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Abstract—Reordering blockchain transactions to manipulate
markets profited hackers by hundreds of millions of dollars. Be-
cause they rely on State Machine Replication (SMR), blockchains
order transactions without preventing hackers from influencing
the chosen order. Some order-fair consensus protocols, like
Pompē [32], order transactions before agreeing on this order.
They are insufficient because a hacker can leverage the lack of
triangle inequality among network latencies to observe pending
transactions before issuing their own. Other DAG-based proto-
cols, like Fino [23], use commit-reveal to obfuscate transactions,
but cannot prevent reordering by a Byzantine leader.

In this paper, we present Lyra, a protocol that solves this
problem. The key idea is the combination of a commit-reveal
protocol to obfuscate transaction payloads, and a leaderless
ordered consensus protocol that predicts the order of transaction.
Lyra has optimal good-case latency, prevents reordering attacks,
and is scalable. Finally, it outperforms the latency of Pompē by
up to 2 times and its throughput by up to 7 times on a 100-node
network over 3 continents.

Index Terms—order-fairness, transaction reordering, MEV
resilience, leaderless SMR

I. INTRODUCTION

Transactions reordering is a topical issue of modern finance
facilitated by the blockchain technology. In the traditional US
financial market, exploiting some information to make a profit
by reordering transactions is considered illegal by the SEC [7].
Yet, blockchain transaction reordering led recently to massive
market manipulations in the form of front-running, when an
attacker inserts their transaction before another, transaction
replay when an attacker orders the copy of a transaction before
it, or sandwich, when an attacker inserts two transactions
before and after another. In Ethereum, opportunistic traders
have already reordered transactions to gain a miner extractable
value [10] or blockchain extractable value. The amount reaped
by attackers is estimated to be over 200M USD [27], while
other collaborative efforts evaluate this amount closer to 700M
USD since January 2020 [24]. The crux of the problem resides
in that blockchains rely on State Machine Replication (SMR)
where blockchain nodes agree on an order of transactions,
without specifying which orders are legal. This allows ma-
licious nodes to commit a reordering attack, the action of
reordering transactions.

Two approaches aim at mitigating transaction reordering
by either enforcing a relative order or an absolute order on
the transactions. Enforcing a relative order requires building
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Fig. 1. Violations of the triangle inequality observed in networks (for latencies
measured on AWS regions) allow for reordering attacks despite fair ordering:
(1) Alice (A) is in Tokyo and broadcasts a transaction t1. (2) Mallory (M ), in
Singapore, receives t1, observes its content and sends t2 to Carole to make a
profit. (3) Carole (C) receives t2 before receiving t1 because ping(A,M)+
ping(M,C) < ping(A,C).

a dependency graph that partially orders transactions with
each other [5], [17], [18]. When two nodes (also called
processes) order transactions using relative ordering, they may
introduce cyclic dependencies. Enforcing an absolute order as
in Pompē [32] avoids cyclic dependencies. In Pompē, for a
system of n processes that is resilient to f < n

3 Byzantine
faults, a node collects a set T of 2f + 1 signed timestamps
before proposing them to the HotStuff consensus protocol [30].
The median value of T lies necessarily within the observed
clock values of correct nodes. The consensus protocol in
Pompē is denoted Byzantine ordered consensus (BOC). A
BOC protocol is equivalent to a one-shot Byzantine broadcast
protocol that outputs a transaction t and a sequence number s
used to order t.

Unfortunately, none of these approaches prevent front-
running attacks. Kelkar et al. [17] present a front-running
attack that can be executed against both the relative and
absolute ordering models. The attack is based on violations
of the triangle inequality in networks whereby an attacker
observes a transaction in the clear and exploits the lack of
triangle inequality between network latencies (see Figure 1).
To prevent reordering attacks, [14] suggests to reveal the
payload of a transaction only when it can no longer be
preempted. This approach is formalized in Fino [23] where
the transaction payload is obfuscated and only revealed once
committed. However, Fino is a leader-based protocol and as
such, it does not prevent a malicious leader from omitting
transactions from up to f processes. Although the underlying
DAG may resubmit a transaction t later, t has effectively been



reordered. This relaxed notion of order-fairness is referred to
as blind order-fairness.

In this paper, we present Lyra, an SMR protocol that pre-
vents the reordering of transactions by combining an order-fair
leaderless algorithm for BOC with a commit-reveal scheme.
To avoid cyclic dependencies, Lyra implements a fair ordering
that is inspired by ordering linearizability [32]. The commit-
reveal scheme uses Verifiable Secret Sharing (VSS) [6] to
obfuscate transactions and only reveal them after they have
become part of a stable and immutable set of transactions. Lyra
achieves scalability by leveraging an inherently distributed
protocol. As a result, Lyra improves both latency and through-
put of previous solutions. Because Lyra is leaderless, it is also
resilient to censorship from Byzantine leaders.

Lyra is optimized for the synchronous case, while preserving
safety during asynchronous periods. To achieve subsecond
commit latency, Lyra introduces a protocol for BOC that
executes in 3 message delays in the good case, which we
prove optimal for n > 3f (§IV). The term good-case latency,
introduced in [1], refers to the number of rounds required
for an algorithm to terminate when the network behaves
synchronously. To achieve a good-case latency of 3 rounds,
processes exchange information about network latencies in
order to be able to predict the sequence numbers that are per-
ceived by other processes during synchronous periods. Then,
to extend Lyra into a leaderless SMR while circumventing
the impossibility results arising when committing blocks [18],
[19], we introduce a Commit protocol (§V) to commit the
transactions that are output by the instances of BOC. Our
Commit protocol is close to approaches adopted in recent
DAG-based solutions [11], [16] as it relies on processes
piggybacking information and locally deducing transactions
that can be committed. Its main difference resides in exploiting
consensus rather than reliable broadcast to enable order-
fairness and to reduce commit latency.

To summarize, our contribution is threefold:

1) We propose Lyra, a leaderless BOC protocol for par-
tial synchrony [12] that has optimal good-case latency,
optimal Byzantine resilience (i.e. n > 3f ), and allows
transaction obfuscation.

2) We extend Lyra into a leaderless SMR protocol (§V)
that is resilient to harmful reordering attacks and, in
particular, to the influence of Byzantine leaders.

3) We implemented Lyra and compared it to Pompē (§VI).
Our preliminary results show the potential of our ap-
proach in terms of performance and scalability.

The rest of the paper is organized as follows. We describe
our computational model in §II. In §III, we show the lower
bound on the good-case latency to solve the BOC problem.
In §IV, we present our Lyra protocol for BOC. We extend
Lyra into an SMR in §V. In §VI we present our experimental
evaluation. Finally, we present the related work in §VII.

II. MODEL

A. Processes and Network

We consider a system with a set Π of n processes. Pro-
cesses that follow the defined protocol are denoted correct,
whereas Byzantine processes can deviate from the protocol
arbitrarily [21]. During each execution of the protocol, there
are at most f < n

3 Byzantine processes. Let ΠB ⊂ Π denote
the set of Byzantine processes, and let ΠC ⊂ Π denote the set
of correct processes.

Processes communicate via authenticated channels where
processes cannot impersonate each other. These channels
are reliable which guarantees that messages are eventually
delivered untampered. We assume a partially synchronous
network [12]. In the partially synchronous model, messages
can be delayed, including by an adversary, until a Global
Stabilization Time (GST). The value of GST is unknown to
correct processes and can be arbitrarily large. After GST,
the network behaves synchronously, and the message delays
between any pair of correct processes is bounded by a value
∆. Note that although GST is unknown, ∆ is known. The
protocols presented in this paper leverage ∆ to create fast
paths during synchronous periods while preserving safety
during asynchronous periods. The value of ∆ is used in the
Validating Value Broadcast (§IV-A) to ensure progress and
in the Commit Protocol (§V-C) to determine the acceptance
window. Each process divides its execution in asynchronous
rounds as defined in Dwork et al. [12].

B. Cryptography

We assume the existence of a publiy-key cryptography
scheme that is made available to processes via the following
methods:

• private-sign(m) → σm. Uses a process’s private key to
sign the input m and returns the signature σm.

• public-verify(m,σm, j) → true/false . Uses the public
key of process pj to verify whether the signature σm

was in fact signed by process pj for the value m.
We also assume the existence of a (2f + 1, n) threshold

encryption scheme [28] used via the following methods:
• share-sign(m) → πm. Create a signature share for the

value m.
• share-verify(m,πm, j) → true/false . Verify whether the

share σm was created by process pj for the value m.
• share-combine({πm}) → Πm. Combine 2f+1 signature

shares to create a full signature Πm for the value m.
• share-threshold(Πm,m) → true/false . Verify whether

the full signature Πm is valid for the value m.
Finally, we assume the existence of a (2f + 1, n) VSS

scheme [6] with the following methods:
• vss-encrypt(m) → cm. Encrypt m into cm.
• vss-partial-decrypt(cm) → ρm. Create a decryption share

ρm for cm.
• vss-decrypt(cm, {ρm}) → m. Decrypt the cipher cm

using decryption shares and produce the value m.



The VSS scheme is used to obfuscate the payload of
transactions. The cipher of a transaction t that has been
encrypted using vss-encrypt(t) is denoted ct.

Initially, processes know the public keys of all nodes, as
implemented in permissioned blockchains. We also assume
the existence of a collision resistant hash function hash, like
SHA256. The security of these schemes holds in the presence
of a computationally bounded adversary.

C. State Machine Replication

We define an SMR where all correct processes must agree
on a totally ordered set of transactions [20]. Due to asyn-
chrony, a correct process may be ahead of another in the
transactions that it outputs. Thus, for SMR-Safety, we require
that the output of a process that is behind always be a prefix
of the output of a process that is ahead.

Definition 1 (SMR Problem). In an SMR protocol, processes
submit transactions, and the following properties must be
satisfied.

• SMR-Safety. Let Oi and Oj denote the set of transactions
output by processes pi and pj , respectively. ∀i,j∈ΠC

,
either Oi is a prefix of Oj or Oj is a prefix of Oi.

• SMR-Liveness. Eventually, the protocol outputs some
transactions.

To agree on a set of transactions, processes continuously
execute instances of Byzantine broadcast [1] where a process
broadcasts a transaction and all correct processes must output
the same transaction. We denote T the set of all transactions.
We borrow the definition of Byzantine broadcast from [1].

Definition 2 (Byzantine Broadcast Problem). In a Byzantine
broadcast protocol, a broadcaster inputs a transaction, and
all correct processes must output the same transaction. The
transaction output can be empty. The protocol must ensure
the following properties.

• BB-Validity. If the broadcaster is correct and broadcasts
its transaction after GST, then all correct processes
output the transaction of the broadcaster.

• BB-Agreement. All correct processes output the same
transaction.

• BB-Termination. All correct processes eventually output
a transaction.

D. Perceived Sequence Numbers

Each process has a local ordering clock that returns se-
quence numbers with strictly monotonically increasing values.
Let S denote the set of all possible sequence numbers. An
ordering clock can be implemented for instance with a real-
time clock or a sequence number.

The perceived sequence number of a transaction t is the
value of the ordering clock when a process receives a trans-
action t or the cipher ct of t for the first time. Formally, for

each process pi ∈ Π, we define the function seqi that returns
the value of pi’s ordering clock when pi receives ct:

∀i ∈ Π, seqi : T −→ S,
ct 7−→ seqi(t).

Definition 3 (Perceived Sequence Number). A correct process
pi perceives a transaction t with a sequence number s ∈ S if
and only if s = seqi(t).

We do not assume any synchronization between the clocks
of processes.

E. Problem

To implement a totally ordered set of transactions, one
solution is for processes to agree on a decided sequence
number for each transaction. Due to varying propagation
delays between processes, a transaction t can be perceived
with distinct sequence numbers by distinct processes. Thus,
an agreement protocol is required to decide a unique sequence
number for t. After that, transactions can be ordered by
processes using their decided sequence numbers.

Definition 4 (Decided Sequence Number). The decided se-
quence number s of a transaction t is a unique sequence
number that all correct processes use when ordering t.

Definition 5 (Partial Order). A transaction t1 with a decided
sequence number st1 must be executed before a transaction
t2 with a decided sequence number st2 if st1 < st2 . We say
that t1 is ordered before t2 and denote it t1 ≺ t2.

Our main goal is to decide for each transaction a unique
sequence number agreed upon by all correct processes so that
all the transactions output by the protocol can be ordered.

F. Lower Bounded Sequence Numbers

To mitigate reordering attacks, Zhang et al. [32] have
introduced ordering linearizability, a correctness condition
on the ordering of transactions output by SMR. Ordering
linearizability is derived from linearizability [15] and consists
of associating to each command a sequence number that is
upper bounded and lower bounded by the values of sequence
numbers perceived by correct processes. We simplify ordering
linearizability and only require that a sequence number that is
decided be lower bounded by the values perceived by correct
processes. A lower-bound on decided sequence numbers is
necessary to prevent an adversary from affecting transactions
that have already been submitted or sequenced. On the other
hand, an upper bound only prevents an adversary from delay-
ing the execution of its own transaction, and can be achieved
anyway if the adversary simply waits before submitting its
transaction. To formalize our definition, we first introduce
the function MINseq that returns the lowest sequence number
perceived by correct processes for a transaction t.

MINseq(t) = min
∀i ∈ΠC

seqi(t)



Definition 6 (Lower Bounded). A sequence number s decided
for a transaction t is lower bounded with respect to a security
parameter λ > 0 if and only if s ≥ MINseq(t)− λ.

G. The BOC Problem

In this section, we define the Byzantine Ordered Consensus
(BOC) problem using a reduction from Byzantine broad-
cast [1].

Definition 7 (BOC Problem). A BOC protocol is a Byzantine
broadcast protocol where a broadcaster inputs a 2-tuple
t′ = (t, s) that includes a transaction t and a sequence number
s ∈ S, and where all correct processes output either the
broadcaster’s value t′, or the empty value ⊥. The protocol
has the following properties:

• BOC-Validity. Conjunction of BB-Validity (cf. Defini-
ton 2) and if a correct process outputs t′ = (t, s) then s
is lower bounded.

• BB-Agreement. Same as in Definition 2.
• BB-Termination. Same as in Definition 2.

A BOC protocol is a Byzantine broadcast protocol where
a broadcaster broadcasts its input t′ = (t, s) consisting of
a transaction and its requested sequence number, and the
transaction and its sequence number are either accepted (i.e.,
correct processes output t′) or rejected (i.e., correct processes
output ⊥). For each execution of the protocol, we denote by
TA ⊆ T the set of all accepted transactions, and by TR ⊆ T
the set of all rejected transactions, with TA∩TR = ∅. The set
of accepted transactions TA is a subset of the union of all the
transactions that are submitted.

Notation Description
Π The set of all processes
ΠC The set of correct processes
ΠB The set of Byzantine processes
T The set of all possible transactions
TA The set of accepted transactions
TR The set of rejected transactions
t A transaction
ct Cipher or transaction share of t
S The set of possible sequence numbers
st Sequence number of t
seqi(t) Ordering clock of process pi applied to t
MINseq (t) Lowest sequence by correct processes for t
dij Network latency between pi and pj
Di = {dij} Set of network latencies computed by pi
St = {seqi + dij} Set of sequence numbers predicted for t by pi
Φ(x) Prefix of accepted transactions up to value x

TABLE I
NOTATIONS

III. OPTIMALITY IN BYZANTINE ORDERED CONSENSUS

In this section, we show that the minimal good-case latency
of any solution to the BOC problem is at least 3 communi-
cation rounds, which motivates the need for a more efficient
protocol than Pompē with 11 rounds [31]. Our definition of
good-case latency is borrowed from [1].

Definition 8 (Good-case Latency). A BOC protocol has a
good-case latency of R rounds if all correct processes decide

within R rounds after GST when the broadcaster of the
transaction is correct.

Lemma 1 (Minimal Latency). The good-case latency of a
BOC protocol is greater or equal to 3 rounds when f < n

3 .

Proof. For BOC, a broadcaster submits a transaction t and
a tentative sequence number s that are either accepted or
rejected. If we denote t′ = (t, s) the compound transaction,
BOC can be reduced to Byzantine broadcast because it has
the same termination and agreement requirements. The good-
case latency of Byzantine broadcast in partial synchrony is
presented in [1], Theorem 7, and is greater or equal to 3 rounds
when 3f+1 ≤ n ≤ 5f−1. Therefore, a BOC protocol that is
resilient to f < n

3 also has a good-case latency that is greater
than or equal to 3 rounds.

To achieve minimal latency, the broadcaster must include a
sequence number in its transaction. Intuitively, if the requested
sequence number s is input after the first round, then due
to [1], the protocol would require 3 additional rounds to reach
agreement on the value of s. In order to request a sequence
number that is actually lower bounded, the broadcaster must
predict the sequence numbers perceived by other processes.
The protocol presented in §IV relies on predicting perceived
sequence numbers, and validating these predictions.

IV. LYRA: IMPLEMENTATION OF ORDERED CONSENSUS

In this section, we present Lyra1, a partially synchronous
algorithm for BOC. To show that Lyra has optimal good-case
latency (Theorem 3), we prove that it solves the BOC problem
(Theorem 2), with a good-case latency of 3 rounds (Lemma 3),
and that therefore the lower bound in Lemma 1 is tight.
To implement a protocol with optimal good-case latency, we
modify an existing protocol for binary consensus by replacing
its broadcast protocol. Our new broadcast protocol, named Val-
idating Value Broadcast, is designed to reliably broadcast the
transaction of the broadcaster without introducing additional
message delays (Theorem 1).

A. Validating Value Broadcast

The Validating Value Broadcast (VVB) protocol is a new
broadcast protocol that combines the reliable broadcast [4] of
a message with validation by a Byzantine quorum [22]. The
protocol is an extension of the Binary Value Broadcast pro-
tocol [25], a reliable broadcast abstraction for binary values.
The Binary Value Broadcast protocol is used in the DBFT
binary consensus protocol [8] by processes to broadcast their
input. To our knowledge, this is the only blockchain consensus
protocol that has been fully formally verified [2], [3]. The
aim of our new VVB protocol is to add functionalities to
the Binary Value Broadcast protocol, but without introducing
message delays. In addition to a binary value, our variant can

1In the temple of Apollo at Delphi, observation of the Lyra constellation
was used to determine the time to consult the Delphic oracle. The name Lyra
stems from the fact that our protocol uses observation of network latencies to
predict sequence numbers.



reliably deliver any associated message to all correct processes,
while at the same time implementing quorum validation. The
modified binary consensus protocol is used to accept or reject
the transaction and tentative sequence number of a broadcaster.

1) Properties: In order for Lyra to solve consensus, the
VVB protocol must have the BV-Termination, BV-Uniformity,
BV-Obligation, and BV-Validation properties present in the
definition of Binary Value Broadcast [25]. Additionally, our
variant provides a VVB-Unicity property that prevents broad-
casters from equivocating. Quorum validation is implemented
via a configurable function, named validation-function, that
returns either 0 or 1. If the function returns 1 at process pi
for message m, then we say that pi has validated m. The
VVB-Supermajority property guarantees that if the value 1 is
delivered, then at least 2f + 1 processes have validated m.

A process initiates the VVB protocol by broadcasting a
message m to all processes and terminates. After that, correct
processes may deliver from the VVB protocol either the 2-
tuple (1,m), the 2-tuple (0,⊥), or both. Note that the VVB
protocol is used as an asynchronous broadcast protocol by
the binary consensus protocol, and that at any given time, the
values delivered by two distincts processes may differ. These
divergences of views are handled by the binary consensus
protocol. The protocol is defined by the following properties,
where b represents a binary value and m can be any message.

• VVB-Termination. An invocation of the protocol by a
correct process always terminates.

• VVB-Validity. If a correct process delivers (b,m) then
some process has broadcast (b,m).

• VVB-Uniformity. If (b,m) is delivered by a correct
process, then (b,m) is eventually delivered by all correct
processes.

• VVB-Obligation. Each correct process eventually deliv-
ers some values (b,m).

• VVB-Unicity. If a correct process delivers (b,m) then
no other message m′ ̸= m can be delivered with b.

• VVB-Supermajority. If a correct process delivers
(1,m), then at least 2f + 1 processes validated m.

The first four properties imply the necessary properties of
the Binary Value Broadcast for DBFT to solve consensus.
Hence, any broadcast protocol satisfying these properties can
replace the Binary Value Broadcast in the DBFT consensus
protocol.

2) Implementation: The vv-broadcast protocol presented in
Algorithm 1 implements the VVB protocol. First, a process
signs its message with its private key and broadcasts it in
an INIT message (line 3). The message m is signed to prevent
equivocation. Upon receiving an INIT message that is correctly
signed (line 4), a process pi tries to validate the message
(line 5). If the result of the validation is successful, pi starts
an expiration timer E = 2∆ (line 6) and broadcasts the value
1 (line 8). Otherwise, pi broadcasts the value 0 (line 10).

For VVB-Unicity, a correct process only broadcasts the
binary value 1 once for each instance of the protocol, so that
if a message m is delivered along the value 1, then no other
message m′ ̸= m can be validated by more than 2f processes

and be delivered with the value 1. Additionally, when a correct
process broadcasts the binary value 1, it also broadcasts a
signature share πm of the value m that it validated. As a
result, when a correct process pi receives n − f ≥ 2f + 1
signature shares for the message m, pi can deliver (1,m)
(line 14) and broadcast a proof so that all correct processes
eventually deliver (1,m) (line 18).

To implement the VVB-Obligation property in case a
message obtains less than the required quorum, a correct
process will broadcast the value 0 and the transaction of the
broadcaster after the expiration timeout (line 24). This will
cause the value 0 to be eventually delivered to ensure progress.

1: vv-broadcast(m): ▷ protocol at pi

2: σm ← private-sign(m) ▷ sign message m

3: broadcast(INIT, (m,σm)) ▷ broadcast signed message

4: upon receiving a message (INIT, (m,σm)) from pj :
5: if public-verify(m,σm, j) ∧ validation-function(m) then
6: start-timer(E)
7: πm ← share-sign(m) ▷ signature share showing pi validated m

8: broadcast(VOTE, (1, πm)) ▷ rebroadcast 1 and signature share
9: else

10: broadcast(VOTE, 0) ▷ reject and broadcast 0 once

11: upon receiving n− f messages (VOTE, (1, πm)) and 1 not delivered:
12: Πm ← share-combine({πm}) ▷ proof of delivery for (1,m)

13: broadcast(DELIVER,Πm) ▷ broadcast proof to ensure VVB-Uniformity
14: deliver(1,m) ▷ deliver (1,m) to VVB

15: upon receiving 1 message (DELIVER,Πm):
16: if share-threshold(Πm,m) then
17: broadcast(DELIVER,Πm) ▷ rebroadcast proof
18: deliver(1,m) ▷ deliver (1,m) to VVB

19: upon receiving f + 1 messages (VOTE, 0):
20: broadcast(VOTE, 0) ▷ rebroadcast 0 if not already done

21: upon receiving n− f messages (VOTE, 0) and 0 not delivered:
22: deliver(0,⊥) ▷ deliver (0,⊥) to VVB

23: upon timeout expired ∧ no value delivered:
24: broadcast(VOTE, 0) ▷ broadcast 0 after timeout expiration

Algorithm 1: Validating Value Broadcast

Theorem 1 (Validating Value Broadcast). The vv-broadcast
algorithm (Alg. 1) implements the VVB protocol.

Proof. We prove each property of the VVB separately:
• VVB-Termination. Termination is ensured by the termi-

nation of the signing and broadcast functions.
• VVB-Validity. When (b,m) is delivered at a correct

process pi, either pi has received messages from at least
n− f processes, or a proof. In both cases, at least f +1
correct processes validated m.

• VVB-Uniformity. If (0,⊥) is delivered by a correct
process, it was received from at least n−f processes, and
thus from at least f + 1 correct processes that broadcast
0 to all processes. As a result, all correct processes
receive the value 0 from at least f + 1 processes and
rebroadcast it, and 0 is eventually delivered at all correct
processes. If (1,m) is delivered at a correct process, this



process has either received a proof or built the proof itself,
and it broadcasts that proof so that all correct processes
eventually deliver (1,m).

• VVB-Obligation. The protocol is only started by a cor-
rectly signed message, and this message is forwarded to
all processes after a timeout by any correct process that
receives it. Therefore, all correct processes will set an
expiration timeout and will eventually broadcast 0 if no
other value was delivered, and have 0 delivered.

• VVB-Unicity. By design, the value ⊥ is always delivered
with 0. Delivery of (1,m) by a correct process implies
the validation of m by at least 2f +1 distinct processes,
and thus f + 1 correct processes. These f + 1 correct
processes only validate a single value per instance of the
protocol, and therefore any other value m′ ̸= m can only
obtain at most 2f validations.

• VVB-Supermajority. The property comes directly from
the fact that if a correct process delivers (1,m), then it
has either received n− f ≥ 2f +1 validations for m, or
a proof that at least 2f + 1 processes validated m.

B. Prediction and Validation of Sequence Numbers

In this section, we present how Lyra predicts the sequence
numbers perceived by processes, and how processes validate
the predictions made by other processes.

1) Predicting Perceived Sequence Numbers: Whenever a
broadcaster pi broadcasts an encrypted transaction ct, it also
stores a reference sequence number sref = seqi(t) correspond-
ing to the value of pi’s local ordering clock. Then, when a
process pj receives ct and takes part in the associated consen-
sus instance, it piggybacks in its messages to pi its perceived
sequence number seqj(t). This enables pi to compute the
distance dij = seqj(t) − sref required for a transaction to
travel from pi to pj . Note that a distance dij includes the offset
between any two clocks pi and pj . Each process pi maintains
an array Di = {dij}j∈Π of the distances to other processes.
Processes can compute the values of the array Di after a
warm-up period where processes broadcast transactions only
to measure distances. After that, when a broadcaster wants
to broadcast a new transaction t, it computes the set St of
predicted sequence numbers and sends St along ct. Values
that may be missing from Byzantine processes are filled with
a blank value. The sequence number requested for t is the
(n− f)th value of St.

St = {sref + dij}j∈Π

2) Validation Function: Upon receiving (ct, St), a correct
process pi accepts t and St by broadcasting 1 in the associated
instance of VVB if and only if the sequence number that
was predicted for pi is correct with respect to the security
parameter λ.

pi validates (ct, St) ⇔ |seqi(t)− St[i]| ≤ λ. (1)

Lemma 2. A decided sequence number s that is validated
using Equation 1 is lower bounded.

Proof. If s is decided, the VVB-Supermajority ensures that
s has been validated by at least 2f + 1 processes. Thus, St

contains the correctly predicted sequence numbers of at least
f + 1 correct processes. Because s is the (n − f)th value of
St, there are at most f values in St that are greater than s,
and s is therefore lower bounded by the perceived sequence
number of at least one correct process.

C. Byzantine Ordered Consensus

1) Implementation: Our Lyra algorithm that solves the
BOC problem is presented in Algorithm 2. First, the broad-
caster computes the reference sequence number sref (line 26)
used later to update the distances to other processes, and the
set St of predicted sequence numbers for the transaction t
(line 28). Then, the broadcaster encrypts t and initiates an
instance of binary consensus for t. Once encrypted using
VSS, transaction t requires 2f + 1 decryption shares to be
reconstituted. Correct processes broadcast a decryption share
for t once t has been committed (cf. §V-C).

The bin-propose protocol is presented in Algorithm 3. It
consists of a modified DBFT [8] protocol for binary consensus
where the Binary Value Broadcast has been replaced by the
VVB protocol (line 35). The input is m = (ct, St).

25: ordered-propose(t): ▷ protocol at pi

26: sref ← seqi(t) ▷ value of pi’s ordering clock
27: store(t, sref ) ▷ used for computing the distances dij

28: St ← {sref + dij}j∈Π ▷ compute clock estimations for t
29: ct ← vss-encrypt(t) ▷ obfuscate t

30: bin-propose((ct, St)) ▷ submit ct and St to binary consensus

Algorithm 2: The Lyra Protocol

31: bin-propose(m): ▷ protocol bin-propose at pi

32: r ← 1
33: b←⊥
34: loop:
35: vv-broadcast(b,m)→ vvals ▷ delivered values
36: start-timer(∆)
37: if i = (r mod n) then ▷ coordinator
38: wait until (vvals = {w})
39: broadcast(coord, r, w)→ c ▷ coordinator broadcast

40: wait until vvals ̸= ∅ ∧ timer expired
41: if c ∈ vvals then e ← {c} else e ← vvals ▷ prioritize coord value
42: broadcast(AUX, r, e)→ bvals ▷ broadcast these values
43: wait until ∃s ⊆ bvals where the two following conditions hold:
44: • s contains contents received from at least n− f distinct nodes
45: • ∀v ∈ s, v ∈ vvals ▷ every value in s is in vvals

46: if s = {v} then ▷ if there is only one value in s

47: b← v ▷ adopt this singleton value
48: if v = (r mod 2) and not decided yet then decide(v) ▷ decide

49: else b← (r mod 2) ▷ otherwise, adopt the current parity bit

50: if decided in round r − 2 then exit() ▷ help others in two last rounds

51: r ← r + 1 ▷ increment the round number

Algorithm 3: Modified DBFT Protocol

2) Properties: We now prove that the Lyra protocol ensures
liveness during synchronous periods while preserving safety
during asynchronous periods.

Theorem 2 (Byzantine Ordered Consensus). The algorithm
ordered-propose (Alg. 2) implements a BOC protocol.



Proof. We prove each property of Definition 7 separately:
• BB-Termination. Termination comes directly from the

termination property of the binary consensus protocol.
• BOC-Validity. The decided sequence number is the (n−

f)th value of the set St of predicted sequence numbers.
The VVB-Unicity property guarantees that the set St is
identical at each process, and Lemma 2 ensures that its
median value is lower bounded.

• BB-Agreement. The agreement property of binary con-
sensus ensures that all correct processes decide the same
binary value, and the VVB-Unicity property ensures
that if the binary consensus outputs 1, then the same
transaction t and the same set of sequence numbers St

have been delivered by all correct processes.

3) Good-Case Latency: We show that Lyra (Alg. 2) has a
good-case latency of 3 rounds.

Lemma 3. If the broadcaster is correct and broadcasts
its transaction after GST, then all correct processes output
(ct, St) after 3 rounds.

Proof. If the broadcaster is correct, then it broadcasts the same
cipher ct to all processes and correctly computes the perceived
sequence numbers St of at least n − f ≥ 2f + 1 correct
processes. Then, in the second round (line 42), at least n−f ≥
2f + 1 processes validate ct and St and broadcast 1. As a
result, and because the network is behaving synchronously
after GST, correct processes only deliver the value 1 when
building a union of n − f responses during the third round
(line 43), and therefore decide 1.

Theorem 3. If f < n
3 , the good-case latency of a BOC

protocol is 3 rounds.

Proof. From Lemma 1, the good-case latency is at least 3
rounds when f < n

3 , and due to Theorem 2 and Lemma 3,
this bound is tight.

V. ORDER-FAIR SMR

In this section, we introduce the Commit protocol in order
to extend Lyra into a protocol that solves the SMR problem.
Lemma 4, Lemma 5, and Lemma 6 incrementally build a
stable set of transactions, and Lemma 8 build upon the
committed prefix of Lemma 6 and the properties of BOC
(Theorem 2) to solve the SMR problem. Finally, Lemma 7
and Lemma 2 extend our SMR with obfuscation and fair-
ordering, respectively, to produce the main result of this paper
(Theorem 4).

A. Extending Lyra into an SMR

An SMR protocol (cf. §II-C) requires that all correct
processes output messages in the same order. Due to our
assumption of partial synchrony (cf. §II-A), the BOC protocol
at process pi may output a transaction with a sequence number
lower than any of the transactions already output by pi. As a
result, simply deciding a sequence number for a transaction is

not enough for outputting the transaction in SMR. We extend
Lyra with the Commit protocol presented in this section to
enable outputting (i.e. committing) transactions. Our solution
to an order-fair SMR relies on two protocols:

• the BOC protocol (§IV) decides the set of accepted
transactions;

• the Commit protocol (§V-C) outputs the set of accepted
transactions that can be committed.

B. Definitions

In order to build stable sets of transactions, we formalize
the notion of prefix. Recall that TA ⊆ T is the set of accepted
transactions, and TR ⊆ T is the set of rejected transactions.

Definition 9 (Prefix). A prefix Φ(x) is the set of all accepted
transactions whose sequence numbers are less than or equal
to x.

Φ(x) = {(t, s) ∈ T × S | t ∈ TA ∧ s ≤ x}

To achieve stable prefixes, we must guarantee that at some
point, no other transaction will be added to a prefix. This
requires that the prefix becomes locked and processes start
rejecting transactions for that prefix.

Definition 10 (Locked Prefix). A prefix Φ(x) is locked if all
new transactions whose sequence numbers are less than or
equal to x are rejected. Formally, for any new transaction
(t, s), where t ∈ T and s ∈ S,

(Φ(x) is locked) ∧ (s ≤ x) ⇒ t ∈ TR.

Note that transactions are only accepted after an instance
of BOC, and a locked prefix only guarantees that new trans-
actions will be rejected. This means that pending transactions
whose instances of BOC are still running could be added to a
locked prefix (i.e., their consensus instances may output 1).

Definition 11 (Stable Prefix). A prefix Φ(x) is stable if it is
locked, and any pending consensus instance for a transaction
(t, s) where s ≤ x, is rejected.

Intuitively, a prefix is stable if both new and pending
transactions for the prefix are rejected.

Definition 12 (Committed Prefix). A prefix Φ(x) is committed
if it is stable, and contains all the accepted transactions with
a sequence number less than or equal to x.

Φ(x) is committed ⇔ {(t, s) ∈ TA × S | s ≤ x} ⊆ Φ(x)

A committed prefix is stable and complete. Thus, it will
eventually be committed by all correct processes.

C. Commit Protocol

The Commit protocol is presented in Algorithm 4. The
general idea of the protocol is to have processes exchange
information about locally locked prefixes and pending trans-
actions in order to deduce globally stable prefixes. A process
then infers committed prefixes by using accepted transactions
from a quorum of 2f + 1 processes. Intuitively, a quorum of



2f + 1, combined with the VVB-Supermajority property of
VVB, ensures that if a process does not become aware of a
transaction, then the transaction will not be accepted.

52: L← 3∆ ▷ maximum latency
53: P ← ∅ ▷ pending transactions
54: min-pending ← 0 ▷ lowest requested sequence in pending transactions
55: A← ∅ ▷ set of accepted transactions
56: R ← ∅ ▷ received values of locally locked prefix
57: locked ← 0 ▷ globally locked prefix
58: S ← ∅ ▷ received values of min-pending
59: stable ← 0 ▷ stable prefix
60: committed ← 0 ▷ committed prefix
61: C ← ∅ ▷ transactions to commit

62: validation-function(ct, St): ▷ validation function at pi

63: s← St[n− f ] ▷ requested sequence number is (n − f)th value of St

64: if |seqi(ct)− St[i]| ≤ λ ∧ s > (seqi(t)− L) then ▷ validation
65: P ← P ∪ (ct, s) ▷ update pending transactions
66: min-pending ← min(ct,s)∈P (s) ▷ update lowest pending transaction
67: return 1
68: else
69: return 0

70: upon accepting a transaction (ct, s):
71: A← A ∪ (ct, s) ▷ accept transaction and sequence number
72: pending ← pending \ (ct, s) ▷ remove transaction from pending
73: min-pending ← min(ct,s)∈P (s) ▷ update lowest pending transaction

74: upon broadcasting a message m:
75: m← m ∪ (seqi − L) ▷ piggyback locally locked prefix
76: m← m ∪min-pending ▷ piggyback lowest pending transaction
77: m← m ∪A ▷ piggyback accepted transactions
78: broadcast(m)

79: upon receiving a message (lockedj ,minj , acceptedj ) from pj :
80: R[j]← lockedj
81: S [j]← minj

82: A← A ∪ acceptedj
83: R2f+1 ← argmaxR′⊂R,|R′|=2f+1

∑
s∈R′

s ▷ 2f + 1 highest values

84: locked ← min
s∈R2f+1

s ▷ compute locked prefix

85: S2f+1 ← argmaxS′⊂S,|S′|=2f+1

∑
s∈S′

s ▷ 2f + 1 highest values in S

86: stable ← min(locked , min
s∈S2f+1

s) ▷ compute stable prefix

87: committed ← max
(ct,s)∈A|s≤stable

s ▷ compute committed prefix

88: try-commit()

89: try-commit(): ▷ commit function at pi

90: wait-pending(committed) ▷ wait for pending transactions
91: commit-txs ← {(ct, s) ∈ A | s ≤ committed ∧ ct /∈ C} ▷

transactions part of a committed prefix and not yet committed
92: C ← C ∪ commit-txs ▷ commit transactions
93: for c in commit-txs do
94: ρc ← vss-partial-decrypt(c)
95: broadcast(ρc) ▷ broadcast decryption share for a committed transaction

Algorithm 4: The Commit Protocol

For locking prefixes, we define the maximum latency
L = 3∆ of BOC as the maximum duration allowed for the
execution of an instance of BOC during synchronous periods.
Each process has an acceptance window and will only accept
transactions whose requested sequence number is not older
than L. The validation function is described in line 62. The
validating function at pi checks if the prediction of the clock
of pi is correct (cf. Lemma 2), and if the prefix of the sequence
number s requested for t is not locally locked (i.e. s resides

in pi’s acceptance window). When pi validates t, pi also adds
t to its set of pending transactions (line 65).

When broadcasting messages, processes piggyback the
value of three local variables (line 74):

• (seqi − L): the value of their locally locked prefix (i.e.
acceptance window),

• min-pending : the lowest pending sequence number val-
idated by the process,

• A: the local set of accepted transactions (hash trees are
used in lieu of older prefixes to reduce message size).

A process that receives these variables (line 79) will use
them to compute the prefix Φ(locked) that is locked globally
(line 84), the prefix Φ(stable) that is stable (line 86), and the
committed prefix Φ(committed) (line 87).

Lemma 4. The prefix Φ(locked) is locked.

Proof. The prefix Φ(locked) is the lowest prefix that is locally
locked for 2f + 1 distinct processes. As a result, at least
f + 1 correct processes will not validate new transactions
for Φ(locked), and thus at most 2f < 2f + 1 will validate
transactions for Φ(locked), and new transactions for Φ(locked)
will be rejected.

Lemma 5. The prefix Φ(stable) is stable.

Proof. By design (line 86), a stable prefix is locked. Thus, we
only need to prove that pending transactions for Φ(stable) are
rejected. Any pending transaction t that can be accepted (i.e.
t ∈ TA) must have been validated by at least 2f + 1 distinct
processes. As a result, t must have been validated by a set
Qi of at least f + 1 correct processes that added t to their
list of pending transactions and updated their min-pending
variable accordingly. The prefix Φ(stable) is computed using
the lowest value of min-pending received from 2f+1 distinct
processes, and thus from a set Qj of at least f + 1 correct
processes. Because we have

|Qi| ≥ f + 1 ∧ |Qj | ≥ f + 1 ⇒ Qi ∩Qj ̸= ∅,

if any transaction t is pending and at the same time t ∈ TA,
then there is at least one correct process that validated t and
whose value of min-pending is included when computing the
variable stable . Consequently, any pending transaction whose
requested sequence number is not included when computing
the value of stable is rejected.

Byzantine processes could prevent prefixes from becoming
locked (resp. stable) by sending superficially low values of
their locally locked prefix (resp. lowest pending transaction);
to evade this behavior, in order to compute the variable locked
(resp. stable), processes use the highest 2f+1 values of locally
locked prefixes (resp. lowest pending transactions) received
from processes (lines 83 and 85).

Lemma 6. The prefix Φ(committed) is committed.

Proof. By design (line 87), Φ(committed) is stable. The set A
of accepted transactions at pi is computed using the values of



accepted transactions received from at least 2f + 1 processes
(line 82). As a result, when building the variables stable and
A, pi necessarily becomes aware of any transaction that can be
accepted in Φ(committed) as either pending or as accepted.
Due to the BOC-Termination property, pi only needs to wait
for the results of pending transactions in Φ(committed),
line 90, before committing Φ(committed).

Lemma 7. A correct process can decrypt all committed
transactions.

Proof. Each process broadcasts a decryption share (line 95)
for all the transactions that it commits. The agreement property
of the BOC protocol ensures that all correct processes accept
and thus commit the same set of transactions. Consequently,
all correct processes broadcast a decryption share for each
committed transaction, and each correct process thus receives
at least n − f ≥ 2f + 1 valid decryption shares for each
committed transaction.

D. Order-Fair SMR

In this section, we show that Lyra implements an SMR
protocol that ensures order fairness.

Lemma 8 (State Machine Replication). A protocol where
processes continuously input transactions to the Lyra protocol
to accept or reject transactions, and use the Commit protocol
to output committed transactions, implements SMR.

Proof. We prove each property of Definition 1 separately:
• SMR-Safety. The output consists of the set of committed

transactions. By Lemma 6, Φ(committed) contains all
accepted transactions whose sequence numbers are less
than or equal to committed , and the agreement property
of BOC ensures that all transactions are output with the
same sequence number. Each correct process thus outputs
the same ordered set of transactions.

• SMR-Liveness. Because correct processes continuously
input their transactions to the protocol, eventually, after
GST , correct processes will have their transactions ac-
cepted and committed.

Theorem 4 (Main Result). Lyra implements an SMR protocol
with transaction obfuscation and fair ordering.

Proof. From Lemma 8, Lyra solves the SMR problem. Trans-
action obfuscation is ensured by Lemma 7 and the fact that
based on our security assumption (§II), no process can decrypt
a transaction t before t is committed. Theorem 2 guarantees
a fair ordering of transactions by ensuring that the sequence
numbers of all committed transactions are lower bounded.

E. Resilience to Reordering Attacks

A reordering attack against a transaction t1 is a harmful
reordering attack if the execution of t1 is delayed with respect
to an execution without any attack, or if a transaction t2 issued

after t1 and whose content causally depends on t1 (e.g. front-
running) is sequenced before t1. Note that contrary to front-
running or sandwich attacks, we do not classify back-running
as a harmful reordering attack because a transaction t1 can
always be trivially back-run by a transaction t2 if no other
transaction is submitted other than t2. As a leaderless and
order-fair protocol, Lyra has no Byzantine leader that can omit
some transactions or enforce an arbitrary order. This ensures
that transactions are not delayed unfairly. Furthermore, the
commit-reveal scheme prevents attackers from gaining any
knowledge on the payload of transactions before transactions
are committed. As a result, Lyra is a protocol that is resilient
to harmful reordering attacks.

VI. EXPERIMENTAL EVALUATION

In this section, we describe our implementation of Lyra and
present the results of our experimental evaluation.

A. Implementation

We implemented a prototype for Lyra using the Rust
programming language. The codebase for each node is a
little less than 3500 lines of code. In order to compare with
Pompē [32], we adopt the same implementation methodologies
and use closed loop clients. Each transaction consists of a
unique 32-byte value. Similar to prior work [9], [30], [32],
we use batching to amortize the costs of consensus instances.
To obfuscate transactions, processes rely on a hash-based
commitment scheme [13]. During the benchmark, committed
transactions are written in a key-value store.

All of our tests are run on AWS over 3 continents with up
to 100 machines. For each data point, we use the same number
of servers as in the corresponding Pompē benchmark, and
virtual machines that are equivalent (Intel Xeon processors, 16
cVPUs, and 64 GB of RAM). We also use the same network
distribution where servers are equally distributed between 3
data centers (Oregon, Ireland, Sydney). We measure both
the latency and the throughput of the system. Each client
measures the latency of each committed transaction, and we
consolidate all these measures to compute the average latency
for committed transactions, and the throughput of transactions.

B. Benchmark Parameters

We use a batch size of 800 in all of our experiments because
this value offers the highest throughput without diminishing
the quality of service for clients that submits transactions.
A process will instantiate a new instance of BOC either
when it has received a full batch of transactions, or that a
certain amount of time has elapsed since its last proposal.
Our experiments over 3 geo-distributed data centers show
that the value of the security parameter λ can be reduced to
5 ms without affecting the performance of the system. This
means that when requesting a sequence number, a Byzantine
process can only deviate from the values perceived by correct
processes by up to 5 ms. To allow the computation of the dij
distances, processes piggyback the value of their local clocks
when they vote in the VVB protocol. In [26], it is shown that
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Fig. 2. Commit Latency. Latency in Lyra is lower than its Pompē baseline
due to less message delays.

network delays are predictable and that they can be modeled
using martingales. A martingale is a discrete-time stochastic
process where the expected value of the next observation is
equal to the last observation. This means that the most likely
value for the expected network latency dij between pi and pj is
the most recent network latency measured between pi and pj .
Thus, in our experiments, the value for the distance dij , used
by pi to estimate the value of the clock of a process pj , is the
actual value dij measured the last time pi sent a transaction to
pj . This value is computed using the clock value piggybacked
by pj when pj responds to a transaction sent by pi.

C. Performance Results

Each process runs on a separate node with a dedicated
virtual machine. Transactions are submitted by dedicated client
nodes apart from the nodes running the consensus protocol.
Figure 2 and Figure 3 show the latency and throughput of
the system as a function of the number of nodes (n ∈
{5, 10, 16, 31, 61, 100}). The number of nodes for each data
point is the same as the number of nodes in the Pompē
experiments. The average latency (< 1s) is relatively stable
when increasing the number of nodes and is half of its baseline
Pompē when n > 60. While Pompē has a higher throughput
when n ≤ 20, its throughput decreases when increasing the
number of nodes. In contrast, the throughput of Lyra increases
when increasing the number of nodes, and scales up to one
hundred geo-distributed nodes. With 100 nodes, Lyra has on
average a subsecond commit latency and commits 240,000
transactions per second, thus providing a 2 times improvement
for commit latency and a 7 times improvement for throughput
compared to Pompē.

The scalability of Lyra comes from the combined effects of
broadcasters using tentative sequence numbers and the use of a
leaderless consensus algorithm. The use of signed timestamps
in Pompē induces a number of signature verifications that is
a quadratic function of the number of processes due to each
process verifying all the timestamps. In Lyra, only the transac-
tion is signed, and thus the number of signature verifications
is a linear function of the number of processes. This is a linear
multiplicative factor improvement over Pompē. Furthermore,
the underlying consensus algorithm in Pompē (HotStuff [30])
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Fig. 3. Throughput. Pompē performs better up to 20 nodes but does not scale
well, whereas Lyra scales up to 100 nodes.

is leader-based. As a result, the leader is a bottleneck for
the number of transactions that can be processed. In Lyra,
all processes can receive transactions and run instances of
consensus concurrently.

These preliminaries results show the feasibility of our
approach and the potential for fast and scalable resilience to
reordering attacks in blockchains. We defer to future work a
more comprehensive evaluation of our protocol including the
influence of Byzantine behaviors and a comparison to other
protocols.

D. Byzantine Behaviors

Byzantine processes may try to reduce the chain quality
of the output by flooding correct processes with valid trans-
actions. Due to the distributed nature of our protocol, this
can be circumvented by having processes allocate network
resources fairly between processes. Because processes sign
the transactions that they submit, Byzantine processes that
submit invalid transactions or invalid transaction shares will
be identified eventually. An additional protocol could be
implemented to punish these processes.

Using lower-bounded sequence numbers ensures that
Byzantine processes can only drift from the sequence numbers
of correct processes by the value of the security parameter λ.
Nevertheless, the lack of upper bound on sequence numbers
enables Byzantine processes to saturate the memory of correct
processes by submitting transactions in the future. These
transactions must be kept in memory until they are committed.
Such behavior can be mitigated by having processes reject
transactions with a sequence number in a too distant future.

A network adversary may also delay messages, including
insert bias during the warm-up period. But once the prop-
agation delays have become stable, in order to perform a
reordering attack, a Byzantine process would need to change
the propagation delays dij , and this unexpected change would
trigger the rejection of its transactions.

VII. RELATED WORK

In the context of blockchains, fairness in the ordering of
transactions was investigated by Kelkar et al. [18] and was
described as a missing property of SMR. Their ordering



paradigm is to order transactions based on logs of how each
process orders transactions locally. This approach uses graphs
of dependencies between transactions, and was implemented
using the proportion of processes that order one transaction
before the other [17], [18]. A similar approach by Cachin et
al. [5] relies on the differential number of processes that order
one transaction before the other.

A second paradigm, introduced by Zhang et al. [32], affects
a single sequence number to each transaction, thus circum-
venting cyclic dependencies between transactions. This new
approach is named ordering linearizability and implements a
partial order derived from linearizability [15] that ensures a
fair ordering for non-concurrent transactions. Here, we relax
the paradigm of ordering linearizability and only require that
sequence numbers be lower bounded, instead of being both
lower bounded and upper bounded. We also improve resilience
to reordering attacks and scalability.

In DAG-based blockchains, Fino [23] introduces a commit-
reveal scheme that we borrow, but relies on a leader for pro-
posals to be committed. Basil [29] provides the same ordering
guarantees as ordering linearizability and uses sharding to
improve performances. Wendy [19] presents an architecture
for implementing order-fairness in blockchains. It is defined
as an optional ordering layer that is agnostic of the underlying
blockchain and that is capable of implementing a dynamic
definition of the notion of fairness. Our approach focuses
instead on the latency bounds of a static but natural definition
of fairness derived from ordering linearizability.
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