
Crime and Punishment in Distributed Byzantine
Decision Tasks

Pierre Civit
Sorbonne University, CNRS, LIP6

Seth Gilbert
NUS Singapore

Vincent Gramoli
University of Sydney

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Zarko Milosevic
Informal Systems

Adi Seredinschi
Informal Systems

Abstract—A decision task is a distributed input-output
problem in which each process starts with its input value
and eventually produces its output value. Examples of such
decision tasks are broad and range from consensus to reliable
broadcast to lattice agreement. A distributed protocol solves
a decision task if it enables processes to produce admissible
output values despite arbitrary (Byzantine) failures. Unfor-
tunately, it has been known for decades that many decision
tasks cannot be solved if the system is overly corrupted,
i.e., safety of distributed protocols solving such tasks can
be violated in unlucky scenarios.

By contrast, only recently did the community discover that
some of these distributed protocols can be made accountable
by ensuring that correct processes irrevocably detect some
faulty processes responsible for any safety violation. This
realization is particularly surprising (and positive) given that
accountability is a powerful tool to mitigate safety violations
in distributed protocols. Indeed, exposing crimes and intro-
ducing punishments naturally incentivize exemplarity.

In this paper, we propose a generic transformation, called
τscr , of any non-synchronous distributed protocol solving a
decision task into its accountable version. Our τscr transfor-
mation is built upon the well-studied simulation of crash
failures on top of Byzantine failures and increases the com-
munication complexity by a quadratic multiplicative factor
in the worst case.

I. Introduction
There are known limitations to the decision tasks dis-

tributed protocols can solve. For decades it has been known
that, without additional assumptions (e.g., synchronous com-
munication), no distributed protocol ensures the safety of
the consensus decision task if more than t0 = ⌈n/3⌉ − 1
processes are Byzantine [24]. Similar results apply to set
agreement [8] or lattice agreement [1]. These safety violations
can be dramatic. Let us consider a blockchain application
as an example where individuals store valuable assets. An
agreement violation in the blockchain context could lead two
correct processes to disagree about the current state of the
blockchain. As a result of this disagreement, an attacker could
convince some correct processes that they transferred assets
while it is not the case: an undesirable situation leading to
what is called a double spending.

Accountability is a potent property in mitigating safety vio-
lations. In the context of distributed protocols, accountability
enables correct processes to conclusively detect culprits and

obtain proof of their misbehavior after safety has been vio-
lated. Exposing culprits naturally incentivizes participants to
behave correctly. In the synchronous setting, one can require
processes to exchange authenticated messages and expose
any non-responsive faulty process [19]. However, such an
approach does not guarantee an attainment of irrefutable
proof of misbehavior nor it works in the general setting. Only
recently has the community devised accountable distributed
protocols to solve decision tasks, like consensus [9], [28], for
the general setting. As far as we know, each of these presents
an accountable variant of a very specific distributed protocol,
but no generic solution exists.
In this paper, we propose a generic transformation, called

τscr , of any non-synchronous distributed protocol solving
a decision task into an accountable version of the same
protocol. First, we show that one must be able to detect
commission faults – faults that occur once a faulty process
invalidly sends a message – in order to achieve accountability
in a non-synchronous setting. Indeed, we prove that (1)
every irrevocable detection must be based on a detected
commission fault (otherwise, a correct process can falsely
be detected), and (2) (luckily for accountability!) whenever
safety is violated, “enough” processes have committed com-
mission faults. Furthermore, we separate all commission
faults into (1) equivocation faults, faults associated with an
act of claiming conflicting statements, and (2) evasion faults,
faults that occur once a faulty process sends a message
which cannot be sent given the previously received messages.
Then, we illustrate that detecting equivocation faults is easier
in non-synchronous settings than detecting evasion faults,
concluding that equivocation faults are preferable means of
violating safety in non-synchronous distributed protocols.
Finally, we observe that the approach exploited by the

well-studied simulation [2], [5], [13], [15], [21], [22] of crash
failures on top of Byzantine failures can be modified to ensure
that evasion faults are masked (i.e., their effect is eliminated),
thus allowing only equivocation faults to violate safety. Such
a simulation is achieved using the secure broadcast [5] primi-
tive: (1) each originally sent message is secure-broadcast, and
(2) no secure-delivered message “affects” the receiver before
a correct causal past of the message has been established.
Hence, no message that is a product of an evasion fault

1

influences a correct process (even if the system is entirely
corrupted), implying that all safety violations are necessarily
consequences of equivocation faults. We base the τscr trans-
formation on the aforementioned approach based on secure
broadcast. Due to the complexity of the secure broadcast
primitive, our transformation increases the communication
and message complexities of the original distributed protocol
by an O(n2) multiplicative factor.

Roadmap: We discuss the related work in §II. In §III, we
introduce the computational model, distributed protocols,
Byzantine decision tasks, and safety violations of these tasks.
We define commission faults in §IV and show that account-
ability in a non-synchronous setting implies the ability to
detect these faults. Our generic accountability transformation
is introduced in §V. We conclude the paper in §VI. For space
limitations, detailed definitions and proofs are delegated to
the full version of the paper [12].

II. Related Work
a) Byzantine failures: If a process deviates from a

prescribed protocol, it commits a Byzantine failure [24].
The primary technique in tackling Byzantine failures in
distributed computing is masking, i.e., hiding the effects
of these failures [7], [16], [25], [29], [30]. An alternative
approach is detection of Byzantine failures. Initially, detection
of Byzantine failures was incorporated into the design of
Byzantine failure detectors [17], [23], [26], which were used
for solving the consensus [24] problem. Kihlstrom et al. [23]
define the class of commission faults, which occur if (1)
messages with the same header and different content are
sent, or (2) an unjustified message is sent. Although quite
similar to our definition of commission faults, there is a
subtle difference between the definition given in [23] and
ours: there exists a faulty behavior that we classify as a
commission fault, which is not captured by the definition
from [23]. Furthermore, Haeberlen et al. [20] studied the
problem of generic fault detection in distributed systems.
They, as the authors of [23], recognize commission faults
as a separate class of Byzantine failures. The definition of
commission faults given in [20] is based on the knowledge
of correct processes, whereas ours relies on the knowledge
of an “all-seeing” external observer. For instance, if a faulty
process sends two conflicting messages m1 and m2, but only
message m1 is “observed” by a correct process, then the
process does not commit a commission fault according to
the definition given in [20]; our definition classifies such
a behavior as a commission fault. The authors of [20] in-
vestigate the cost of detecting commission faults in terms
of exchanged messages; in contrast, our work is concerned
with the number of exchanged bits. Finally, the same authors
presented PeerReview [19], a generic accountability add-on
for distributed systems. The definition of “detectably faulty”
processes given in [19] served as the main inspiration for our
definition of commission faults.

b) Simulation of crash failures on top of Byzantine ones:
Due to the nature of the crash and Byzantine failures, crash

failures are easier to handle than Byzantine ones. Therefore,
the community has explored ways of simulating crash fail-
ures on top of Byzantine failures [2], [5], [13], [15], [21],
[22]. Such a simulation can be seen as a module θ which (1)
connects the networking layer to a crash-resilient algorithm
Π, and (2) allows only “benign” executions to reach Π by
not forwarding any message from the networking layer to
Π unless a valid behavior of the sender has previously been
established. Thus, all Byzantine processes appear to Π as if
they have crashed. We provide a more thorough intuition
behind such simulations in §V. In this paper, we observe that
the approach exploited by the aforementioned simulations
can be reused towards obtaining accountability.

c) Accountability: Accountability, in general, requires
correct processes to irrevocably detect faulty processes; such
detection can be a part of the “normal flow” of the sys-
tem [19] or can be demanded only upon some serious
safety violations [10]. Observe that accountability does not
allow “false detections”, i.e., once a process is detected, the
detection cannot be revoked (which is the crucial difference
from the revocable detections usually performed by failure
detectors). Specifically, the concept of accountability in the
context of distributed computing is introduced in [19]. The
authors describe a generic accountability layer for distributed
protocols - PeerReview. The main weakness of PeerReview is
that some types of malicious behaviors cannot be exposed
in a non-synchronous setting; thus, malicious processes may
only be permanently suspected (and never irrevocably de-
tected) in some scenarios. Therefore, PeerReview does not
provide “pure” accountability (at least not always). The spe-
cific sub-problem of accountable Byzantine consensus has
only recently been defined [10] as the problem of solving con-
sensus when possible, and detecting misbehaving participants
when agreement is violated. The idea of the proposed solution
is to ensure that disagreement always occurs as a result
of equivocation, as is the case in τscr . This solution, called
Polygraph, is specific to the DBFT consensus algorithm [16].
Casper [6] is an accountability overlay for blockchain sys-
tems. Ways to obtain accountability guarantees for specific
“PBFT-like” consensus protocols are proposed in [28]. The
authors of [28] aim to guarantee accountability only if the
system is not entirely corrupted, i.e., only if the number
of faulty processes does not exceed 2n/3, where n is the
total number of processes. Most recently, an efficient method
for transforming a distributed protocol into an accountable
protocol was proposed [11]; however, it only works for
protocols where the decision of all processes is expected to be
identical. The technique used in [11] relies on an additional
“confirmation” communication round, ensuring that enough
faulty processes must equivocate in this round to violate
safety. It remains unclear whether (and how) this technique
could be adapted to problems in which processes are not
required to output identical values (e.g., k-set agreement [8],
lattice agreement [1]). Hence, the transformation presented
in [11], although more efficient, is less general than τscr .

2

III. Preliminaries
A. Computational Model

We consider a set Ψ of |Ψ| = n asynchronous processes
that communicate by exchanging messages. Each process p ∈
Ψ is assigned a protocol Πp to follow. Formally, a protocol
Πp is a tuple (Sp, sp0,Mp, Ip,Op, Tp), where Sp represents
a set of states p can take,1 sp0 ∈ Sp is the initial state of p,
Mp is a set of messages p can send or receive, Ip is a set of
internal events p can observe, Op is a set of internal events p
can produce and Tp : Sp×P (Mp∪Ip)→ Sp×P (Mp∪Op)
maps a state and a set of received messages and observed
internal events into a new state and a set of sent messages
and produced internal events.2
A protocol Πp does not send the same message more

than once.3 Moreover, each message sent by Πp is properly
authenticated, and any incoming duplicate messages or mes-
sages that cannot be authenticated are ignored. We assume
that Πp does not reveal the key material, i.e., if a message
is signed by a process p and p follows its protocol, then p
must have indeed sent the message. Processes can forward
messages to other processes, they can include messages in
other messages they send, and we assume that an included or
forwarded message can still be authenticated. Each message
m has a unique sender sender(m) ∈ Ψ and a unique receiver
receiver(m) ∈ Ψ. Finally, we assume a computationally
bounded adversary, i.e., signatures of processes that follow
their protocol cannot be forged.

a) Events, executions & behaviors: We define an event as
a tuple (p, I, O), where p ∈ Ψ is a process on which the
event occurs, I represents a finite set of received messages
and observed internal events and O represents a finite set of
sent messages and produced internal events.4 An execution is
a well-formed sequence of events: (1) every received message
was previously sent, and (2) if the execution is infinite, every
sent message is received. Similarly, a behavior is a well-
formed sequence of events: (1) all events occur on the same
process p ∈ Ψ, (2) if a message m with sender(m) = p is
received in the behavior, then the message was previously
sent in the behavior, and (3) if the behavior is infinite, every
message m with receiver(m) = p which is sent in the
behavior is received in the behavior. Given an execution α,
α|p denotes the sequence of events in α associated with a
process p ∈ Ψ (i.e., the behavior of p given α).
A behavior βp = (p, I1, O1), (p, I2, O2), ... is valid ac-

cording to Πp if and only if it conforms to the assigned
protocol Πp, i.e., if and only if there exists a sequence of
states s0, s1, ... in Sp such that s0 = sp0 and, for all i ≥ 1,
Tp(si−1, Ii) = (si, Oi). For every behavior β, we define
sent(β) (resp., received(β)) to be the set of sent (resp.,
received) messages in β. Finally, for every message m, we

1We refer to Sp as the state set of Πp.
2We denote by P (X) the power set of X .
3This constraint does not affect the generality of distributed protocols we

consider since every message can include a nonce.
4Observe the difference between events and internal events.

assume that there exists a valid behavior of sender(m) in
which m is sent.

b) Distributed protocols: A tuple Π = (Πp,Πq, ...,Πz),
where Ψ = {p, q, ..., z}, is a distributed protocol. We assume
that sets of messages each process can send or receive are
identical (i.e., Mp = Mq , for all p, q ∈ Ψ); we denote this
set of messages byM.
A process p is correct in an execution α according to

Π = (Πp,Πq, ...,Πz) if and only if α|p is valid according
to Πp. Otherwise, p is faulty in α according to Π. If a
process is correct in an infinite execution, then infinitely
many events occur on the process (i.e., a process correct in an
infinite execution is live). We denote by CorrΠ(α) the set of
processes correct in execution α according to Π. Whenever
we say that “α is an execution of a distributed protocol Π”,
we mean that each process is considered correct or faulty
in α according to Π. The set of all possible executions of a
distributed protocol Π is denoted by execs(Π).

c) Communication network: We assume that the commu-
nication network is fully-connected and reliable, i.e., correct
processes are able to communicate among themselves. Fur-
thermore, we assume that the network is either asynchronous
or partially synchronous [18].
If a network is asynchronous, there is no upper bound on

message delays. A partially synchronous network behaves
as an asynchronous network during some intervals of time,
whereas during other intervals, messages are received in a
timely fashion. Specifically, there exists an unknown global
stabilization time (GST) such that there is no upper bound on
message delays before GST , whereas there is an unknown
upper bound on message delays after GST .
If the communication network of a distributed protocol

is asynchronous (resp., partially synchronous), we say that
the distributed protocol itself is asynchronous (resp., partially
synchronous). A non-synchronous distributed protocol is an
asynchronous or a partially synchronous distributed protocol.

B. Decision Tasks

Decision tasks represent an abstraction of distributed
input-output problems. Each process has its input value.
We assume that “⊥” denotes the special input value of a
process that specifies that the input value is non-existent.
A process may eventually produce its output value. The “⊥”
output value of a process means that the process has not yet
produced its output value. We denote by Ip (resp., Op) the
input (resp., output) value of process p ∈ Ψ. We note that
some processes might never produce their output values if
permitted by the definition of a decision task.
Any decision task could be defined as a relation between

input and output values of processes. Since we assume that
processes might fail (i.e., be Byzantine), we only care about
input and output values of correct processes. Formally, at
the beginning of each execution, each process is labelled as
either good or bad. If a process is good, the process follows
its protocol; otherwise, it may deviate from its protocol. For
the sake of simplicity, we slightly abuse the notation and

3

use term “correct” (resp., “faulty” or “Byzantine”) instead
of “good” (resp., “bad”). Therefore, a decision task could be
defined as a relation between input and output values of
correct processes.

An input configuration of a decision task D is νI =
{(p, Ip) with p is correct}: an input configuration consists
of input values of correct processes. Similarly, an out-
put configuration of a decision task is denoted by νO =
{(p,Op) with p is correct}: it contains output values of cor-
rect processes.

Formally, a decision task D is a tuple (I,O,∆), where:
• I is the set of all possible input configurations of D.
• O is the set of all possible output configurations of D.
• ∆ : I → 2O , where νO ∈ ∆(νI) if and only if the
output configuration νO ∈ O is admissible given the
input configuration νI ∈ I .

Without loss of generality, we assume that ∆(νI) ̸= ∅, for
every input configuration νI ∈ I . Moreover, for every νO ∈
O, there exists νI ∈ I such that νO ∈ ∆(νI).

a) Solutions: A distributed protocol ΠD solves a decision
task D = (I,O,∆) with t0-resiliency if and only if:

• For every ν ∈ I ∪ O, |ν| ≥ n− t0, and
• In every execution with up to t0 Byzantine processes,
there exists (an unknown) time TD such that νO ∈
∆(νI), where νI ∈ I denotes the input configuration
that consists of input values of all correct processes,
νO ∈ O denotes the output configuration that consists
of output values (potentially ⊥) of all correct processes
and no correct process p with Op = ⊥ updates its output
value after TD .
b) Accountable counterparts: We now formally define

an accountable counterpart of a distributed protocol (Def-
inition 3). Intuitively, an accountable counterpart of a dis-
tributed protocol ΠD is a distributed protocol that (1) be-
haves as ΠD in non-corrupted executions, and (2) provides
accountability whenever safety is violated.

Let D = (I,O,∆) be a decision task. Consider a set C =
{(p,Op ̸= ⊥), (q,Oq ̸= ⊥), ..., (z,Oz ̸= ⊥)}. We say that set
C is safe-extendable according to D if and only if there exists
an output configuration νO ∈ O such that (p,Op) ∈ νO ,
for every (p,Op) ∈ C . Intuitively, C is safe-extendable if
and only if there exists an output configuration in which
processes specified by C output specified values. For instance,
if D is Byzantine consensus and C = {(p, v), (q, v′ ̸= v)},
then C is not safe-extendable (since correct processes never
output different values in the Byzantine consensus task).

We are now ready to formally define when the safety of
a decision task is violated by a distributed protocol.

Definition 1 (Safety Violation). Let D = (I,O,∆) be a
decision task and let ΠD be a distributed protocol that solves
D. We say that ΠD violates safety of D in an execution α
if and only if (1) a correct process p1 outputs Op1

̸= ⊥
in α, a correct process p2 outputs Op2 ̸= ⊥ in α, …,
and a correct process px outputs Opx ̸= ⊥ in α, and

(2) C = {(p1, Op1), (p2, Op2), ..., (px, Opx)} is not safe-
extendable according to D.

Note that Definition 1 does not cover a case where the
outputs of correct processes are not valid according to their
inputs. Such a scenario would arise only if the number of
faulty processes is greater than t0 (under the assumption that
ΠD solves D with t0-resiliency). However, the ∆ function
is not defined in this case (since |ν| ≥ n − t0, for every
ν ∈ I ∪ O).
Before defining an accountable counterpart of a distributed

protocol, we define proof of culpability of a process. Proof of
culpability is self-contained evidence that the corresponding
process is faulty. In our work, as in many previous ones [10],
[11], proof of culpability is a set of messages that a correct
process would never send “together”.

Definition 2 (Proof of Culpability). Let Π be a distributed
protocol. A set of messages M is proof of culpability of a
process p according to Π if and only if:

• sender(m) = p, for every m ∈M , and
• no execution α of Π exists such that (1) p sends every
message m ∈M in α, and (2) p is correct in α.

At last, we are able to formally define an accountable
counterpart of a distributed protocol.

Definition 3 (Accountable Counterpart). Let D = (I,O,∆)
be a decision task. Let ΠD be an asynchronous (resp., a
partially synchronous) distributed protocol that solves D
with t0-resiliency. An asynchronous (resp., a partially syn-
chronous) distributed protocol Π̄D is an accountable counter-
part of ΠD with factor f ∈ [1, t0] according to basis if there
exists a homomorphic transformation (Π̄D,ΠD, µe) with
µe : execs(Π̄D)→ execs(ΠD) that satisfies the following:5

• Solution Preservation: Π̄D solves D with f -resiliency.
• Accountability: If safety of D is violated by Π̄D , then
every correct process detects at least t0 + 1 processes
faulty according to Π̄D and obtains proof of culpability
of every detected process according to Π̄D .

• Syntactic Correspondence: Let execs(ΠD, t0) represent
the set of all executions of ΠD with up to t0 faulty
processes. Then, the following holds:
– Let ᾱ be an execution of Π̄D . If a process p is correct
in ᾱ, then p is correct in µe(ᾱ).

– For every execution α ∈ basis , where basis ⊆
execs(ΠD, t0), there exists an execution ᾱ of Π̄D such
that α = µe(ᾱ).

Definition 3 is inspired by the definition of the homo-
morphic transformation µe presented in [20]. The difference
is that our definition specifies which executions of the
original distributed protocol are preserved (all executions
that belong to basis), whereas the µe transformation does
not. Other formal definitions of simulation mechanisms have
been previously proposed [3], [4], [14], [27]. However, to the
best of our knowledge, Definition 3 and the aforementioned

5Homomorphic transformations are formally defined in [12].

4

µe formalism [20] are the only formulations that assume an
asynchronous and Byzantine environment.

IV. Commission faults
This section is devoted to defining commission faults, a spe-

cific type of faults Byzantine processes could experience. We
show that accountability in non-synchronous environments
implies the ability to detect commission faults by proving
that (1) irrevocable detections must be based on committed
commission faults (otherwise, a correct process can wrongly
be detected), and (2) whenever safety is violated, “enough”
processes have committed commission faults (therefore, ac-
countability is indeed possible).
A. Definition & Importance

Informally, a commission fault occurs once a faulty process
sends a message a correct process would not send given the
ongoing execution. We start by introducing an assumption
that helps us define commission faults in a simple manner.
The assumption plays a significant role in the formalism we
present. It states that a message m sent by a process p is
sent “at the end” of exactly one valid behavior of p.

Assumption 1 (Message-Behavior Mapping). Consider a
protocol Πp assigned to process p ∈ Ψ and a message
m ∈ M with sender(m) = p. There exists exactly one
finite behavior βp = (p, I1, O1), ..., (p, Ih, Oh) such that (1)
no duplicate or non-authenticated messages are received in
βp, (2) βp is valid according to Πp, and (3) m ∈ Oh. In this
case, we write m 7→ βp.

Note that Assumption 1 is not a restrictive assumption.
Namely, every protocol could be easily (although with a
certain cost) transformed into a protocol that satisfies the
assumption by encoding the entire ongoing execution in a
sent message. Importantly, our τscr transformation (see §V) is
not built upon Assumption 1, i.e., the assumption is important
solely for defining commission faults.
Next, we define the message justification of a message. A

set of messages Jm is the message justification of a message
m if and only if Jm = received(βp), where m 7→ βp.

Definition 4 (Message Justification). Consider a protocol Πp

assigned to process p ∈ Ψ and a message m ∈ M with
sender(m) = p. Let βp be a finite behavior such that m 7→
βp. The message justification of m is the received(βp) set of
messages; the message justification of m is denoted by Jm.

Because of Assumption 1, each message has precisely one
message justification. Next, we introduce equivocation. This
term is well-known in the literature, and it is usually associ-
ated with an act of claiming multiple conflicting statements
(e.g., “mutant” messages with the same header in [23]). We
slightly expand the notion of equivocation to mean that a
faulty process claims two statements that could not be stated
jointly by a correct process (i.e., in a valid behavior).6

6Note that conflicting messages do not necessarily have the same header
(as is the case in [23]). This represents the very subtle difference between
our definition of equivocation faults and the definition presented in [23].

Definition 5 (Equivocation). Let α be an execution of a
distributed protocol Π. Consider a process p ∈ Ψ and its
behavior βp = α|p. Process p commits an equivocation with
respect to a message m ∈ sent(βp) in α if and only if there
exists a message m′ ∈ sent(βp) such that neither (βm

p is a
prefix of βm′

p) nor (βm′

p is a prefix of βm
p), where m 7→ βm

p

and m′ 7→ βm′

p . In this case, m is conflicting with m′.

Note that conflicting messages m and m′ do not need to be
“produced” by valid finite behaviors, i.e., equivocation only
requires conflicting messages to be sent. A correct process is
certain that a process q is faulty once it observes conflicting
messages sent by q. That is, deducing that a process is faulty
follows directly from observing “products” of equivocation.
Observe that proof of culpability (see Definition 2) proves
that the detected process has committed an equivocation.
Evasion faults occur once a process sends a message

without previously receiving all the messages necessary for
the message to be sent.

Definition 6 (Evasion Fault). Let α be an execution of a
distributed protocol Π. Consider a process p ∈ Ψ and its
behavior βp = α|p. Process p commits an evasion fault with
respect to a message m ∈ sent(βp) in α if and only if there
exists a message m′ ∈ Jm which is not received in βp before
(the first instance of) m is sent.7

Note that once correct processes observe a message m that
is a “product” of an evasion fault, they are not aware that this
indeed represents a manifestation of the fault. The reason is
that evasion faults are concerned not only with sent, but also
with received messages. In other words, it must be known not
only which messages were sent, but also which messages
were (not) received in order for a process that commits an
evasion fault to be detected.
At last, we are ready to define commission faults. As

mentioned in §II, our definition is inspired by the definition
of “detectably faulty” processes from [19].

Definition 7 (Commission Fault). Let α be an execution of
a distributed protocol Π. Consider a process p ∈ Ψ and its
behavior βp = α|p. Process p commits a commission fault
with respect to a message m ∈ sent(βp) in α if and only if
p commits an equivocation or an evasion fault with respect
to m in α.

Finally, we state the central results of the section: (1) every
irrevocable detection must be based on a committed commis-
sion fault, and (2) whenever safety is violated, commission
faults have been committed.

Theorem 1. Let Π be a non-synchronous distributed protocol.
Let α be an execution of Π such that a correct process p detects
a faulty process q without detecting any commission fault of
q. Then, there exists an execution α′ of Π such that (1) correct
process p detects q, and (2) q is correct in α′.

7If p sends m multiple times, then p commits an evasion fault if and only
if there exists a message m′ ∈ Jm which is not received before the first
instance of m is sent.

5

Proof sketch. Since p does not detect any commission fault
committed by q, there exists an execution α′′ such that (1)
p does not distinguish α and α′′, and (2) q does not commit
any commission fault in α′′. Due to the fact that a correct
process never detects a correct process, q is faulty in α′′

(even though it does not commit commission faults). Finally,
we create another execution α′ in the following manner:
1) We start with α′ ← α′′.
2) We “repair” the behavior of q by selecting a valid

behavior βq of q such that all messages sent by q in
α′′ are sent in βq .

3) For every message m, where m is sent in βq and m is
not sent in α′′, the reception of m is delayed in α′.

The obtained α′ execution satisfies the following properties:
(1) α′ cannot be distinguished from α′′ by p, and (2) q is
correct in α′. Therefore, p and q are correct in α′ and p
detects q in α′, which concludes the theorem. □

Theorem 2. Let ΠD be a non-synchronous distributed protocol
that solves a decision task D with t0-resiliency. Let α be an
execution of ΠD in which ΠD violates safety of D. At least
t0 + 1 distinct processes commit commission faults in α.

Proof sketch. By contradiction, let us assume that there
exists an execution α of ΠD such that (1) ΠD violates
safety of D in α, and (2) up to t0 distinct processes commit
commission faults in α. We construct an execution α′ of ΠD
in the following manner:
1) We start with α′ ← α.
2) For every process f , where f is a faulty processes that

does not commit any commission fault in α, we “repair”
the behavior of f by selecting a valid behavior βf of f
such that all messages sent by f in α are sent in βf .

3) For every process f , where f is a faulty processes that
does not commit any commission fault in α, and every
message m, where m is sent in βf and m is not sent in
α, the reception of m is delayed in α′.

By construction, ΠD violates safety of D in α′ and there exist
up to t0 faulty processes in α′. We reach a contradiction with
the fact that ΠD solves D with t0-resiliency. □

B. Detection

In this subsection, we discuss the detection mechanisms
for equivocation and evasion faults. We provide an intuition
of why we build our τscr transformation (see §V) around the
idea of masking evasion faults, thus allowing only equivoca-
tion faults to cause safety violations.

a) Detecting equivocation: As mentioned in the previous
subsection, once a correct process p observes conflicting
messages sent by a process s, p immediately concludes that
s is faulty. The reason is that no correct process ever sends
conflicting messages. Thus, for an equivocation that impacts
correct processes to be detected, it is sufficient to ensure
that all correct processes eventually observe all messages
received by correct processes. This protocol design can be
achieved by having correct processes rebroadcasting every

“learned” message. Such a solution introduces a quadratic
communication complexity overhead.

b) Detecting evasion faults: In the case of evasion faults,
messages sent by a faulty sender do not provide self-
contained proof of its misbehavior. Specifically, a correct
process that aims to detect an evasion fault needs to be aware
of which messages are (not) received by the sender.

We provide a simple scenario that illustrates why detecting
evasion faults might be more cumbersome than detecting
equivocation; the summary of the scenario is presented in
Figure 1. Consider processes r, p, q and s and a distributed
protocol in which process r sends mr to p, process p sends
mp to q upon receiving mr and process q sends mq to s
upon receiving mp. Suppose that process s needs to detect
whether an evasion fault with respect to mq has occurred
upon reception of mq .

We first investigate an execution α2 in which processes q
and s are correct and q sends mq . Note that q receives mp in
α2. In α2, it is necessary for q to piggyback mp in mq . Let us
explain why. Suppose that q does not piggyback mp in mq in
α2 (illustrated in Figure 1). Then, at the moment of reception
of mq , process s cannot distinguish α2 from α3, where α3

is an execution in which q is faulty and commits an evasion
fault with respect to mq . Only processes that can distinguish
α3 from α2 are (1) process p, since it does not send mp in
α3 and it sends mp in α2, and (2) process q since it does
not receive mp in α3 and it receives mp in α2. However,
we are able to create continuations of α2 and α3 that are
indistinguishable for “sufficiently long” to process s (and r,
since r is correct in α2 and α3) in the following manner:

• In α2, messages sent by processes p and q are delayed.
• In α3, processes p and q are silent.

Since smust detect the evasion fault in the continuation of α3

and it must not detect the evasion fault in the continuation
of α2, we conclude that the detection problem cannot be
solved. That is why q needs to piggyback mp in mq , i.e., the
piggybacking would create a difference in executions α2 and
α3 and allow process s to detect the evasion fault in α3.

Furthermore, what happens if s also aims to detect a
potential evasion fault with respect to mp ∈ Jmq

upon
reception of mq? In this case, process p must piggyback mr

in mp. Importantly, mr must be piggybacked in a way which
does not allow process q to extractmp without extractingmr .
In the idealized PKI, process p could achieve this by sending a
message [(mr)σr

,mp]σp
, where σp (resp., σr) is the signature

of p (resp., r): process q cannot extract properly signed mp

without extracting mr as well. Why is this necessary? If
process p does not do this, there exist the following two
executions:

• execution α4 in which p is faulty and commits an
evasion fault with respect to mp and q is correct and
sends mq ;

• execution α5 in which p is correct and sends mp, q is
faulty and sends mq to s without including mr .

Now, upon reception of mq , executions α4 and α5 are indis-
tinguishable to s. Moreover, we can create indistinguishable

6

Fig. 1: In execution α2, process q behaves correctly and sends mq without sending mp. In execution α3, process q commits an evasion
fault with respect to mq (note that q cannot send mp since it has not received mp). However, these two executions are

indistinguishable to process s and, hence, s cannot detect the evasion fault in α3. In α4, process p commits an evasion fault with
respect to mp and process q behaves correctly and sends mq (along with mp) upon receiving mp. In α5, process p is correct and sends
mp along with mr in a way that allows process q to extract only mp. Furthermore, process q is faulty and it sends mq along with mp

(but without mr) to s. Hence, executions α4 and α5 are indistinguishable to s and neither p nor q nor r can be detected. Finally, α1

illustrates an execution in which (1) all processes are correct, (2) process p sends mp along with mr in a way that does not allow q to
extract only mp, and (3) process q sends mq along with mp,mr to s.

continuations of α4 and α5:
• In α4, we delay messages sent by q and make processes
r and p silent.

• In α5, we delay messages sent by r and p and make q
silent.

Hence, process s cannot “safely” detect the evasion fault with
respect to mp in α4.
Finally, in an execution α1 in which all processes (r, p, q

and s) are correct, process p sends mp and mr , and process
q sends mq , mp and mr (see Figure 1). Observe that the
considered piggybacking technique transforms evasion faults
into equivocation faults since there exist messages that can
never be sent by a correct process (e.g., a messagemq without
message mp being piggybacked).8 The presented scenario
shows that, in some cases, enabling detection of evasion
faults (by transforming them into equivocation faults) could
lead to a lengthy chain of piggybacked messages. Fortunately,
there exists a simple way to make all evasion faults harmless,
thus avoiding any need for their detection; we provide more
details in §V.

V. Generic Accountability Transformation τscr

In this section, we present our generic accountability trans-
formation τscr that maps any non-synchronous t0-resilient
distributed protocol into its accountable counterpart with
factor f = min(⌈n/3⌉−1, t0), where n is the total number of
processes. First, we provide an intuition behind τscr (§V-A).
Next, we overview τscr (§V-B) and briefly discuss its imple-
mentation (§V-C). Then, we argue that τscr indeed produces
an accountable counterpart of a non-synchronous distributed
protocol with factor f = min(⌈n/3⌉ − 1, t0) (§V-D). Lastly,
we show that τscr increases the communication and message
complexities by an O(n2) multiplicative factor, and discuss
other applications of τscr (§V-E).

8Formally, the definition of equivocation faults (Definition 5) would need
to be expanded by stating that an equivocation also occurs once a process
sends a single message that can never be sent if the process was correct.

A. Intuition

Consider a distributed system Ψ with |Ψ| = n processes
that execute a distributed protocol ΠD . Imagine an (unre-
alistic) oracle θ that belongs to the system and obtains the
following responsibilities:
1) Message relaying: All communication between processes

goes through θ. Specifically, if a process p ∈ Ψ wants to
send a message m to q ∈ Ψ, p sends m to θ which
forwards m to q. Moreover, θ is connected with all
processes via FIFO communication links.

2) Correctness verification: Whenever a process sends a
message to θ (to have the message relayed to its re-
cipient), the process accompanies the message with its
current behavior (i.e., with the behavior that instructed
the sender to send the message). Such construction
allows θ to verify the correctness of the sender prior
to relaying its message.
Specifically, θ associates the currentp behavior with
each process p ∈ Ψ; initially, currentp is empty, for
every process p ∈ Ψ. Once a process p wants to send a
messagem, it sends (m,βp) to θ, where βp is the current
behavior of p. When θ receives (m,βp), it performs the
following steps:
a) It verifies that βp is valid.
b) It verifies that βp is a suffix of currentp.
c) It verifies that all messages received in βp were
previously relayed by θ in the order of reception
specified by βp.

d) If all verifications successfully pass, then (1)
currentp ← βp, and (2) m is relayed to its recipient.
Otherwise, p is ignored forever by θ (and no message
sent by p, including m, is ever relayed by θ).

Due to the presented construction, θ “sees”, at any point in
time, an execution that is benign, i.e., an execution in which
all processes are either correct or have crashed. Furthermore,
every message m relayed by θ has a “fully-correct” causal
past. Lastly, no “product” of an evasion fault is ever relayed

7

by θ, implying that effects of evasion faults are eliminated.
The main idea behind our τscr transformation is to sim-

ulate concepts performed by the θ oracle. We explain how
that is achieved in the following subsection.

B. Overview

Each process is a hierarchical composition of its four layers
(see Figure 2):
1) The state-machine layer: This layer dictates the behavior

of the process, i.e., it instructs which messages are
sent and which internal events are produced given the
received messages and observed internal events.

2) The verification layer: The responsibility of this layer
is creating a benign execution of the system (i.e., it
simulates the correctness verification responsibility of
θ). Specifically, the verification module builds a benign
execution out of all secure-delivered messages (see the
secure broadcast layer below). Observe that this layer is
concerned with all processes of the system (whereas the
state-machine layer is concerned only with the “host”
process). Finally, the verification layer performs a local
computation, i.e., it fulfills its duty irrespectively of the
number of faulty processes.

3) The secure broadcast layer: Every message instructed to
be sent by the state-machine layer is secure-broadcast.
The secure broadcast primitive ensures that (1) all pro-
cesses secure-deliver the same set of messages, and
(2) secure-deliveries of messages from a single sender
are performed in the order the messages were secure-
broadcast by the sender. These two properties are guar-
anteed only if the number of faulty processes does not
exceed ⌈n/3⌉ − 1.

4) The network layer: The layer is concerned with net-
work manipulation (i.e., the sending and receiving of
messages).

Fig. 2: Overview of the τscr transformation

We now explain how the presented layers work in har-
mony to implement our τscr transformation. Let us focus on
a single correct process p ∈ Ψ. Every message m instructed
to be sent by the state-machine of p is (1) accompanied by
the entire ongoing behavior of p up to the point of sending

m (i.e., accompanied by all messages received by p thus
far),9 and (2) secure-broadcast. In this way, p “announces”
to all processes what its ongoing behavior is to allow all
processes to safely verify the correctness of p. The correctness
verification of p by a correct process q carries in the way
imposed by θ (see §V-A):
1) It is checked whether the accompanied behavior is

indeed correct.
2) It is checked whether the accompanied behavior is a

suffix of the previously verified behavior of p (this
verification passes because of the order-preservation
property of secure broadcast and the fact that p is
correct).

3) If either of the previous two verifications does not pass,
process p is declared as faulty and is ignored by q in
the future. In our example, p is correct, implying that it
will never be declared as faulty by q.

4) Process q verifies that all messages received by p in the
accompanied behavior are “part” of the benign execution
built by the verification module of process q.10 Note that
in executions with up to ⌈n/3⌉−1 Byzantine processes,
since p is correct and the properties of the secure
broadcast primitive hold, this condition is eventually
satisfied.

5) Once the last condition is fulfilled, the accompanied
behavior of p is included in the benign execution built by
the verification module of q. Moreover, if receiver(m) =
q, the message m is propagated to the state-machine
layer of q to have q react upon the message m.

Observe that the presented verification strategy prevents any
evasion fault from affecting a correct process. Indeed, if
a faulty process has committed an evasion fault, the first
verification step fails, and the process is ignored forever.
Lastly, note that all correct processes “see” the same benign
execution (created by their verification modules) in all non-
corrupted executions (i.e., executions with up to ⌈n/3⌉ − 1
Byzantine processes). More precisely, if there are less than
⌈n/3⌉ faulty processes, the verification modules of all cor-
rect processes build the same behavior of every process in
the system; note that, formally speaking, observed benign
executions (which are sequences of events) can differ in the
order of events that are not causally related.
In a nutshell, the presented construction of τscr allows

each correct process to act only upon observing a benign
execution. Importantly, τscr masks all evasion faults, making
them harmless, which was its main design goal. We further
explain in §V-D how the presented design enables τsrc to
produce an accountable counterpart of a non-synchronous
distributed protocol.

9The transformation implementation (see §V-C) introduces an optimiza-
tion by piggybacking just a segment of the behavior obtained after the last
message was sent, i.e., every received message is piggybacked at most once.

10Since we assume that all messages are authenticated (see §III-A), a
process cannot claim to have received a message if that is not the case.

8

C. Transformation Implementation
We briefly discuss the simplified implementation of τscr ,

given in Algorithm 1. The full implementation is presented
in [12].

Algorithm 1 Pseudocode of τscr - process p
1: upon init:
2: seqNum ← 1
3: delivered ← ∅ ▷ secure-delivered messages
4: validated ← ∅ ▷ validated messages
5: next ← [0]n

6: receivedMeantime ← [] ▷ array of messages
7: current ← [empty]n ▷ behaviors of processes

8: upon send(m):
9: M ← (m, seqNum, receivedMeantime)σp

10: seqNum ← seqNum + 1
11: receivedMeantime ← []
12: SecureBroadcast(M)
13: upon SecureDeliver(M):
14: delivered ← delivered ∪ {M}

15: ▷ The Validated function is defined in [12]
16: upon exists (m, sn, recMeantime)σq

∈ delivered such
that sn = next[q]+1∧Validated(recMeantime) = true :

17: if reception of recMeantime after current [q] results
in a valid behavior βq that sends m then

18: validated ← validated ∪ {(m, sn)}
19: current [q]← βq

20: end if
21: upon exists (m, sn)σq ∈ validated such that sn =

next[q] + 1:
22: next [q]← sn
23: if receiver(m) = p then
24: receive(m)
25: receivedMeantime.append(m)
26: end if
27: upon exists (m, sn)σq

, (m′, sn ′)σq
∈ delivered such

that sn = sn ′ ∧m ̸= m′:
28: detect(q) ▷ equivocation

The pseudocode captures the implementation details of the
verification module, as well as the secure broadcast module.
Specifically, the main aim of the pseudocode is to define a
sequence of actions taking place once a process is instructed
(by its state-machine layer) to send a message. Moreover, we
define when the state-machine receives a message from the
verification module. Let us take a closer look at Algorithm 1.

Once the state-machine aims to send a message (line 8),
the verification module appends to the message (line 9) the
following: (1) the sequence number, and (2) all received
messages (by the state-machine layer) since the last secure-
broadcast message (the receivedMeantime variable). Then,
the enriched message is disseminated using the secure broad-
cast primitive (line 12). On the other hand, once the process
secure-delivers a message (line 13), it does not propagate the

message to the state-machine layer right away (if the message
is indeed intended for the process). At this moment, it only
includes the message into the delivered set (line 14), the set
of all secure-delivered messages.
The message is propagated to the state-machine layer only

once it belongs to the built benign execution, i.e., only once
it belongs to the validated set (if a message is included in
the validated set, the message is validated or valid-delivered).
A message m is validated (i.e., valid-delivered) once (1)
all previously sent messages by sender(m) are validated
(line 16), (2) all received messages accompanying m are
validated (line 16), and (3) it is verified that m is sent in
a correct behavior (line 17).
Lastly, as soon as it is observed that a process sends

two different messages associated with the same sequence
number (line 27), the process is detected (line 28). Since no
correct process ever sends two different messages associated
with the same sequence number (ensured by line 10), the
detected process is indeed faulty. We make a small remark
regarding line 27. Namely, the secure broadcast primitive
traditionally ensures the “no-duplication” property, i.e., no
correct process ever secure-delivers two different messages
with the same sequence number (which implies that the
condition of line 27 could never be satisfied). However, we
assume that the “no-duplication” property is not satisfied
by the secure broadcast primitive we use. Note that it is
sufficient for a correct process to observe (on any “level”)
two conflicting messages sent by the same sender. Hence,
the condition of line 27 could be satisfied whenever any two
conflicting messages are observed (irrespectively of the level
to which they “belong”).

D. Solution Preservation & Accountability & Syntactic Corre-
spondence

In order to show that our transformation τscr indeed
produces an accountable counterpart of a distributed protocol
with factor f = min(⌈n/3⌉ − 1, t0), we need to show that
τscr (1) preserves the solution of a decision task, (2) provides
accountability whenever the safety of the decision task is
violated, and (3) obtains homomorphism between executions
of the transformed and original protocol.

a) Solution preservation: In [12], we define a certain
class of transformations producing pseudo-extensions. An
important feature of the pseudo-extension formalism is that
there exists a homomorphism µe : execs(Π̄) → execs(Π)
between executions of a pseudo-extension Π̄ and executions
of the original protocol Π.
Moreover, we define two distributed properties: integrity

and obligation. The integrity property is satisfied if and
only if every received message m has indeed been sent
by its appearing source; note that the integrity property
trivially follows from the non-forgeability property of digital
signatures. The obligation property is satisfied if and only
if correct processes are able to communicate between each
other, i.e., if and only if every message sent by a correct
process to a correct process is eventually received.

9

Let ΠD be a distributed protocol that solves a decision
task D with t0-resiliency and let Π̄D be a pseudo-extension
of ΠD . If Π̄D satisfies both integrity and obligation in an
execution, then Π̄D “solves” D in that execution. Given the
fact that τscr produces pseudo-extensions, the fact that our
transformation ensures the obligation property whenever the
number of faulty processes is less than or equal to ⌈n/3⌉−1
and that our transformation ensures the integrity property
regardless of the number of faulty processes, it follows that
Π̄D solves D with min(⌈n/3⌉ − 1, t0)-resiliency.

b) Accountability: Recall that the verification module
works correctly irrespectively of the number of faulty pro-
cesses. Moreover, the integrity property is ensured even in an
entirely corrupted system. Hence, if correct processes output
values that cause a safety violation, then at least t0 + 1
pairs of conflicting messages could be observed from as many
Byzantine processes, where t0 is the resiliency of the original
distributed protocol.

The previous statement comes as no surprise. Indeed,
every correct process p that outputs a value leading to a
safety violation has observed a benign execution αp (via its
verification module); note that the αp execution “instructs“ p
to output its value. If safety is violated and no more than t0
pairs of conflicting messages are sent, it would be possible to
devise an execution where t0 faulty processes violate safety
by interacting with each correct process p, which outputs a
value leading to the safety violation, exactly as they do in
αp. Hence, we reach a contradiction with the fact that the
distributed protocol solves its decision task with t0-resiliency.

c) Syntactic correspondence: Lastly, we show that our
transformation τscr preserves the “way” the original pro-
tocol solves the problem. Specifically, a distributed protocol
τscr (ΠD) solves a decision task D (ensured because of the
solution preservation) in the same way as ΠD .
Formally, τscr (ΠD) (which is a pseudo-extension of ΠD),

preserves all the fully-correct FIFO executions of ΠD , i.e.,
for every FIFO execution α of ΠD , where CorrΠ(α) = Ψ,
there exists an execution ᾱ of τscr (ΠD) such that α = µe(ᾱ).
Intuitively, an execution is a FIFO execution if all messages
are received in the order in which they were sent (FIFO
executions are formally defined in [12]).

Theorem 3. Let ΠD be a non-synchronous distributed pro-
tocol that solves a decision task D with t0-resiliency. Then,
τscr (ΠD) is an accountable counterpart of ΠD with factor
f = min(⌈n/3⌉ − 1, t0) according to a basis which consists
of all fully-correct FIFO executions of ΠD .

Proof. For space limitations, the formal proof of the theorem
is delegated to the full version of the paper [12].

We conclude this subsection by stating that τscr could be
generalized to allow accountability even in synchronous en-
vironments or partially synchronous environments in which
message delays after GST are bounded by a known param-
eter. In such scenarios, the only modification to our τscr
transformation is increasing every timeout duration at pro-

cesses by 3 times in order to accommodate for the increase in
message delays introduced by the secure broadcast primitive.
E. Complexity
Lastly, we present the complexity overhead of τscr .

Theorem 4. Let ΠD be a non-synchronous distributed protocol
that solves a decision task D with t0-resiliency and let Π̄D =
τscr (ΠD). Let ᾱ be an execution of Π̄D and let α = µe(ᾱ).
The following holds:

• Communication complexity: Let cc′ and cc be the com-
munication complexities of ᾱ and α, respectively. Then,
cc′ = cc ·O(n2) · κ, where κ is the security number.

• Message complexity: Let mc′ and mc be the message
complexities of ᾱ and α, respectively. Then, mc′ = mc ·
O(n2) · κ, where κ is the security number.

• Memory complexity: Let memc′ and memc be the mem-
ory complexities of ᾱ and α, respectively. Then, memc′ =
memc + n · cc · κ, where κ is the security number.

• Delay complexity: Let dc′ and dc be the delay complexities
of ᾱ and α, respectively. Then, dc′ = 3 · dc.

Proof. We prove the theorem by using the well-known
“double-echo” secure broadcast [5], which implies a quadratic
overhead per message and tripling of message delays.

Remark 1. The broader application of τscr includes:
• Distributed protocols in which violation of any safety
property triggers accountability as long as lack of pri-
vacy is acceptable (formal treatment given in [12]).

• Randomized distributed protocols in which (1) safety
is ensured deterministically, and (2) private channels
are not required for liveness (formal treatment given
in [12]).

• Sub-quadratic committee-based blockchains (formal
treatment given in [12]).

VI. Conclusion
We presented a transformation of any non-synchronous

distributed protocol into an accountable distributed protocol
that remains practical. The main idea behind our transfor-
mation is to allow only benign executions to reach the
state-machine layer of correct processes, following the ideas
previously presented in [2], [5], [13], [15], [21], [22]. Future
work includes designing accountable distributed protocols
that lower the O(n2) multiplicative communication overhead
of our generic τscr transformation by focusing on specific
distributed protocols.
Acknowledgments
This research is supported in part under Australian

Research Council Discovery Projects funding scheme
(project number 180104030) entitled “Taipan: A Blockchain
with Democratic Consensus and Validated Contracts” and
Australian Research Council Future Fellowship funding
scheme (project number 180100496) entitled “The Red Belly
Blockchain: A Scalable Blockchain for Internet of Things”, as
well as Singapore MOE Grant MOE2018-T2-1-160 (Beyond
Worst-Case Analysis).

10

References

[1] Attiya, H., Herlihy, M., and Rachman, O. Efficient Atomic Snapshots
Using Lattice Agreement. In Distributed Algorithms (1992), A. Segall
and S. Zaks, Eds., Springer Berlin Heidelberg, pp. 35–53.

[2] Attiya, H., and Welch, J. L. Distributed computing - Fundamentals,
Simulations, and Advanced Topics (2. ed.). Wiley series on parallel and
distributed computing. Wiley, 2004.

[3] Bazzi, R. A. Automatically increasing fault tolerance in distributed
systems. G. I. of Technology School of Information and G. U. S.
Computer Science Atlanta, Eds.

[4] Bazzi, R. A., and Neiger, G. Optimally Simulating Crash Failures in a
Byzantine Environment. In Distributed Algorithms, 5th International
Workshop, WDAG ’91, Delphi, Greece, October 7-9, 1991, Proceedings
(1991), S. Toueg, P. G. Spirakis, and L. M. Kirousis, Eds., vol. 579 of
Lecture Notes in Computer Science, Springer, pp. 108–128.

[5] Bracha, G. Asynchronous Byzantine Agreement Protocols. Inf.
Comput. 75, 2 (1987), 130–143.

[6] Buterin, V., and Griffith, V. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

[7] Castro, M., and Liskov, B. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Transactions on Computer Systems 20, 4
(2002).

[8] Chaudhuri, S. More Choices Allow More Faults: Set Consensus Prob-
lems In Totally Asynchronous Systems. Information and Computation
105, 1 (1993), 132–158.

[9] Civit, P., Gilbert, S., and Gramoli, V. Brief Announcement: Poly-
graph: Accountable Byzantine Agreement. In Proceedings of the 34th
International Symposium on Distributed Computing (DISC’20) (Oct 2020),
Schloss Dagstuhl, pp. 45:1–45:3.

[10] Civit, P., Gilbert, S., and Gramoli, V. Polygraph: Accountable Byzan-
tine Agreement. In Proceedings of the 41st IEEE International Conference
on Distributed Computing Systems (ICDCS’21) (Jul 2021).

[11] Civit, P., Gilbert, S., Gramoli, V., Guerraoui, R., and Komatovic,
J. As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus
is easy! In 36th IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2022, Lyon, France, May 30-June 3, 2022 (to appear)
(2022), IEEE.

[12] Civit, P., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J., Milo-
sevic, Z., and Serendinschi, A. Crime and Punishment in Distributed
Byzantine Decision Tasks (Extended Version). IACR Cryptol. ePrint
Arch. (2022), 121.

[13] Clement, A., Junqeira, F., Kate, A., and Rodrigues, R. On the
(Limited) Power of Non-Equivocation. In ACM Symposium on Principles
of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July
16-18, 2012 (2012), pp. 301–308.

[14] Clement, A., Junqeira, F., Kate, A., and Rodrigues, R. On the
(Limited) Power of Non-Equivocation. In Proceedings of the 2012 ACM
Symposium on Principles of Distributed Computing (New York, NY, USA,
2012), PODC ’12, Association for Computing Machinery, p. 301–308.

[15] Coan, B. A. A Compiler that Increases the Fault Tolerance of Asyn-
chronous Protocols. IEEE Trans. Computers 37, 12 (1988), 1541–1553.

[16] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. DBFT: Efficient
Leaderless Byzantine Consensus and its Applications to Blockchains.
In Proceedings of the 17th IEEE International Symposium on Network
Computing and Applications (NCA’18) (2018), IEEE.

[17] Doudou, A., and Schiper, A. Muteness Detectors for Consensus with
Byzantine Processes. In Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing (1998), p. 315.

[18] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the Pres-
ence of Partial Synchrony. Journal of the Association for Computing
Machinery, Vol. 35, No. 2, pp.288-323 (1988).

[19] Haeberlen, A., Kouznetsov, P., and Druschel, P. PeerReview: Prac-
tical Accountability for Distributed Systems. SOSP’07 (2007).

[20] Haeberlen, A., and Kuznetsov, P. The Fault Detection Problem. In
Principles of Distributed Systems, 13th International Conference, OPODIS
2009, Nı̂mes, France, December 15-18, 2009. Proceedings (2009), T. F.
Abdelzaher, M. Raynal, and N. Santoro, Eds., vol. 5923 of Lecture Notes
in Computer Science, Springer, pp. 99–114.

[21] Ho, C., Dolev, D., and Van Renesse, R. Making Distributed Applica-
tions Robust. In International Conference On Principles Of Distributed
Systems (2007), Springer, pp. 232–246.

[22] Ho, C., Van Renesse, R., Bickford, M., and Dolev, D. Nysiad: Practical
Protocol Transformation to Tolerate Byzantine Failures. In NSDI (2008),
vol. 8, pp. 175–188.

[23] Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. Byzantine
Fault Detectors for Solving Consensus. British Computer Society (2003).

[24] Lamport, L., Shostak, R., and Pease, M. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems 4,
3 (1982), 382–401.

[25] Lu, Y., Lu, Z., Tang, Q., and Wang, G. Dumbo-MVBA: Optimal Multi-
Valued Validated Asynchronous Byzantine Agreement, Revisited. In
PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020 (2020), Y. Emek and C. Cachin,
Eds., ACM, pp. 129–138.

[26] Malkhi, D., and Reiter, M. Unreliable Intrusion Detection In Dis-
tributed Computations. In Proceedings 10th Computer Security Founda-
tions Workshop (1997), IEEE, pp. 116–124.

[27] Neiger, G., and Toueg, S. Automatically Increasing the Fault-Tolerance
of Distributed Systems. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, Toronto, Ontario,
Canada, August 15-17, 1988 (1988), D. Dolev, Ed., ACM, pp. 248–262.

[28] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. BFT
Protocol Forensics. In Computer and Communication Security (CCS)
(Nov 2021).

[29] Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., and Abraham,
I. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (2019), pp. 347–356.

[30] Zheng, X., and Garg, V. K. Byzantine Lattice Agreement in Asyn-
chronous Systems. In 24th International Conference on Principles of
Distributed Systems, OPODIS 2020, December 14-16, 2020, Strasbourg,
France (Virtual Conference) (2020), Q. Bramas, R. Oshman, and P. Ro-
mano, Eds., vol. 184 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, pp. 4:1–4:16.

11

