
Leaderless Consensus
Karolos Antoniadis

DCL, EPFL
karolos.antoniadis@epfl.ch

Antoine Desjardins
DCL, EPFL

antoinedesjard@gmail.com

Vincent Gramoli
University of Sydney and EPFL
vincent.gramoli@sydney.edu.au

Rachid Guerraoui
DCL, EPFL

rachid.guerraoui@epfl.ch

Igor Zablotchi
DCL, EPFL

igor.zablotchi@epfl.ch

Abstract—Classical synchronous consensus algorithms are
leaderless: processes exchange their proposals, retain the max-
imum value and decide when they see the same choice across a
couple of rounds. Indulgent consensus algorithms are more robust
in that they only require eventual synchrony, but are however
typically leader-based. Intuitively, this is a weakness for a slow
leader can delay any decision.

This paper asks whether, under eventual synchrony, it is
possible to deterministically solve consensus without a leader.
The fact that the weakest failure detector to solve consensus is
one that also eventually elects a leader seems to indicate that the
answer to the question is negative. We prove in this paper that
the answer is actually positive.

We first give a precise definition of the very notion of a
leaderless algorithm. Then we present three indulgent leaderless
consensus algorithms, each we believe interesting in its own right:
(i) for shared memory, (ii) for message passing with omission
failures and (iii) for message passing with Byzantine failures
(with and without authentication).

Index Terms—Leaderless termination, Byzantine,
synchronous-k, synchronizer, fast-path

I. INTRODUCTION

Consensus algorithms that are designed for an eventually
synchronous system, coined indulgent algorithms, tolerate an
adversary that can delay processes for an arbitrarily long
period of time [1], [8], [12], [17], [26]–[28], [34], [37], [42],
[43]. A common characteristic of these algorithms is that they
all rely on a leader. Essentially, the leader helps processes
converge towards a decision and it usually does so in a fast
manner when the system is initially synchronous and there
is neither failure nor contention. The drawback arises in the
other cases: as the leader slows down, so does its consensus
execution.

Basically, the requirement for a leader in existing indulgent
algorithms represents a weakness that the adversary can exploit
to significantly delay any decision. The choice of the timeout
to suspect a faulty leader and replace it impacts performance
drastically [28], [39], sometimes by two orders of magni-
tude [26]. Besides, replacing the leader requires a view-change
protocol that is so complex that research prototypes often omit
it [19] or suffer from errors [1].

Various efforts have been recently devoted to minimize the
role of the leader. One idea is to change the leader frequently
even if it is not suspected to have failed [12], [43]. Another

is to bypass the leader bottleneck by having multiple pro-
posers [16], [17], [42] before reverting to a weak coordinator
to converge. A third one is to tolerate multiple leaders for
different consensus instances [26], [34], [37], however, it only
eliminates the leader from the state machine replication (SMR)
algorithm, not from the underlying consensus algorithm for
a single SMR slot. None of these approaches manages to
eliminate the leader.

This raises a fundamental question. Is it possible to elim-
inate the leader from a deterministic indulgent consensus al-
gorithm? Two reasons might lead to believe that the answer is
negative. First, the weakest failure detector to solve consensus
has been shown to be an eventual leader [15]. Second, when
seeking the weakest amount of synchrony needed to solve
consensus, it was shown that one correct process must have
as many eventually timely links as there can be failures (some
sort of leader) [2], [11].

The main contribution of this paper is to show that it is
actually possible to devise a leaderless indulgent consensus
algorithm.

First, to address this question, we formally define the
notion of “leaderless”. We believe this definition to be of
independent interest. Intuitively, a leaderless algorithm is one
that should be robust to the repeated slow-downs of individual
processes. We introduce the synchronous−k (which reads
“synchronous minus k”) round-based model where executions
are (eventually) synchronous and at most k < n processes
can be suspended per round. We define a leaderless algorithm
as one that decides in an eventually synchronous−1 (denoted
by �synchronous−1) system. In a synchronous−1 system, the
classical idea of exchanging values in rounds and adopting
the maximum one would not work, because the adversary can
suspend the process with the maximum value for as long as
it wants.

Then we present three leaderless consensus algorithms, each
for a specific setting. The first algorithm, called Archipelago1,
works in shared memory and builds upon a new variant of
the classical adopt-commit object [24] that returns maximum
values to help different processes converge towards the same

1Unlike in Paxos, whose name refers to a unique island and where a unique
leader plays the most decisive role, in Archipelago, whose name refers to a
group of islands, all nodes play an equally decisive role.

1

output. Interestingly, the algorithm requires n ≥ 3 processes,
which is not common for shared memory algorithms. The sec-
ond algorithm is a generalization of Archipelago in a message
passing system with omission failures. The third algorithm,
called BFT-Archipelago, is a generalization of Archipelago for
Byzantine failures. This algorithm shares the same asymptotic
communication complexity as a classic Byzantine fault tolerant
consensus algorithms [14] and can execute optimistically a
fast path to terminate in two message exchanges under good
conditions. Interestingly, all our algorithms are optimal both
in terms of resilience and time complexity.

The rest of the paper is organized as follows. Section II
gives some necessary background. Section III formalizes the
notion of a leaderless consensus algorithm and explains why
well-known leader-based consensus algorithms do not satisfy
this definition. Section IV presents three leaderless consensus
algorithms, one for shared memory, another to tolerate omis-
sion failures in message passing and a third one to tolerate
Byzantine failures. Section V discusses the complexities of
our algorithms. Section VI discusses related work. The full
proofs are deferred to the companion technical report [3].

II. PRELIMINARIES

We first consider an asynchronous shared-memory model
with n processes P = {p1, p2, . . . , pn}. Processes have access
to (an infinite) set R of atomic registers that can each store
values from a set V . Initially, all registers contain the initial
value ⊥. For notational simplicity, we assume that R includes
an infinite set of single-writer multi-reader (SWMR) arrays of
n registers each. We denote these arrays as R1,R2, . . . where
a process pi can write locations R1[i],R2[i], Processes
communicate by reading from and writing to atomic registers.
A process is a state machine that can change its state as a result
of reading a register or writing to a register. An algorithm is
the state machine of each process. A configuration corresponds
to the state of all processes and the values in all registers in R.
An initial configuration is a configuration where all processes
are in their initial state and all registers in R contain value ⊥.

When a process p invokes a read or a write operation, we
say that p performs a read or write event respectively. An exe-
cution corresponds to an alternating sequence of configurations
and events, starting from an initial configuration. For example,
in the execution α = C, read(r, v)p, C

′,write(r′, v′)p′ , C ′′

we have processes p, p′ ∈ P , registers r, r′ ∈ R, values
v, v′ ∈ V , and configurations C,C ′, C ′′ where C is an initial
configuration, and the system moves from configuration C to
C ′ when p reads v from r and from C ′ to C ′′ when p′ writes
v′ to r′. We assume that all executions are well-formed, hence
for a process p to perform an event after configuration C
in an execution, there must be a transition specified by p’s
state machine from p’s state in C. In this work, we consider
deterministic algorithms and hence the initial state of processes
and the sequence of processes that take steps uniquely define
a single well-formed execution.

An execution α′ is called an extension of a finite execution
α if α is a prefix of α′. Two executions α and β are equal if

both executions contain the same configurations and events in
the same order.

Synchronous−k execution. We can now define what it means
for an execution to be synchronous in shared-memory. Our
definition is inspired by the notion of synchrony in a message
passing model where there is a bound on the time needed for a
message to propagate from one process to another and for the
receiver to process this message. In a message passing model,
we can divide time into rounds [21] such that, in each round,
every process p: (i) sends a message to every other process in
the system, and (ii) delivers any message that was sent to p
and performs local computation.

To adapt synchrony to the shared memory model, we also
assume that processes take steps in rounds. Specifically, in
each round, every process pi (i) performs a write in some
Rj [i] and (ii) collects all the values written in array Rj . In
one round, different processes can read from different arrays.

More precisely, a collect by a process pi on an array Rj

is defined as a sequence of n read events: collect(Rj)pi
=

read(Rj [1], ·)pi
, . . . , read(Rj [n], ·)pi

. Notation “·” indicates
any value. We define a step of Rj by a process pi as a
write event and then a collect on Rj . So, step(Rj)pi =
write(Rj [i], ·)pi

, collect(Rj)pi
. A round consists of all the

write events write(Rj1 [1], ·)p1
, . . . , write(Rjn [n], ·)pn

, fol-
lowed by a sequence collect(Rj1)p1

, . . . , collect(Rjn)pn
of

collects by the exact same processes that performed a write
event. Note that indices ja and jb could be the same for a 6= b.
For example, if we only consider two processes {p1, p2},
then a round r could be the following sequence of events
r = write(Rj1 [1], ·)p1

,write(Rj2 [2], ·)p2
, collect(Rj1)p1

,
collect(Rj2)p2 .

To capture that a process is suspended in a round r, we
denote by r|−Ps

all the steps except the ones taken by
processes in Ps. For instance, for the above sequence r, we
have r|−{p1} = write(Rj2 [1], ·)p2

, collect(Rj2)p2
.

We say that an execution is synchronous−k (which reads
“synchronous minus k”) if α is equal to a sequence of rounds
r1|−Ps1

, r2|−Ps2
, r3|−Ps3

, . . . and |Psi | ≤ k for i ≥ 1. In
other words, at most k processes can be suspended in each
round. A suspended process p in a round r does not perform
all events in r. For this reason, we call such an execution
“synchrony minus k,” since all processes except k behave
synchronously in each round. We say that an infinite execution
α is eventually synchronous−k (or �synchronous−k) if an
infinite suffix of α is equal to a synchronous−k execution.
Naturally, a synchronous−k execution for k = 0 corresponds
to a fully synchronous execution, while synchronous−k with
k > 0 allows for some asynchrony in an execution.

In a synchronous−k or �synchronous−k execution α, we
say that a round r′ occurs after round r if the events of round
r′ appear after the events of round r in α.

We say that a process p is correct in an infinite execution α
if p is not suspended forever in α. More precisely, a process
p is correct in an infinite execution if, for every round r there
exists a later round r′ such that process p is not suspended in

2

r′.

Example. Figure 1 depicts a synchronous−1 execution for
two processes p1 and p2 that take steps in a sequence starting
from round 1 and ending in round 11. The X symbol in a
round indicates that the process is suspended in this round. In
Figure 1, both processes perform steps in the first round, p1
in array R5 and p2 in R2. Then, in the next round, process
p1 is suspended, etc.

Fault models. A process is faulty in the omission model
if it may at some point of the execution omit sending some
message, or in the Byzantine model if it can behave arbitrarily,
except impersonating another process.

Consensus. In consensus [13], each process proposes a value
by invoking a propose(v) function and then all processes
have to decide on a single value. Consensus is defined by
the following three properties. Validity states that a value
decided was previously proposed. Agreement states that no
two processes decide different values, and termination states
that every correct process eventually decides. We say that a
consensus algorithm decides in an execution α if a propose(v)
function call by some process p returns in α.

III. DEFINING A LEADERLESS ALGORITHM

We are now ready to define a leaderless consensus algo-
rithm. We define it as a consensus algorithm that terminates
despite an adversary suspending one process per round, de-
fined as �synchronous−1 in the previous section. To the best
of our knowledge, this is the first formal definition of what
“leaderless” means.

This definition stems from the intuition that a unique
process—the leader—must perform some round for a “leader-
based” consensus algorithm to decide. In other words, a leader-
based consensus algorithm cannot terminate if an adversary
can selectively suspend a process the moment it becomes
the leader. We thus introduce termination despite such an
adversary as a new liveness property:

Definition 1 (Leaderless Termination). A consensus algorithm
A satisfies leaderless termination if, in every �synchronous−1
execution of A, every correct process decides.

Intuitively, an algorithm that decides despite an adversary
suspending one process per round has to be leaderless. This
is why, we say that a consensus algorithm is leaderless if it is
a consensus algorithm that satisfies leaderless termination as
follows.

Definition 2 (Leaderless Algorithm). A consensus algorithm
is leaderless if it satisfies validity, agreement and termination,
as well as leaderless termination.

By contrast, a consensus algorithm that is not leaderless, is
called leader based. We extend Definition 2 to the message-
passing model in Section IV-B. An important aspect of Def-
inition 2 is that it makes a leaderless consensus algorithm
robust against the adaptive behavior of a dynamic adversary.

In particular, an alternative definition of a leaderless consensus
algorithm as an algorithm that decides in the exact same
number of rounds irrespective of which process crashes (or
gets suspended forever), would not share the same robustness.

Why leaderless termination is not sufficient. An important
remark is now in order. Leaderless termination is not implied
by the classical notion of termination. Essentially, one can
design a consensus algorithm that decides in finite time in all
synchronous−1 executions, but could however violate safety
in an �synchronous−1 execution (see the companion technical
report [3] for such an algorithm). The challenge is, instead, to
devise a leaderless consensus algorithm that decides in finite
time in every �synchronous−1 execution and never violates
safety. Section IV-A presents three leaderless consensus algo-
rithms that tolerate omissions in shared memory, omissions in
message passing and Byzantine failures.

The pros and cons of being leaderless. With the property
of being leaderless comes various advantages for practical
systems: avoiding leader bottlenecks [9], [17] and reducing
the impact of a single point of failure on performance [8],
[42] are well-known advantages that add to the aforementioned
robustness. But are there drawbacks of being leaderless? For
example, are there fault models for which leaderless algo-
rithms do not exist? Actually, we present several leaderless
consensus algorithms that tolerate classic types of faults in
the partially synchronous model. One might also ask whether
leaderless algorithms induce a higher complexity than leader-
based ones. It turns out that our algorithms are both time
optimal and resilience optimal. In addition, both our authen-
ticated Byzantine fault tolerant leaderless algorithm, BFT-
Archipelago, and its version without signatures, described in
the companion technical report [3], share the same commu-
nication complexity as PBFT [14] and DBFT [17], namely
O(n4) bits. Finally, since BFT-Archipelago can be written as
an Abstract [7] (see Section V), it is compatible with leader-
based consensus instances and inherits an optimal fast path in
good executions.

Paxos: a counter example. Consider Algorithm 1, a leader-
based algorithm that, when combined with a leader election,
corresponds to Paxos [29] in shared memory (or more specif-
ically to Disk Paxos [25] with a single non-faulty disk).

All processes share an array R of n single-writer multi-
reader (SWMR) registers (line 2), each storing a pair 〈a, b〉
associating value a to timestamp b. Each process also main-
tains a ballot number as a local ts value (line 4). When a
process pi invokes propose(v), it executes a prepare phase and
a propose phase [30]. During the prepare phase, pi stores its
current timestamp value to R[i] (line 7) and either retrieves the
value val of R associated with the highest timestamp (line 8),
or (if no such value exists) sets val to its own value v. During
the propose phase, pi stores the pair 〈val , ts〉 to array R[i]
(line 11) and examines whether the highest timestamp in R is
the one that pi wrote (line 12). If this is the case, the algorithm
decides (line 13), otherwise pi increases ts and repeats the

3

p1

p2

1 2 3 4 5 6 7 8 9 10 11

step(R5)p1 step(R2)p1 step(R6)p1 step(R3)p1 step(R3)p1 step(R2)p1 step(R1)p1 step(R4)p1 step(R1)p1

step(R2)p2
step(R4)p2

step(R2)p2
step(R1)p2

X X

X X X X X X X

Fig. 1. Graphical depiction of a synchronous−1 execution.

Algorithm 1 Leader-based consensus algorithm
1: Shared state:
2: R[n]← {〈⊥, 0〉, . . . , 〈⊥, 0〉} . 1 SWMR reg. per proc.

3: Local state:
4: ts ← i . for process pi

5: procedure propose(v): . process pi proposes value v
6: while true do
7: R[i].ts ← ts
8: val ← getHighestTspValue(R)
9: if val =⊥ then

10: val ← v
11: R[i]← 〈val , ts〉
12: if ts = getHighestTsp(R) then
13: return val
14: ts ← ts + n

loop (line 14).
According to Definition 2, Algorithm 1 is leader based. In

fact, Algorithm 1 does not terminate if an adversary suspends
a process p when it is about to check whether its timestamp ts
is the highest timestamp (line 12) and until some other process
p′ stores a timestamp ts′ > ts in array R (line 7).

IV. LEADERLESS CONSENSUS ALGORITHMS

In this section, we present a series of leaderless consensus
algorithms, called Archipelago. For pedagogical reasons, we
introduce a simple shared memory version before its message-
passing variant, called Archipelago, and finally a Byzantine
fault tolerant variant, called BFT-Archipelago.

A. Archipelago: A Leaderless Consensus Algorithm

Archipelago satisfies Definition 1 when n ≥ 3 and never
violates safety. It builds upon a new variant of an adopt-
commit object [24], called adopt-commit-max, whose invoca-
tions by different processes help them converge towards the
same output value without a leader.

Adopt-commit-max implementation. The adopt-commit ob-
ject [24] has the following specification. Every process p
proposes an input value to such an object and obtains an
output, which consists of a pair 〈d, v〉; d can be either commit
or adopt. The following properties are satisfied:

•CA-Validity: If a process p obtains output 〈commit, v〉 or
〈adopt, v〉, then v was proposed by some process.
•CA-Agreement: If a process p outputs 〈commit, v〉 and a
process q outputs 〈commit, v′〉 or 〈adopt, v′〉, then v = v′.
•CA-Commitment: If every process proposes the same value,
then no process may output 〈adopt, ·〉.
•CA-Termination: Every correct process eventually obtains
an output.

Algorithm 2 depicts a new implementation of an adopt-
commit object. It differs from the classic implementation [24]
in that if the collect of A by process p that proposes v returns
different values, then p stores 〈adopt,mv〉 to array B (line 9)
instead of storing 〈adopt, v〉, where mv is the maximum of
the values collected from A (max(SA)). Additionally, if all
pairs collected from B are of the form 〈adopt, ·〉, then process
p returns 〈adopt,mv〉, where mv is max(SA) (line 14). Note
that Algorithm 2 is just a different implementation of the
classic implementation [24] and that the main properties of
an adopt-commit object remain the same. These modifications
are crucial for the leaderless termination of Archipelago.

Algorithm 2 The adopt-commit-max algorithm
1: Shared state:
2: A and B, two arrays of n single-writer multi-reader
3: registers, all initially ⊥

4: procedure propose(v): . taken by a process pi
5: A[i]← v . step A starts
6: SA ← collect(A) . step A ends
7: if (SA \ {⊥} = {v′}) then . step B starts
8: B [i]← 〈commit, v′〉
9: else B [i]← 〈adopt,max(SA)〉 . or step B starts

10: SB ← collect(B) . step B ends
11: if SB \ {⊥} = {〈commit, v′〉} then
12: return 〈commit, v′〉
13: else if 〈commit, v′〉 ∈ SB then return 〈adopt, v′〉
14: else return 〈adopt,max(SB)〉

We defer the correctness proof of Algorithm 2, which
is similar to that of an adopt-commit object [24], to the
companion technical report [3].

The Archipelago Algorithm. Algorithm 3 depicts
Archipelago where all processes share an infinite sequence
of adopt-commit-max objects (C) to ensure safety and a max
register m (lines 17 to 20) to help with convergence. A max
register r is a wait-free register that provides a write operation,
as well as a readmax operation that retrieves back the largest
value that was previously written to r [5]. Its write can be
implemented by letting each process write to a single-writer
multi-reader register whereas its readmax can be implemented
by collecting all values written by all processes and taking
the maximum. In a synchronous−1 execution, the processes
converge towards one value and there is an adopt-commit-max
object where all processes propose this exact single value.
Then, due to CA-commitment property of the adopt-commit-
max object, the adopt-commit-max outputs 〈commit, ·〉 and
Archipelago decides in finite time.

More precisely, Algorithm 3 performs repeatedly three steps
(by writing and collecting as defined in Section II) called
R-step, A-step and B-step. In the R-step (lines 25-26), each

4

Algorithm 3 Archipelago leaderless consensus
15: Shared state:
16: C [0, . . . ,+∞], an infinite array of adopt-commit-max
17: objects in their initial state
18: m , a max register object that initially contains 〈0,⊥〉.
19: Note that 〈x, y〉 > 〈x′, y′〉 if x > x′ or
20: (x = x′ and y > y′)

21: Local state:
22: c . index of adopt-commit-max object, initially 0

23: procedure propose(v):
24: while true do
25: m.write(〈c, v〉) . step R starts
26: 〈c′, v′〉 ← m.readmax() . step R ends
27: 〈control , v′′〉 ← C [c′].propose(v′)
28: c← c′ + 1
29: if control = adopt then v ← v′′

30: else return v′′

process p first writes 〈c, v〉 to register m (line 25) and then
retrieves the maximum tuple 〈c′, v′〉 stored in m (line 26).
Note that values c and v are not necessarily equal to c′

and v′. In the A-step (lines 5-6), process p proposes value
v′ to adopt-commit-max object C[c′] by invoking function
C[c′].propose(v′) (line 27) described in Algorithm 2 and sets
c to the next adopt-commit-max object to be used (line 28).
A process starts a B-step either at line 7 or 9 of Algorithm 2
and the subsequent collect takes place in line 10. If process
p receives a commit response from some adopt-commit-max
object (line 30), then process p decides and returns. Otherwise,
when process p receives an 〈adopt, v′′〉 response, it stores this
result in the m register (line 29) and restarts.

Difference with eventual leader election, Ω. The cau-
tious reader might think that by solving consensus in an
�synchronous−1 execution with Archipelago, we could im-
plement the Ω failure detector [15]. We could then augment
Algorithm 1 with Ω so that Algorithm 1 decides in every
�synchronous−1 execution. There are ways to implement Ω
in crash-recovery settings, but only when a crashed process
can recover a finite number of times [13], [22], [35]. This is
in contrast with our model, where a process can be suspended
an infinite number of times on an infinite number of rounds.
In other words, in our model every process is unstable [35],
hence the existence of Ω in our model is impossible.

Theorem IV.1. Archipelago satisfies leaderless termination
for n ≥ 3.

To prove Theorem IV.1, we show that as Archipelago tra-
verses adopt-commit-max objects, the current minimal value,
among those values still being proposed to adopt-commit-
max objects, eventually gets eliminated (i.e., processes only
propose larger values in later adopt-commit-max objects).
Therefore, eventually only one value gets proposed to some
adopt-commit-max object, and every correct process decides.
Archipelago does not satisfy leaderless termination when
n = 2. The proof that Archipelago is a leaderless consensus
algorithm is deferred to the companion technical report [3].

B. Leaderless Consensus in Message Passing
We now adapt Archipelago for the message passing model

where f processes among n = 2f+1 can fail: f−1 processes
can fail by crashing (fail-stop) or fail to send or receive
messages when they should (omission faults) and at most 1
additional process can be suspended per round.

Algorithm 4 Archipelago in message passing
1: Local State:
2: i, the current adopt-commit-max object, initially 0
3: R, a set of tuples, initially empty
4: A[0, 1, . . .], a sequence of sets, all initially empty
5: B[0, 1, . . .], a sequence of sets, all initially empty

6: procedure propose(v):
7: while true do
8: 〈i, v′〉 ← R-Step(v)
9: 〈flag, v′′〉 ← A-Step(v′)

10: 〈control , val〉 ← B-Step(flag, v′′)
11: if control = commit then return val
12: else i← i+ 1

13: procedure R-Step(v):
14: broadcast(R, i, v)
15: wait until receive (R-response, i, R) from f + 1 proc.
16: R← R ∪ { union of all Rs received in previous line}
17: 〈i′, v′〉 ← max(R)
18: return 〈i′, v′〉

19: procedure A-Step(v):
20: broadcast(A, i, v)
21: wait until receive (A-response, i, A[i]) from f + 1 proc.
22: S ← union of all A[i]s received
23: if S contains only one value val then return 〈true, val〉
24: else return 〈false,max(S)〉

25: procedure B-Step(flag, v):
26: broadcast(B, i,flag, v)
27: wait until receive (B-response, i, B[i]) from f + 1 proc.
28: S ← union of all B[i]s received
29: if S contains only 〈true, val〉 for some val then
30: return 〈commit, val〉
31: else if S contains some entry 〈true, val〉 then
32: return 〈adopt, val〉
33: else return 〈adopt,max(S)〉

34: upon reception of (R, j, v) from p:
35: Add 〈j, v〉 to R
36: send(R-response, j, R) to p

37: upon reception of (A, j, v) from p:
38: Add v to A[j]
39: send(A-response, j, A[j]) to p

40: upon reception of (B, j,flag, v) from p:
41: Add 〈flag, v〉 to B[j]
42: send(B-response, j, B[j]) to p

�synchronous−k in message passing. To preserve the
definition of �synchronous−k in message passing, we first
need to define the notion of round and suspension in message
passing: In each round r, every (correct, non-suspended) a
process pi (i) broadcasts a message (called a request), (ii)
delivers all requests that were sent to pi in r, (iii) sends a
message (called a response) for every request it has delivered
in (ii), and (iv) delivers all replies sent to it in r. Note that this

5

notion of round involves 2 message delays, so it corresponds
to two rounds in the “traditional” sense [21]. We say that a
process p is suspended [4] in a round r, if p does not send
any messages in r and does not receive any messages sent by
other processes in round r.

Adapting Archipelago to message passing. One might be
tempted to apply the ABD emulation [6] to Algorithm 3.
However, this would require at least two message-passing
rounds for each of the R-step, A-step and B-step (one round
for the write and one round for the parallel n reads of the
collect) and it is unclear whether it would remain leaderless
since Archipelago’s proof hinges on each step taking exactly
one round. This is why, Algorithm 4 combines the write and
collect in a single round: the broadcasts in lines 14, 20 and
26 act as both the write and read invocations whereas the
responses in lines 36, 39 and 42 confirm the write, and return
all values written so far. Although this combination of writes
and reads can break atomicity, we show in the companion
technical report [3] that it does not violate safety during
asynchronous periods.

C. Byzantine Leaderless Consensus

We finally present BFT-Archipelago, the Byzantine fault
tolerant (BFT) variant of Archipelago. As BFT consensus
cannot be solved without synchrony with n ≤ 3f [33], we
assume the �synchronous−1 model where f processes among
n = 3f + 1 can fail: at most one is suspended and f − 1
can behave arbitrarily or be Byzantine. For simplicity of
presentation, we also assume authentication. The alternative
unauthenticated variant and the proof that the result generalizes
to the �synchronous−k model, where k ≤ f and f − k
processes can be Byzantine, are deferred to the companion
technical report [3].

The R-, A-, and B-Steps. BFT-Archipelago is depicted in Al-
gorithm 5 and follows the same 3-step pattern as Archipelago,
with the R-, A- and B-Steps executed in consecutive loop
iterations, called ranks.
• R-Step: process p gathers the rank and value of other
processes with the aim to settle on a common (rank , value)
at lines 17–24. Processes answer the R-broadcast (if they
find it valid as we explain below) by sending their highest
(rank , value).
•A-Step: processes broadcast their values and assess whether
other processes have conflicting values with theirs. Lines 33–
40 describe how a process answers to an A-broadcast, by
sending its highest value and another value if it has received
one.
•B-Step: a process may broadcast its value with the label true
to force other processes to adopt or commit it (lines 52–58).
A process responds to a B-broadcast by checking the validity
of the broadcast and then responding with its own B-value
(lines 64–71).

Except for the messages containing the value proposed in step
1 of rank 0, each message must be accompanied with a valid
partial certificate (or it is ignored) as we explain below.

Certificates. Lines 73–91 describe how to build and check
certificates. A partial certificate for a response message from
pi to pj contains the queries that justify this response. Below
we distinguish a broadcast (i.e., query) from its response even
though the response is itself sent to all. A broadcast from pi
justifies a response from pj for an R-Step if it contains the
highest value encountered that appears in the response from
pj . A broadcast from pi justifies a response from pj for an
A-Step, if it contains the highest value v and, if possible,
any value from the response different from v. For a broadcast
from pi to justify a response from pj for a B-Step, it must
ensure the following: if the response contains only true, then
the broadcast should contain true; if the response contains at
least one true and false pair, then the broadcast should contain
the true pair, and any of the false pairs; if the response contains
only false pairs, then the broadcast should contain the pair
among them with the highest value.

A partial certificate for a broadcast contains the union of
the 2f + 1 responses received during the previous step with
the partial certificates for these responses. A complementing
certificate at pi to a partial certificate for a broadcast (resp.
response) comprises f+1 (resp. 2f+1) responses received by
pj to each of the queries comprised in the partial certificate.

BFT-Archipelago satisfies Validity, Agreement and Leader-
less Termination, just like Archipelago.

Theorem IV.2. In every �synchronous−1 execution of BFT-
Archipelago, every correct process decides.

The key idea of the proof is that in order to prevent
termination, processes have to release some higher value
during the A-step to prevent processes from seeing only “true”
messages. But this means the value will be seen by O(n)
processes and hence the smaller value will be discarded. As it
consumes a value to delay the algorithm by O(1) rounds, and
there are at most n different values, after O(n) rounds there
will be only one value left, which will be committed. The full
proof is deferred to the companion technical report [3].

V. DISCUSSION AND COMPLEXITY ANALYSIS

Termination. In addition to leaderless termination (The-
orem IV.1), Archipelago satisfies termination for n ≥ 3,
meaning that in an eventually synchronous [13] execution,
every correct process eventually decides. In such an execution,
Archipelago needs at most 5 rounds, after the global stabiliza-
tion time [21] and round synchronization (i.e., all processes
start and end a round at the same time).

Fast path of BFT-Archipelago. The common-case perfor-
mance of BFT-Archipelago can be improved by executing
an optimistic fast path under favorable conditions (e.g., syn-
chrony, no failures, no contention), and falling back to a robust
path when these conditions are not met. This can be achieved
with the Abstract scheme [7] as it allows chaining multiple
BFT protocols, called Abstract instances, that can abort and
fall back to the next instance. In particular, the Backup wrapper
allows any full BFT protocol to become an Abstract instance.

6

Algorithm 5 BFT-Archipelago in message passing with n = 3f + 1

1: Local State:
2: i, the current rank, initially 0
3: R, a set of tuples, initially empty
4: A[0, 1, . . .] and B[0, 1, . . .], two
5: sequences of sets, all initially empty
6: C a sequence of broadcasts ID with the
7: number of answers they have received

8: procedure propose(v):
9: while true do

10: 〈i, v′〉 ← R-Step(v)
11: 〈flag, v′′〉 ← A-Step(i, v′)
12: 〈contr , val〉 ← B-Step(flag, i, v′′)
13: if contr = commit then return val
14: else i← i + 1, v ← val

15: procedure R-Step(v):
16: compile certificate C (empty at rank 0)
17: broadcast(R, i, v, C)
18: wait until (receive valid (Rresp, i, R, C)
19: from 2f + 1 processes)
20: R← R ∪ {union of all valid Rs received
21: in previous line}
22: 〈i′, v′〉 ← max(R)
23: R← max(R)
24: return 〈i′, v′〉

25: upon delivering (R, j, v, C) from p:
26: if reliability check(R, j, v, C) then
27: R← max(〈j, v〉, R)
28: b← bcast responsible for R[j]’s value
29: send(Rresp, j, R, sig, b) to all
30: else ignore message from p

31: procedure A-Step(i, v):
32: compile certificate C
33: broadcast(A, i, v, C)
34: wait until receive valid (Aresp, i, A[i])
35: from 2f + 1 processes
36: S ← union of all A[i]s received
37: if (S contains at least 2f+1 A-answers
38: containing only val) then
39: return 〈true, val〉
40: else return 〈false,max(S)〉

41: upon delivering (A, j, v, C) from p:
42: if reliability check(A, j, v, C) then
43: if v /∈ A[j] and |A[j]| < 2 then
44: add v to A[j]
45: else if v > max(A[j]) then
46: min(A[j])← v

47: b← bcast responsible for A[j]’s value
48: send(Aresp, j, A[j], sig, b) to all
49: else ignore message from p

50: procedure B-Step(
∫
, i, v):

51: compile certificate C
52: broadcast(B, i,

∫
, v, C)

53: wait until receive valid (Bresp, i, B[i])
54: from 2f + 1 proc.
55: S ← array with all B[i]s received
56: if |{〈true, val〉 ∈ S}| ≥ 2f + 1 then
57: return 〈commit, val〉
58: else if |{〈true, val〉 ∈ S}| ≥ 1 then
59: return 〈adopt, val〉
60: else return 〈adopt,max(S)〉

61: upon delivery (B, j,
∫
, v, C) from p:

62: if reliability check(B, j, v, C) then
63: m← max(B[j][0].v, B[j][1].v)
64: if |B[j]| < 2 then add 〈

∫
, v〉 to B[j]

65: else if (
∫
∧ 〈

∫
, v〉 /∈ B[j]∨

66: ¬
∫
∧ v > m) then

67: B[j][0]← 〈
∫
, v〉

68: b← bcast resp. for B[j]’s 〈
∫
, vals〉

69: send(Bresp, j, B[j], sig, b)

70: b← resp. for B[j]’s 〈
∫
, vals〉

71: send(Bresp, j, B[j], sig, b) to all
72: else ignore message from p

73: Reliability check broadcast(X, i, v):
74: if |{bcast-answers ∈ C}| > f then
75: return true
76: check that |C| ≥ 2f + 1 messages
77: check signatures of those messages
78: check if |{bcast-answers}| > f
79: if X = R then
80: check (i, v) is correct according to
81: signed B-answers received and step B
82: else if X = A then
83: check (i, v) is correct according to
84: signed R-answers received and step R
85: else if X = B then
86: check (i,

∫
, v) is correct according to

87: signed A-answers received and step A
88: return true if all checks pass,
89: false otherwise

90: To compile a broadcast certificate, list all 2f + 1 answers to the previous step broadcast received during the previous step.
91: To reliably check response (check if a response is valid), check if, for the broadcast(s) originating its value we have received 2f + 1 responses to that

broadcast.

Since BFT-Archipelago is a full BFT protocol, it is amenable
to a Backup instance, and thus can be accelerated with Quorum
fast path that can decide in two message delays.

Complexity of BFT-Archipelago. BFT-Archipelago termi-
nates deterministically by exchanging and storing at most
O(n4) messages and bits (each message is of length O(1)
bits), and terminates within O(n) rounds and O(n4) calcu-
lations and signature checks. BFT-Archipelago is resilient-
optimal [21] and time-optimal [20], [23]. BFT-Archipelago
is also competitive with PBFT [14] and DBFT [17], having
the same communication complexity. The detailed proof is
deferred to the companion technical report [3].

VI. RELATED WORK

Given the notorious impact of a leader on consensus per-
formance [1], [8], [9], [12], [17], [26]–[28], [34], [37], [42],
[43], it is surprising that the leaderless concept has never been
precised.

The leader has become a limitation to scale consensus
to large blockchain networks. Crain et al. [17] consider the
Democratic BFT (DBFT) consensus algorithm as leaderless.
DBFT is a multivalue consensus algorithm at the heart of
the Red Belly Blockchain [18] whose n proposers bypass the
leader bottleneck. It spawns n concurrent binary consensus
instances, each relying on a weak coordinator to help con-
verge when many correct processes propose distinct values.

Although DBFT could use n different weak coordinators, its
binary consensus is not leaderless according to our definition.

In a brief announcement [31], Lamport proposed a high
level transformation of a class of leader-based consensus al-
gorithms into a class of leaderless algorithms using repeatedly
a synchronous virtual leader election algorithm where all
processes try to agree on a set of proposals. In a corresponding
patent document [32], Lamport explains that during a period of
asynchrony, if the virtual leader election fails, then the consen-
sus algorithm may not progress [31]. Our adopt-commit-max
object of Archipelago allows processes to converge towards a
unique value, hence sharing similarities with the proposal of
some virtual leader. Yet, neither a leaderless definition nor a
virtual leader specification were given by Lamport.

Borran and Schiper proposed a so-called “leader-free” con-
sensus algorithm [10] without presenting however any precise
leader-freedom definition. The algorithm has an exponential
complexity, which limits its applicability.

Interestingly, SMR algorithms that rely on multiple leaders
(e.g., Mencius [34], RBFT [8]) do not necessarily rely on a
leaderless consensus algorithm.

Moraru et al. [37] used multiple “command leaders” in
EPaxos. Each leader tries to commit one command. When
commands have dependencies only one of the leaders can
get its command committed at a time, as if there were
successive leader-based consensus instances. If a leader fails

7

after receiving a positive acknowledgement from a fast quorum
of n−1 processes, it rejoins with a new identifier and a greater
ballot without being able to acknowledge the previous commit
message.

Recently, some errors [40], [41] were found in both random-
ized [36], [38] and multi-leader consensus algorithms [37],
indicating that getting rid of the leader is error prone.

VII. CONCLUDING REMARKS

Our definition of leaderless is general. It relies on the
ability to tolerate a specific kind of fault, interruption, which
complements the classical crash, omission or Byzantine faults.
An interruption can be seen as a form of weak synchrony. The
challenge to address when building a leaderless algorithm is
that of terminating despite such interruptions.

REFERENCES

[1] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla,
and Jean-Philippe Martin. Revisiting fast practical Byzantine fault
tolerance. Technical Report 1712.01367, arXiv, 2017.

[2] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and
Sam Toueg. Communication-efficient leader election and consensus with
limited link synchrony. In PODC, 2004.

[3] Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid Guer-
raoui, and Igor Zablotchi. Leaderless consensus. Technical report, EPFL,
2021. URL: https://infoscience.epfl.ch/record/282657?&ln=en.

[4] Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-
Adrian Seredinschi. State machine replication is more expensive than
consensus. In DISC, 2018.

[5] James Aspnes, Hagit Attiya, and Keren Censor. Max registers, counters,
and monotone circuits. In PODC, 2009.

[6] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. JACM, 42(1):124–142, 1995.

[7] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 BFT protocols. TOCS,
32(4):12:1–12:45, January 2015.

[8] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT:
redundant Byzantine fault tolerance. In ICDCS, pages 297–306, 2013.

[9] Loı̈ck Bonniot, Christoph Neumann, and François Taı̈ani. PnyxDB:
a lightweight leaderless democratic Byzantine fault tolerant replicated
datastore. In SRDS, 2020.

[10] Fatemeh Borran and André Schiper. A leader-free Byzantine consensus
algorithm. In ICDCN, 2010.

[11] Zohir Bouzid, Achour Mostfaoui, and Michel Raynal. Minimal syn-
chrony for Byzantine consensus. In PODC, 2015.

[12] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on
BFT consensus. Technical Report 1807.04938, arXiv, 2018.

[13] Christian Cachin, Rachid Guerraoui, and Luı̀s Rodrigues. Introduction
to Reliable and Secure Distributed Programming. Springer, 2011.

[14] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. TOCS, 20(4), 2002.

[15] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. JACM, 43(2):225–267, 1996.

[16] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Brief announcement:
Polygraph: Accountable Byzantine agreement. In DISC, 2020.

[17] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
DBFT: Efficient leaderless Byzantine consensus and its application to
blockchains. In NCA, 2018.

[18] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red Belly: a
secure, fair and scalable open blockchain. In S&P, 2021.

[19] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed E. Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün
Sirer, Dawn Song, and Roger Wattenhofer. On scaling decentralized
blockchains. In Financial Cryptography, pages 106–125, 2016.

[20] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
Byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. JACM, 35(2):288–323, April 1988.

[22] Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and
Michel Raynal. Eventual leader election despite crash-recovery and
omission failures. In PRDC, 2015.

[23] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Inf. Process. Lett., 14(4):183–186, 1982.

[24] Eli Gafni. Round-by-round fault detectors: Unifying synchrony and
asynchrony. In PODC, 1998.

[25] Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Computing,
16(1):1–20, 2003.

[26] Vincent Gramoli, Len Bass, Alan Fekete, and Daniel Sun. Rollup: Non-
disruptive rolling upgrade with fast consensus-based dynamic reconfig-
urations. TPDS, 27(9):2711–2724, 2016.

[27] Divya Gupta, Lucas Perronne, and Sara Bouchenak. BFT-Bench:
Towards a practical evaluation of robustness and effectiveness of BFT
protocols. In DAIS, 2016.

[28] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In ATC,
2010.

[29] Leslie Lamport. The part-time parliament. TOCS, 16(2):133–169, 1998.
[30] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25,

2001.
[31] Leslie Lamport. Leaderless Byzantine consensus, 2010. United States

Patent, Microsoft, Redmond, WA (USA).
[32] Leslie Lamport. Brief announcement: Leaderless Byzantine Paxos. In

DISC, 2011.
[33] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine

generals problem. TOPLAS, 4(3):382–401, 1982.
[34] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius:

Building efficient replicated state machines for WANs. In OSDI, 2008.
[35] Cristian Martı́n, Mikel Larrea, and Ernesto Jiménez. Implementing the

omega failure detector in the crash-recovery failure model. Journal of
Computer and System Sciences, 75(3):178–189, 2009.

[36] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of BFT protocols. In ACM CCS, pages 31–42, 2016.

[37] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is
more consensus in egalitarian parliaments. In SOSP, 2013.

[38] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-
free asynchronous byzantine consensus with t < n/3 and o(n2)
messages. In PODC, 2014.

[39] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In ATC, 2014.

[40] Pierre Sutra. On the correctness of egalitarian paxos. Inf. Process. Lett.,
156:105901, 2020.

[41] Pierre Tholoniat and Vincent Gramoli. Formally verifying blockchain
Byzantine fault tolerance. In FRIDA, 2019. Available at https://arxiv.
org/pdf/1909.07453.pdf.

[42] Gauthier Voron and Vincent Gramoli. Dispel: Byzantine SMR with
distributed pipelining. Technical Report 1912.10367, arXiv, 2019.

[43] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. HotStuff: BFT consensus with linearity and responsive-
ness. In PODC, 2019.

8

https://infoscience.epfl.ch/record/282657?&ln=en
https://arxiv.org/pdf/1909.07453.pdf
https://arxiv.org/pdf/1909.07453.pdf

	Introduction
	Preliminaries
	Defining a Leaderless Algorithm
	Leaderless Consensus Algorithms
	Archipelago: A Leaderless Consensus Algorithm
	Leaderless Consensus in Message Passing
	Byzantine Leaderless Consensus

	Discussion and Complexity Analysis
	Related Work
	Concluding remarks
	References

