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Abstract

As proof-of-work blockchains are inherently energy greedy and offer probabilistic guaran-
tees, permissioned distributed ledgers based on the classic deterministic consensus of the
distributed computing literature appear as promising solutions to record securely the infor-
mation produced by a large amount of connected Internet of Things (IoT) devices. As of
today, it remains unclear whether these solutions can scale to large networks.

In this paper, we evaluate the performance of prominent distributed ledgers using classic
consensus protocols. We select five mainstream distributed ledgers, namely Ripple, Tender-
mint, Corda and v0.6 and v1.0 of Hyperledger Fabric, and evaluate both the throughput
and the latency of clusters with different numbers of nodes (ranging from 2 to 32) for each
of them. Our results show that, while offering sometimes thousands of transactions per
second throughput, their performance usually does not scale to tens of devices as it drops
dramatically when the number of devices increases. This study motivates the need for al-
ternative solutions that solve the Blockchain consensus problem, a scalable variant of the
classic consensus problem dedicated to blockchains.

Keywords: Private blockchains, consortium blockchains, IoT

1. Introduction

The distributed ledger technology gained momentum for its promises to track the own-
erships of digital assets through the recording of transactions that transfer assets across
accounts. Distributed ledgers traditionally organise transactions into blocks linked with
each other via hashes, hence implementing a blockchain [2], however, new variants have
recently emerged to implement other abstractions based on the application needs [3]. Vari-
ants of this technology rely on different permission models: either permissionless, allowing

A short version of this paper that only evaluates Ripple and Hyperledger Fabric appeared in the pro-
ceedings of IFIP NTMS 2018 [I]. The current version extends it by evaluating Tendermint and Corda.

Email addresses: runchao.han@student.manchester.ac.uk (Runchao Han),
gshab50950@uni . sydney.edu. au (Gary Shapiro), vincent.gramoli@sydney.edu.au (Vincent Gramoli),
xiwei.xu@data6l.csiro.au (Xiwei Xu)

Preprint submitted to Elsevier July 26, 2019



machines (or nodes) to create blocks without special permissions or permissioned, allowing
only permissioned nodes to create blocks.

Traditional permissionless blockchains use proof-of-work to guarantee that no malicious
nodes can overwhelm the systems with new blocks. These distributed ledger technologies
find various applications in the industry allowing typically Internet of Things (IoT) devices to
append data in a tamper-proof log. Enterprises have however been reluctant to adopt proof-
of-work blockchains [2] in production, because of their need for computational resources and
because they offer probabilistic guarantees [4] that made them subject to double-spending [5],
especially in a consortium or private context [6]. It has even been shown that an attacker
can double spend without a significant mining power in an Ethereum-based blockchain
network [7].

By contrast, distributed ledgers for consortium and private networks often solve classic
determistic consensus problem [8], hence achieving, in principle, greater security. In partic-
ular, the deterministic Byzantine consensus protocols [0, [10, [I1] prevent distributed ledgers
from reaching inconsistent states that could lead to double spending. As most classic Byzan-
tine consensus protocols [I0] inherit from a protocol originally designed for small local area
networks [9], it remains unclear whether one can adapt them to scale to numerous blockchain
devices connected through a large network as required by the IoT. Note that the number of
IoT devices exceed now the world population]|

In this paper, we evaluate whether distributed ledgers that solve the classic consensus
problem can scale to numerous connected devices. Depending on their failure model, these
distributed ledgers typically favor consistency over availability in a permissioned consortium
context, where participants have dedicated permissions to create new blocks. To this end,
these ledgers typically embed, at their core, a classic fault tolerant consensus protocol that
guarantees a total order on the committed transactions despite failures of a bounded number
of participants, sometimes malicious.

We present an evaluation of some of the prominent distributed ledgers:

e Hyperledger Fabric (HLF) v0.6 with the Practical Byzantine Fault Tolerance (PBFT)
consensus protocol [9];

e HLF v1.0 with the Byzantine Fault-Tolerant State Machine Replication (BFT-SMaRt)
consensus protocol [10];

e Ripple v0.60.0 with the Byzantine Fault-Tolerant Ripple consensus protocol [12];

e Tendermint v0.22.4 [13] with the hybrid Byzantine consensus combining PBFT and
Casper [14];

e R3 Corda v3.2 [3] built upon BFT-Smart [10].

"https://iot-analytics.com/state-of-the-iot-update-ql-q2-2018-number-of-iot-devices-
now-7b/


https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

Existing evaluations focuse either on a single blockchain only [15], the performance of
the Byzantine fault tolerant consensus [16], or blockchains with different purposes [17]. In
particular, some efforts were recently devoted to evaluate blockchains [17], but they aim at
comparing the performance of inherently slow proof-of-work blockchains to faster blockchains
based on classic consensus and disregard distributed ledgers that are not blockchains, like
Corda. Our work targets distributed ledgers designed for enterprise ignoring the inherently
slower proof-of-work blockchains.

Our experiments result from the deployment of permissioned ledgers on a distributed set
of physical machines. The peak performance we obtained differs quite significantly from one
technology to another but in all cases this performance degrade rapidly with the increase
in the number of devices. This work opens up new research questions on the scalability of
distributed ledgers for the Internet of Things.

2. Related work

Various distributed ledgers have been proposed for different purposes, but only few pro-
posals aim at the Internet of Things (IoT). Applying successfully distributed ledgers to IoT
will likely require borrowing mechanisms from existing blockchains, especially their consen-
sus protocols.

Hyperledger Fabric (HLF) v0.6 is a consortium blockchain platform [18] with customiz-
able smart contracts called “chaincodes”. The chaincode supports existing programming
languages like Go and Java. Hyperledger Fabric v0.6 relies on PBFT [9], the state-of-the-
art Byzantine consensus protocol that was designed decades ago for local area network.
HLF v1.0 was designed to obtain a throughput that would scale better than VO.GEI Unlike
HLF v0.6, HLF v1.0 is not secure by default as it does not tolerate Byzantine behaviors. A
fork of v1.0 master branch was changed to invoke a BFT ordering service based on BFT-
SMaRt. BFT-SMaRt [10] is a high performance BFT-based consensus protocol that predates
blockchains using the same leader-based design as PBFT. This branch uses gRPC and sup-
ports only timestamp broadcast rather than smart contracts, but its ordering service copes
with malicious behaviors. As a full-fledged distributed ledger typically verify signatures, we
expect that a full fledged distributed ledger building upon this protocol could be as efficient
or slower than the one we test.

Corda [3] is a distributed ledger—but not a blockchain—that aims at being Byzantine
fault tolerant to offer trust among financial institutions. In particular, Corda processes and
records transactions between financial institutions with privacy guarantee. Unfortunately,
the entreprise version of Corda is not secure as it uses Raft [I9] and guarantees consensus
only when participants behaves correctly or crash. The public version of Corda embeds both
the code of Raft and the code of BFT-SMaR¢t [10]. After few attempts to deploy Corda-
BFT-SMaRt, the Corda development team confirmed that Corda with BFT-SMaRt is not
stable. So we reverted back to the insecure public version of Corda. As Raft is leader-based

Zhttps:/ /www.hyperledger.org /wp-content /uploads/2017/07 /Hyperledger-Fabric-V1-Launch-FAQ-
FINAL.pdf



similarly to BFT-SMaRt, we expect the insecure but stable version of Corda should give an
estimate of the highest performance one could obtain from the secure variant once it will be
available.

Ripple is another blockchain platform focusing on financial applications [12]. The Rip-
ple Protocol supports a wide range of transactions for accounts and their XRP currency
exchanges, but lacks the smart contract support. It runs its own Ripple consensus protocol,
of which the correctness has been debated [20]. Nevertheless, the security proof is out of the
scope for this paper.

Tendermint is another blockchain platform with a BFT Proof-of-Stake (PoS) hybrid
consensus protocol, called Tendermint BFT [13]. The Tendermint BF'T protocol is stated
as a high-performance consensus protocol with the same fault-tolerance level as classic
BFT-based consensus protocols. Multiple applications are supported on the Tendermint
blockchain inherently, such as a key-value store and a distributed counter] Although some
researchers demonstrated that the Tendermint consensus protocol was non-terminating [21],
fixing the protocol is outside the scope of this paper.

IOTA [22] is a cryptocurrency for IoT. As opposed to the classic Byzantine consensus
technologies, it does not totally order transactions but builds a directed acyclic graph (DAG)
of transactions, called Tangle. To commit new transactions, IOTA requires currently a single
coordinator, which may become a single point of failure, as the failure of this coordinator
prevents transactions from being executedﬂ IOTA is still under development and expected to
be decentralised in the future. Commercial products also rely on a DAG of transactions [23],
unfortunately their code is unavailable.

There exist more recent proposals that improve performance. The Red Belly Blockchain
was shown to perform well on up to a thousand of nodes [24], however, it relies on a different
problem from the classic Byzantine consensus problem, called Blockchain Consensus [25],
especially designed for blockchain scalability. A framework optimized for IoT [26] exploits
two distributed ledgers: one that is private and typically is managed centrally at small scale
(e.g., smart home) and another higher level public blockchain.

3. Evaluating distributed ledgers with classic consensus

In this section, we describe our evaluation methodology. Our evaluation focuses on
comparing the performance of mainstream secure distributed ledgers from distributed system
perspective i.e. in terms of throughput and latency. We selected the following blockchain
platforms:

1. Hyperledger Fabric v0.6 with PBFT consensus [9]. In particular, the reason why we
complemented our study with the prototypical HLF version using BFT-SMaRT is
because the consensus of HLF v0.6 is known to have unresolved bugs/’

3https://tendermint.readthedocs.io/en/master/.

Yhttps://cryptovest.com/news/iotas-53-hour-network-standstill-heightens-investors-
worst-fears.

°https://jira.hyperledger.org/browse/FAB-707.
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2. Ripple 0.60.0 with the XRP consensus protocol [I2]. In Ripple, a validator is usually a
trusted node that is authenticated by Ripple Inc. in the public network. To eliminate
the network interference, we created our own local validator rather than using an
existing public validator.

3. Tendermint v0.22.4 with the Tendermint BFT consensus [13]. All nodes in the Ten-
dermint network are set as validators, as only validators participate in the consensus
process.

4. Hyperledger Fabric v1.0, with the BEFT-SMaRt consensus [10]. Because this branch
only supports timestamp broadcast based on gRPC rather than message types offered
by the main branch, we had to adapt our benchmark when using BFT-SMaRt.

5. R3 Corda v3.2 with a centralized Notary node. Corda uses a separate proxy HT'TP
server for communicating with clients. In Corda, Notary nodes run the Raft consensus
protocol to maintain the transaction order. In this paper, we evaluate Corda clusters
with a single Notary cluster.

3.1. Software and hardware

We ran some experiments on a distributed system of 32 machines using Emulab, an
environment providing machines for distributed system experiments. We use two types of
machines for our experiments as follows:

e d710: Two 64-bit E5-2630 Haswell processors with 8 cores running at 2.4 GHz, 64 GB
2133 MT/s DDR4 RAM (8 x 8GB modules), one Intel SATA SSD with 200 GB and 2
x 1TB 7200 rpm SATA disks.

e d430: One 64-bit E5-2630 Nehalem processor with 4 cores running at 2.4 GHz, with 12
GB 1066 MHz DDR2 RAM (6 x 2 GB modules), one Seagate SATA disk with 250 GB
and one 500 GB 7200 rpm Western Digital SATA disk.

We chose the publicly available versions of the code, namely HLF VO.dﬂ, Rippled v0.60.(ﬂ
HLF BFT-SMaR#f| Tendermint v0.22.4°) and Corda v3.4™| Clients for benchmarking ran
Node.js v8.11.3 on Ubuntu 16.04.

3.2. Workload design and used interfaces

The difficulty in evaluating different distributed ledgers lies in the workload design.
We constructed a generic workload that (i) performs the same functions and (ii) can be
implemented straightforwardly using ledger APIs.

Basically, our workload performs a transfer from an account A to another account B with
the amount 1. This is a general workload, which is easy to implement on ledgers supporting
smart contracts (i.e. Hyperledger Fabric, Tendermint and Corda) or ledgers without smart
contracts (i.e. Ripple).

Shttps://github.com/rleonardco/fabric-0.6.
"https://github.com/ripple/rippled/releases/tag/0.60.0.
Shttps://github.com/jcs47/hyperledger-bftsmart.
‘https://github.com/tendermint/tendermint/releases/tag/v0.22.4.
Ohttps://github.com/corda/corda/releases/tag/release-V3.2.
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3.2.1. The HLF v0.6 API

HLF v0.6 provides operations that maintain key-value pairs i.e. states. Therefore, to
simulate an account with balance, the client can just put a key as the username as well as a
corresponding value standing for the balance with an initial value. The transfer of money is
represented as an atomic operation that decreases the balance of A and increases the balance
of B.

Operations that change the state through the function PutState() are non-blocking
operations called invocations. Therefore, the client can know whether the transaction has
been executed only by querying the ledger state.

3.2.2. The Ripple API

Ripple specifies the format of an account as a hash value, which is created from a user-
defined passphrase. The account is included in the network only with the consent of the
root account. Activating the account relies on a transfer from another existing account to
it. The transfer transaction is called payment in Ripple. Therefore, we designed a workload
for Ripple as a payment transaction from an account to another account activated in this
network with amount 1. Similarly to HLF, the Ripple interface is non-blocking in that a
transaction commitment is not acknowledged.

3.2.3. The Tendermint API
Similar to HLF v0.6, Tendermint also supports the key-value storage, so we simulate the

payment the same way as HLF v0.6. Similar to Ripple and HLF v0.6, Tendermint provides
non-blocking HTTP APIs.

3.2.4. The HLF with BFT-SMaRt API
HLF BFT-SMaRt is an experimental branch of the BFT ordering service for HLF. The
current version only supports the timestamp broadcast message type, and was tested in

order to make a comparison with PBFT ordering in HLF v0.6. As opposed to HLF v0.6,
HLF BFT-SMaRt uses gRPC.

3.2.5. The Corda API

Corda decouples the Corda server and the HT'TP server, where the Corda server is the
core DLT system and the HT'TP server is a proxy between the clients and the Corda server.
The HTTP server exposes the transactions provided in the smart contract, by which we can
simulate the payment transactions like Ripple and HLF v0.6. By contrast with other DLT
platforms, Corda transactions only involve the participants and the Notary node rather than
all nodes in order to keep the privacy of each nodd'} Note that the transaction invocations
in Corda are blocking operations: The response of a transaction invocation will be given
only after the transaction is confirmed by the Notary node. Our client communicates with
the HT'TP proxy server in order to invoke or query the Corda server.

"Uhttps://docs.corda.net/key-concepts-notaries.html.
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Table 1: Parameters of the workload

Parameter Description

Method The HTTP method used for the request

HTTP Headers HTTP Headers of the request

HTTP Data HTTP Data of the request(can be a JSON string)
Table 2: Parameters of the experimental settings

Parameter Description

Endpoint The URL of receiving requests

Concurrency The level of concurrency

Max Seconds The duration of sending requests

Workload The workload definition

Start QPS The requests per second when the testing starts

QPS Stride The increase of the QPS to the last QPS

End QPS The highest QPS of the test

Sleep Period

The period of rest between different QPS testing

3.3. Benchmarking and parameters

We conducted all experiments using the loadtest library of Node.js, which is a perfor-
mance testing toolkit for backend services supporting HTTP(s) or WebSocket.

The loadtest library specifies an HTTP request format as a JSON object, and we
construct workloads for ledgers as separate JSON objects. Transaction invocations are non-
blocking except in Corda. In other words, when submitting a transaction using HT'TP, an
HTTP response encoding the transaction status is sent by the server, before the transaction
is fully processed. In this way, the client cannot know if the transaction has committed
successfully unless it queries the server again.

Besides the HTTP content, loadtest can also control the HTTP request header.
outlines related parameters of our workloads. During the test, we increase the request rate
step by step, in order to gather related metrics under different request overheads. The
parameters of a single load testing are listed in Table [2|

3.83.1. Requests

HLF v0.6. To customize transactions in HLF v0.6, we deployed a smart contract (i.e. chain-
code in Hyperledger) written in the Go programming language. The Hyperledger commu-
nity provides a chaincode example supporting a simple money transfer transaction, and we
adopted it to our case directly.

Ripple. Ripple has a set of well-defined transactions, but lacks the support of customized
transactions i.e. smart contracts. It defines the payment transaction, and we adopt it to
our case directly. As aforementioned, accounts in Ripple are inactive at first. Therefore, to
experiment on a private Ripple network, we create two accounts A and B, then pay from
account A to account B so that account B will be activated.
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Table 3: Parameters of the workloads for HLF v0.6, Ripple and Tendermint

Parameter Method MIME Type HTTP Data

HLF v0.6 POST application /json Invoking chaincode

Ripple POST application /json Payment transaction
Tendermint GET text/plain Key-value pairs

Corda Invoke PUT text/plain Key-value and participants
Corda Query GET text/plain Queried key

Tendermint. Experimenting Tendermint follows the same way as HLF v0.6. We define two
accounts using key-value pairs, where the key is the account name and the value is the
amount of coins. To mimic the money transfer, we commit two transactions concurrently,
one for decreasing the value of a key by 1, another for increasing the value of another key
by 1.

HLF with BFT-SMaRt. Unfortunately, HLF with BFT-SMaRt ordering only supports the
timestamp broadcasting with gRPC. Therefore, testing HLF BFT-SMaRt was done by its
inherited performance testing module. For all the experiments on HLF with BFT-SMaRt, we
use a single orderer. Changing the number of orderers does not seem to impact performance
significantly [27].

Corda. Corda communicates with clients with a proxy HTTP server, which exposes trans-
actions supported by the deployed smart contract. We utilize the reference implementation
of Corda’s smart contract Cordapp-exampld'?] which is similar to the key-value storage
application in Tendermint. We simulated the payment in the same way as HLF v0.6 and
Tendermint.

3.3.2. Testing Steps
Based on the aforementioned principles, the testing consists of multiple automated steps:

Setting up the cluster

Deploying the chaincode (for HLF)
Activating accounts (for Ripple)

Setting parameters of the workloads

Setting parameters of the sending workloads
Launching the load testing for 10 times

NS e W=

Analyzing the results

Parameters of Step (4) and Step (5) for both platforms are listed in Table [3| and Table
respectively.

2https://github.com/corda/cordapp-example.
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4. Results and analysis

In this section, we describe the observed results and we analyze the performances of
the chosen platforms. The load was applied over 4, 8,12, 16,20, 24,28 and 32 independent
physical machines except for Corda. We only deployed a 4-node Corda cluster with 4 d430
machines because of its performance and unstability that we discuss later. HLF with BFT-
SMaRt consensus is evaluated separately because of its differences. For Tendermint and
Corda both the transaction invocation and transaction query were tested.

4.1. Metrics for load testing

4.1.1. Query per second

The number of queries per second (QPS) is a common indicator of throughput of a
system. It translates into the number of requests the server can treat within a second [2§].
The request refers to the HT'TP request in our context. Obviously, the more requests the
system processes in a second, the better it performs.

Table 4: Parameters of the experiments for HLF v0.6 and Ripple

Parameter HLF v0.6 Ripple Tendermint Corda
Endpoint ip:7050/chaincode ip:5005 ip:26657 ip:10009
Concurrency 10 10 10 10

Max Seconds(s) 10 10 10 10

Start QPS 200 500 10000 30

QPS Stride 200 500 10000 30

End QPS 4000 5000 100000 300
Sleep Period(s) 20 20 10 10

4.1.2. Latency

The latency means the delay of a request or a task that the system processes [28]. A
system usually processes multiple requests, so the latency is usually the average value of
latencies in a period. As the invocations and queries are non-blocking except for Corda,
we did not compute the latency as the time between a transaction is invoked and its com-
mit is acknowledged. Instead, we evaluated the time between a request is sent and the
corresponding response is received.

4.2. Testing throughput

The result of HLF v0.6 is shown in Fig. whereas the result of Ripple is shown in
Fig [Ibl In both figures, we observe that for each cluster, the throughput in either system
increases with the growth of the request rate first, and then reaches a peak. However, after
reaching the peak the throughput decreases sharply with the increase of the request rate,
because the system cannot handle the demand.

In contrast with HLF v0.6 and Ripple, Fig. shows that the Tendermint throughput
is more stable with the increasing requests from clients, with shorter uphills and downhills.
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Moreover, the number of handled requests is much greater than HLF v0.6 and Ripple with
few crashes, but the number of successful requests is similar to HLF v0.6 and Ripple. How-
ever, Fig. [2b| shows that the query throughput of Tendermint falls sharply when the number
of nodes reaches 20. A possible reason is that frequent distributed transactions drain the
network bandwidth when more than 20 nodes are active, where all nodes are connected by
a central router.
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Figure 3: The throughput of the 4-node Corda cluster. The throughput is quite low, and the cluster
crashes with more than 50 queries per second.

According to Fig. 3, Corda obtained surprisingly low performance on both query and in-
voke operations on the cluster with 4 nodes. Moreover, the cluster crashed with more than 50
queries per second. This is because of the privacy preserving mechanism and the networking
mechanism. Transactions in Corda affect the transaction participants and the centralized
Notary node, which orders transactions across the network. However, the transaction invo-
cation is a synchronous blocking operation, making the process highly time-consuming due
to the communication with the Notary cluster and the transaction receiver.

Moreover, for each system, the trends of throughputs with different cluster sizes are
similar, which means that the performance has no trend of increasing with the increase
of nodes. In other words, consensus protocols of our targeted ledgers do not scale. Note
that this limitation is well-known for classic BE'T consensus protocols because they solve
a slightly more restrictive problem than the blockchain consensus [25]. In particular, both
PBFT and BFT-SMaRt rely on a consensus leader, which may act as a bottleneck [25].

4.3. Peak throughput with increasing nodes

The results of HLF v0.6 and Ripple consensus are depicted in Fig. ] whereas Fig
depicts the results of Tendermint. Fig[6]shows the results of HLF v1.0.

As expected, the peak throughput decreases with the increase of the cluster size in Ripple.
The more nodes involved in a cluster, the more messages are exchanged. For a Ripple private
network with only one validator, transactions are batched and sent to the validator, so that
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Figure 4: The peak throughput with increasing nodes in HLF v0.6 and Ripple. QPS remains
stable with increasing nodes for both ledgers.

the validator should process numerous requests. Therefore, if the number of validators and
machines running validators remains the same, the consensus does not scale.

Meanwhile, the HLF v0.6 cluster performance fluctuates with the increase of nodes,
as well as the HLF BFT-SMaRt and Tendermint. Traditional BF'T consensus is used in
HLF v0.6 and Tendermint BF'T so that the broadcast operation is always involved in the
consensus, which creates multiple requests at a time in every node. The bottleneck effect
at the consensus leader prevents the consensus protocol from scaling. The sharp decrease of
the Tendermint cluster performance proves the limited scalability of BFT-based consensus
as well.

As for BFT-SMaRt consensus in HLF, all traffic should go through the centralized nodes
called orderers. Though the performance can scale by adding more orderers, it is impossible
for the cluster to only have orderers but not have simple clients because of its nature. With
the same number of orderers, the performance will not scale if the number of clients increases.

4.4. Latency

With the increase of the request rate, the latencies of both HLF v0.6 and Ripple first
increase then decrease sharply, as shown in Fig. [7] and Fig. [8l The increase of the latency
is because of the congestion control of the TCP protocol which prevents the computer from
serving overwhelming requests simultaneously. The followed decrease is because systems
are out of work. With TCP’s underlying congestion control, if too much data comes to the
server suddenly, the “slow start” mechanism will limit the reception rate on the server side
and the “congestion avoidance” will half the congestion window if the network congestion is
detected. Therefore, the high request rate will contribute to increasing latency because of
triggering the network congestion.

Meanwhile, Fig. [9a] and Fig. [9b] show that the latency remains fairly stable with the
increasing requests. Moreover, with less frequent query requests, the latency remains a
small constant value. This result indicates that Tendermint outperforms HLF V0.6 and
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Ripple on both the throughput and the latency.

Fig. [10] shows that the 4-node Corda cluster crashes with more than 50 invocation re-
quests per second, which is the same as Fig. [3["] Moreover, the query latency remains very
high even when the query is infrequent. This is because the transaction details are retrieved
from the Notary node in a synchronous blocking manner.

5. Limitations when setting up HLF v0.6 and Corda

HLF v0.6 depends on Docker containers, where chaincodes are encapsulated and invoked
by external requests. HLF clients communicate with chaincodes in Docker containers, which
may affect performance, using Unix sockets or HT'TP within the machine or endpoint.

The experiment was launched on Ubuntu 16.04 OS. However, Ubuntu 16.04 adopts the
systemd service manager rather than the previous initd, by which Docker starts as a service
rather than applying configurations in /etc/default/docker. This causes the Unix socket
endpoint to remain closed by default. Therefore, starting an HLF client with the same step
as on previous versions of Ubuntu will fail on Ubuntu 16.04.

Corda is an enterprise-level DLT platform, which has an emphasis of the privacy of
transactions but does not focus on security or high performance. Therefore, setting up the
Corda cluster is a complex task with several manual modifications on the configuration file.
Firstly, Corda cannot find peer nodes dynamically as the ledger is permissioned. Instead,
the peer information is compiled in advance with a network bootstrapping step ™} Secondly,
the peer information contains the IP address of each node. However, only the IP address

13We then obtained confirmation from the R3 development team that there is no stable version of Corda
that is secure—the BFTSmart support is not stable. And the enterprise version of Corda cannot tolerate
Byzantine failures.

14https ://docs.corda.net/setting-up-a-corda-network.html#bootstrapping-the-network.
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Figure 7: The latency with the increasing request rate in HLF v0.6. For all sizes of clusters, the
latency increases gradually with increasing request rate, peaks when QPS is approximately 2200 requests
per second, then drops.

of a network chip with the highest priority can be recognized, making a private network
complex to deploy. In addition, the P2P communication relies on the ActiveMQ Artemiﬂ
However, ActiveM(@Q Artemis does not work well with the Emulab experimental platform
which intercepts some ActiveMQ Artemis messages.

6. Conclusion

This paper presents a first evaluation of distributed ledgers that could be adapted for 10T,
including Hyperledger Fabric (HLF) with PBFT, Ripple, Tendermint, R3 Corda and HLF
with BFT-SMaRt. More specifically, we benchmark selected distributed ledgers running

5https://github.com/apache/activemq-artemis.
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Figure 9: The invoke and query latency with increasing request rate in Tendermint.

on clusters with from 2 to 32 nodes, using a unified workload. Our results show that,
unfortunately, they cannot scale in terms of throughput and latency on reasonably sized
machines. This research confirms empirically the well-known inadequacy of classic consensus
to large-scale network. Our future work consists of evaluating distributed ledgers that can
scale by solving the blockchain consensus [25] rather than the classic Byzantine consensus.
Another interesting direction is to identify IoT applications that do not need consensus but
simply a verified reliable broadcast [24].
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