𝑝𝑘𝑖; the bit-

representations of 𝑠𝑘𝑖 and 𝑝𝑘𝑖 are of size of (at most) 𝜅 bits.

• 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a private key 𝑠𝑘𝑖

as the input. The algorithm outputs a signature 𝜎𝑖 whose bit-representation has a size of (at most) 𝜅 bits.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑝𝑘𝑗 , 𝜎𝑗): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the public key

𝑝𝑘𝑗 of a process 𝑃𝑗 , and (3) a signature 𝜎𝑗 as the input. The algorithm outputs ⊤ (true) or ⊥ (false) depending

on whether 𝜎𝑗 is deemed as a valid signature.

The following properties hold:
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• Correctness: If (𝑠𝑘𝑖, 𝑝𝑘𝑖) ← 𝖦𝖾𝗇(𝜅), then 𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝑝𝑘𝑖, 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖)
)

returns ⊤.

• Unforgeability: If 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑝𝑘𝑗 , 𝜎𝑗) returns ⊤, then (1) 𝜎𝑗 ← 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is

faulty.

This scheme is formalized by the functionality 𝑆𝐼𝐺 in the universally composable (UC) framework [19].

B.2. Public Key Infrastracture (PKI)

An ideal public key infrastructure is a tuple (𝖪𝖾𝗒𝗌, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒), where 𝖪𝖾𝗒𝗌 =
(

(𝖲𝖪 = (𝑠𝑘1, ..., 𝑠𝑘𝑛), 𝖯𝖪 =

(𝑝𝑘1, ..., 𝑝𝑘𝑛)
)

, with:

• 𝖯𝖪: a vector of public (i.e., verification) keys stored by every correct process; each public key 𝑝𝑘𝑗 is associated

with the process 𝑃𝑗 .

• 𝖲𝖪: a vector of secret (i.e., private) keys such that, for every correct process 𝑃𝑖, 𝑃𝑖 stores its secret key 𝑠𝑘𝑖

which corresponds to its public key 𝑝𝑘𝑖; 𝑠𝑘𝑖 is hidden from the adversary (i.e., the unforgeability property of

digital signatures is satisfied; Appendix B.1).

• 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a private key 𝑠𝑘𝑖

as the input. The algorithm outputs a signature 𝜎𝑖.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑝𝑘𝑗 , 𝜎𝑗): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the public key 𝑝𝑘𝑗 of a

process 𝑃𝑗 , and (3) a signature 𝜎𝑗 as the input. The algorithm outputs ⊤ or ⊥ depending on whether 𝜎𝑗 is

deemed as a valid signature.

The following properties hold:

• Correctness: For every 𝑖 ∈ [1, 𝑛], 𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝑝𝑘𝑖, 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖)
)

returns ⊤.

• Unforgeability: If 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑝𝑘𝑗 , 𝜎𝑗) returns ⊤, then (1) 𝜎𝑗 ← 𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is

faulty.

In our paper, we assume an established PKI, i.e., we are not concernedwith how such an infrastructure is obtained.

We emphasize that the definition above does not state how a verifier learns the public (i.e., verification) key of another

process. The associated ideal functionality, formalized by 𝐶𝐴 in the UC model [19], corresponds to a “rudimentary

certification authority that registers party identities together with public values provided by the registered party”.

Traditionally, this functionality is emulated in the following manner: a process publicly announces its public key

using the Byzantine reliable broadcast primitive [13, 17]. However, without additional assumptions, the resiliency

of Byzantine reliable broadcast is bounded by 𝑛∕3 (without previously established PKI), even in the synchronous

setting [40], making it impossible for implementation in overly corrupted systems.

Assuming that each party can solve cryptographic puzzles only at a bounded rate, it is possible to (1) implement

a setup phase to establish an ideal PKI assuming a (potentially very large) bound Δ on message delays [38, 7], and
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then (2) run asynchronous protocols on top of the established ideal PKI (in the main phase), without facing the

dilemma between safety and efficiency due to the choice of Δ. (A small Δ would threat the safety, while a large Δ

would increase the latency.)

B.3. Threshold Signature Scheme

A non-interactive (𝑘, 𝑛)-dual threshold signature scheme is a tuple of efficient local protocols (𝖪𝖾𝗒𝗌, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇,

𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒,𝖵𝖾𝗋𝗂𝖿𝗒,𝖢𝗈𝗆𝖻𝗂𝗇𝖾), where 𝖪𝖾𝗒𝗌 =
(

𝖯𝖪, 𝖲𝖪 = (𝑠𝑘1, ..., 𝑠𝑘𝑛),𝖵𝖪 = (𝑣𝑘1, ..., 𝑣𝑘𝑛)
)

, with:

• 𝖯𝖪: a public key store by correct process.

• 𝖵𝖪: a vector of verification keys stored by every correct process.

• 𝖲𝖪: a vector of private key shares such that, for every correct process 𝑃𝑖, 𝑃𝑖 stores its private key share 𝑠𝑘𝑖;

𝑠𝑘𝑖 is hidden from the adversary.

• 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a private

key share 𝑠𝑘𝑖 as the input. The algorithm outputs a partial signature 𝜎𝑃𝑖 of (at most) 𝜅 bits.

• 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑃𝑗 ): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the verification key

𝑣𝑘𝑗 of a process 𝑃𝑗 , and (3) a partial signature 𝜎𝑃𝑗 as the input. The algorithm outputs ⊤ or ⊥ depending on

whether 𝜎𝑃𝑗 is deemed as a valid partial signature.

• 𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝑚, {𝜎𝑖}𝑖∈𝑆∧𝑆⊂[1,𝑛]∧|𝑆|=𝑘): an algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a subset 𝑆 of size

|𝑆| = 𝑘 of partial signatures {𝜎𝑖}𝑖∈𝑆 . The algorithm outputs a threshold signature 𝜎𝑇 .

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝖯𝖪, 𝜎𝑇 ): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the public key 𝖯𝖪, and (3) a

threshold signature 𝜎𝑇 . The algorithm outputs⊤ or⊥ depending on whether 𝜎𝑇 is deemed as a valid threshold

signature.

The following properties hold:

• Correctness of partial signatures: For every 𝑖 ∈ [1, 𝑛], 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝑣𝑘𝑖, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖)
)

returns ⊤.

• Unforgeability of partial signatures: If 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑃𝑗 ) returns ⊤, then (1) 𝜎𝑃𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has

been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is faulty.

• Correctness of threshold signatures: 𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝖯𝖪,𝖢𝗈𝗆𝖻𝗂𝗇𝖾({𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗)}𝑗∈𝐽∧𝐽⊂[1,𝑛]∧|𝐽 |=𝑘)
)

returns ⊤.

• Unforgeability of threshold signatures: If 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝖯𝖪, 𝜎𝑇 ) returns ⊤, then there exists a set 𝐽 , |𝐽 | = 𝑘, of

partial signatures such that, for each 𝜎𝑃𝑗 ∈ 𝐽 , (1) 𝜎𝑃𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has been executed by 𝑃𝑗 , or (2) 𝑃𝑗

is faulty.

Importantly, there exist dual threshold signature schemes with threshold signatures having 𝜅 bits (e.g., [49]).

Note that, without a trusted setup, a (𝑘, 𝑛)-dual threshold signature scheme can be obtained via a distributed key

generation (DKG) protocol (e.g., [2]) if the number of faulty processes does not exceed 𝑛−𝑘. Otherwise, no guarantees
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exist. For example, if the number of faults exceeds 𝑛 − 𝑘, we can have an imperfect threshold signature scheme in

which the aforementioned properties would not hold (e.g., faulty processes could forge the private key shares of

correct processes and use them to sign statements on their behalf).

B.4. Threshold Signature Scheme in a Transparent Setup (via Σ-Compressed Protocols)

A transparent non-interactive (𝑘, 𝑛)-dual threshold signature scheme is a scheme whose specification is extremely

similar to the specification presented in Appendix B.3. The only difference is that a transparent scheme does not

include a common public key, which implies that a trusted setup nor a DKG protocol is necessary. Hence, obtaining

a transparent scheme is strictly easier (in terms of necessary assumptions) than obtaining a non-transparent scheme

(Appendix B.3). For the completeness, the full specification is given below.

A transparent non-interactive (𝑘, 𝑛)-dual threshold signature scheme is tuple of efficient local protocols

(𝖪𝖾𝗒𝗌, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇, 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒,𝖵𝖾𝗋𝗂𝖿𝗒,𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾), where 𝖪𝖾𝗒𝗌 =
(

𝖲𝖪 = (𝑠𝑘1, ..., 𝑠𝑘𝑛),𝖵𝖪 = (𝑣𝑘1, ..., 𝑣𝑘𝑛)
)

, with:

• 𝖵𝖪: a vector of verification keys stored by every correct process.

• 𝖲𝖪: a vector of private key shares such that, for every correct process 𝑃𝑖, 𝑃𝑖 stores its private key share 𝑠𝑘𝑖;

𝑠𝑘𝑖 is hidden from the adversary.

• 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a private

key share 𝑠𝑘𝑖 as the input. The algorithm outputs a signature share 𝜎𝑆𝑖 of (at most) 𝜅 bits.

• 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑆𝑗 ): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the verification key

𝑣𝑘𝑗 of a process 𝑃𝑗 , and (3) a signature share 𝜎𝑆𝑗 as the input. The algorithm outputs ⊤ or ⊥ depending on

whether 𝜎𝑆𝑗 is deemed as a valid signature.

• 𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾(𝑚, {𝜎𝑖}𝑖∈𝑆∧𝑆⊂[1,𝑛]∧|𝑆|=𝑘): an algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a subset 𝑆 of size

|𝑆| = 𝑘 of signature shares {𝜎𝑖}𝑖∈𝑆 . The algorithm outputs an aggregate signature 𝜎𝐴.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝜎𝐴): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) an aggregate signature 𝜎𝐴.

The algorithm outputs ⊤ or ⊥ depending on whether 𝜎𝐴 is deemed as a valid aggregate signature.

The following properties hold:

• Correctness of signature shares: For every 𝑖 ∈ [1, 𝑛], 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝑣𝑘𝑖, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖)
)

returns ⊤.

• Unforgeability of signature shares: If 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑆𝑗 ) returns ⊤, then (1) 𝜎𝑆𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has

been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is faulty.

• Correctness of aggregate signatures: 𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚,𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾({𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗)}𝑗∈𝐽∧𝐽⊂[1,𝑛]∧|𝐽 |=𝑘)
)

returns ⊤.

• Unforgeability of aggregate signatures: If 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝜎𝐴) returns ⊤, then there exists a set 𝐽 , |𝐽 | = 𝑘, of share

signatures such that, for each 𝜎𝑆𝑗 ∈ 𝐽 , (1) 𝜎𝑆𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is faulty.
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Importantly, there exist transparent threshold signature schemes such that the aggregate signatures have a size

of 𝑂(𝜅 log(𝑛)) bits (e.g., [8]). Thus, proving that a group of a linear number of processes signed a certain message

requires𝑂(𝜅 log(𝑛)) bits to be transmitted rather than𝑂(𝜅) bits for the non-transparent threshold signature schemes

(Appendix B.3).

B.5. Aggregate Signatures

A non-interactive 𝑛-aggregate signature scheme is a tuple of efficient (local) protocols (𝖪𝖾𝗒𝗌, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇,

𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒,𝖵𝖾𝗋𝗂𝖿𝗒,𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾), where 𝖪𝖾𝗒𝗌 =
(

𝖲𝖪 = (𝑠𝑘1, ..., 𝑠𝑘𝑛),𝖵𝖪 = (𝑣𝑘1, ..., 𝑣𝑘𝑛)
)

, with:

• 𝖵𝖪: a vector of verification keys stored by every correct process.

• 𝖲𝖪: a vector of private key shares such that, for every correct process 𝑃𝑖, 𝑃𝑖 stores its private key share 𝑠𝑘𝑖;

𝑠𝑘𝑖 is hidden from the adversary.

• 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖): a (potentially probabilistic) algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a private

key share 𝑠𝑘𝑖 as the input. The algorithm outputs a signature share 𝜎𝑆𝑖 of (at most) 𝜅 bits.

• 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑆𝑗 ): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) the verification key

𝑣𝑘𝑗 of a process 𝑃𝑗 , and (3) a signature share 𝜎𝑆𝑗 as the input. The algorithm outputs ⊤ or ⊥ depending on

whether 𝜎𝑆𝑗 is deemed as a valid signature.

• 𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾(𝑚, {𝜎𝑖}𝑖∈𝑆∧𝑆⊆[1,𝑛]): an algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, and (2) a subset 𝑆 of any size of

signature shares {𝜎𝑖}𝑖∈𝑆 . The algorithm outputs an aggregate signature 𝜎𝐴.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝜎𝐴, 𝐵): a deterministic algorithm that takes (1) a string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀, (2) an aggregate signature 𝜎𝐴,

and (3) a bit bask 𝐵 ∈ {0, 1}𝑛. The algorithm outputs ⊤ or ⊥ depending on whether 𝜎𝐴 is deemed as a valid

aggregate signature with reference to 𝐵.

The following properties hold:

• Correctness of signature shares: For every 𝑖 ∈ [1, 𝑛], 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚, 𝑣𝑘𝑖, 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑖)
)

returns ⊤.

• Unforgeability of signature shares: If 𝖲𝗁𝖺𝗋𝖾𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝑣𝑘𝑗 , 𝜎𝑆𝑗 ) returns ⊤, then (1) 𝜎𝑆𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has

been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is faulty.

• Correctness of aggregate signatures: Consider any string 𝑚 ∈ 𝖲𝗍𝗋𝗂𝗇𝗀 and any bit-mask 𝐵 ∈ {0, 1}𝑛. The

following holds: 𝖵𝖾𝗋𝗂𝖿𝗒
(

𝑚,𝖠𝗀𝗀𝗋𝖾𝗀𝖺𝗍𝖾({𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗)}𝐵[𝑗]=1), 𝐵
)

returns ⊤.

• Unforgeability of aggregate signatures: If 𝖵𝖾𝗋𝗂𝖿𝗒(𝑚, 𝜎𝐴, 𝐵) returns ⊤, then, for every 𝑗 ∈ [1, 𝑛] such that

𝐵[𝑗] = 1, (1) 𝜎𝑆𝑗 ← 𝖲𝗁𝖺𝗋𝖾𝖲𝗂𝗀𝗇(𝑚, 𝑠𝑘𝑗) has been executed by 𝑃𝑗 , or (2) 𝑃𝑗 is faulty.

There exist transparent aggregate signature schemes such that the aggregate signatures have a size of 𝑂(𝜅) bits

(e.g., [11]). The interface of an aggregate signature scheme is similar to the interface of the non-transparent threshold

signature schemes (Appendix B.3). We emphasize two differences:
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• (Complexity) An aggregate signature 𝜎𝐴 has to be associated with a bit-mask 𝐵 of 𝑛 bits (representing the

subset of signers). Indeed, this bit-mask is an argument of the associated 𝖵𝖾𝗋𝗂𝖿𝗒 protocol. Thus, proving that a

group of a linear number of processes have signed a certain message requires 𝑂(𝜅 + 𝑛) bits to be transmitted

instead of 𝑂(𝜅) bits for the non-transparent threshold signature schemes (Appendix B.3).

• (Transparency) This scheme requires weaker assumptions for the setup (the same ones as the transparent

threshold signature schemes defined in Appendix B.4). Indeed, the secret keys can be generated independently,

and the correct processes have to agree on the associated verification keys (exactly as in a PKI).
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