
Diablo: A Benchmark Suite for Blockchains
Vincent Gramoli
University of Sydney
Sydney, Australia

EPFL
Lausanne, Switzerland

vincent.gramoli@sydney.edu.au

Rachid Guerraoui
EPFL

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Andrei Lebedev
University of Sydney
Sydney, Australia

EPFL
Lausanne, Switzerland

andrei.lebedev@sydney.edu.au

Chris Natoli
University of Sydney
Sydney, Australia

chrisnatoli.research@gmail.com

Gauthier Voron
EPFL

Lausanne, Switzerland
gauthier.voron@epfl.ch

Abstract
With the recent advent of blockchains, we have witnessed
a plethora of blockchain proposals. These proposals range
from using work to using time, storage or stake in order to
select blocks to be appended to the chain. As a drawback
it makes it difficult for the application developer to choose
the right blockchain to support their applications. In partic-
ular, the scalability and performance one can obtain from
a specific blockchain is typically unknown. The claimed re-
sults are often obtained in isolation by the developers of the
blockchain themselves. The experimental conditions corre-
sponding to these results are generally missing and the lack
of details make these results irreproducible.
In this paper, we propose the most extensive evaluation

of blockchain to date. First, we show how the experimen-
tal settings impact the performance of 6 state-of-the-art
blockchains and argue for more detailed experiments. Sec-
ond, and to cope with this limitation, we propose a unifying
framework to evaluate blockchains on the same ground. The
framework includes a suite of 5 realistic Decentralized Ap-
plications (DApps), helps deploy the blockchain nodes at
different scales and evaluate their performance. Finally, we
show that selecting a particular virtual machine or weaken-
ing guarantees can help handle computationally demanding
workloads but that none of the tested blockchains can yet
support the load of these realistic DApps.

CCSConcepts: •Computer systems organization→Re-
liability; • Computing methodologies → Distributed
algorithms; • Networks→ Security protocols.

Keywords: scalability, decentralization, security, performance,
latency, throughput, byzantine

1 Introduction
With the growing adoption of blockchain technology, the
number of readily-available solutions has multiplied dramati-
cally. As of March 2021, approximately five thousand distinct
cryptocurrencies have been reported on a single website [2].

Each of these consists of a separate protocol offering distinc-
tive features like speed, a new financial service, scalability,
etc. Although a number of these variants could, in theory, be
running on multiple instances of the same blockchain, they
are often packaged as their own standalone blockchain imple-
mentation. A recent survey [28] highlights the breadth of the
blockchain landscape through a classification of blockchains,
listing 8 different protocols to select nodes that are tasked
with proposing blocks, 13 different consensus protocols, and
9 data structures to store transaction information. This di-
versity illustrates a probably small subset of all blockchain
implementations that exist today.

This plethora of blockchain proposals raises the question
of which proposal is the ideal blockchain for a particular
application. Unfortunately, most of these proposals are not
reported in scientific publications. They are at best described
in the form of white papers that present a 10-000-foot-view
of their implementation details. As an example, the Ethereum
yellow paper [41] presents the technicalities of the Ethereum
Virtual Machine but does not explain how Ethereum partici-
pants can reach consensus on a unique block at a given index
of the chain. In order to analyze the underlying protocols
of such blockchains, researchers typically had to look at the
available source code before being able to reason about the
correctness of the protocols [16].
Another approach is for researchers to evaluate

blockchains as black boxes by generating workloads and
measuring their performance. The idea is to spawn a
blockchain network of nodes, to send them transactions that
will be propagated and executed at all blockchain nodes
while measuring the performance of the blockchain network
to store the results of these transactions in the blockchain.
Following this approach, many announcements were made
online about the performance of a specific blockchain. As an
example, Avalanche was recently claimed to achieve 4500
transactions per second (TPS) with a 2 second latency on its
official website [1], but we could not find the experimental
conditions in which these results were obtained. This could
be confusing, especially given that an earlier technical
report presented a peak throughput at 1300 TPS [30].

Blockchain Claimed results Observed results
throughput latency setup throughput latency setup

Algorand 1K–46KTPS [26] 2.5–4.5 s [26] ? 885 TPS 8.5 s testnet
Avalanche 4.5KTPS [29] 2 s [8] ? 323 TPS 49 s datacenter

Solana 200KTPS [34] <1 s [43] 150 nodes 8845 TPS 12 s datacenter

Table 1. Differences between the claimed performance and the actual performance of different blockchains. The results we
observed for each blockchain are the best performances we obtained among all configurations we presented in §5.1. These
were obtained in the testnet and datacenter configurations.

There have been some thorough scientific publications
about new blockchains and their performance [7, 14, 17, 25].
These publications usually provide detailed environmental
settings that allow the reader to reproduce the experiments.
Except for too few occasions [14], the blockchains are eval-
uated in isolation of other blockchains [7, 17, 25] making
it hard to compare them. Efforts were separately devoted
to compare the performance of different blockchains [3, 15,
20, 33], however, these evaluations are typically done with
synthetic workloads that are not representative of real work-
loads.
With the advent of Decentralized Applications (DApps)

comes the possibility to run real workloads. A DApp is a
decentralized application that executes smart contract func-
tions and often exposes a web-based frontend to users. They
are an inherent part of the Web3, a decentralized version
of the web. The smart contracts are generally written in
a Turing-complete programming language and their func-
tions are deterministic. A user can request the blockchain
network to execute a DApp by sending a request and a fee,
expressed in units of gas, which fuels the execution of the
corresponding request. There exist various DApps, some are
decentralized exchanges to trade cryptocurrencies, others
are transparent services to decentralize the sharing economy,
and a large part of them are games.

In this paper, we make four main contributions:

1. We propose Diablo (DIstributed Analytical
BLOckchain benchmark framework)1, written
in 10,083 lines of Go code, that allows developers to
evaluate their blockchain with realistic applications.
This framework features several DApps including (i) a
multiplayer game, (ii) an exchange with the Nasdaq
workload, (iii) a web service experiencing the Fifa
requests during the soccer world cup, (iv) a mobility
service with a Uber workload and (v) a video sharing
service with a YouTube workload.

2. We thoroughly evaluate the performance of 6
state-of-the-art blockchains, including Algorand [17],
Avalanche [30], Ethereum [41], Diem [9], Quorum [12]

1Diablo is a follow-up of the original Diablo framework [10].

and Solana [43]. We demonstrate that their perfor-
mance is heavily dependent on the underlying experi-
mental settings in which they are evaluated. In particu-
lar, we observe important differences between claimed
results and the results we obtain. We thus argue in
favor of more detailed blockchain experiments.

3. Our development of DApps in the Solidity, Move and
Teal languages revealed that executing generic pro-
grams on blockchains can be challenging. First, some
of the supported programming languages are too low-
level to be written easily without a higher-level pro-
gramming language. Second, the programming lan-
guages can have limited support (like for floating point
functions). Third, real DApps may not even execute
successfully as some of their functions would con-
sume more than the maximum allowed computational
steps expressed in gas units. On the bright side, the
blockchains based on the Go Ethereum (or geth) vir-
tual machine seem to handle generic programs the
best.

4. Finally, our main observation is that, despite being
innovative in many regards, the blockchains we eval-
uated are not capable of handling the demand of the
selected centralized applications when deployed on
modern commodity computers across the world. We
also note that the evaluated blockchains with a leader-
based Byzantine fault tolerant consensus protocol are
more impacted by constantly high workloads than
blockchains with weaker (probabilistic or eventually
consistent) guarantees. More research is thus neces-
sary to reduce the overhead of secure blockchains be-
fore they can fully serve a highly demanding DApp at
large scale.

The rest of the paper is organized as follows. We first
describe the problem (§2) and then list the 5 decentralized
applications we propose (§3). We present the Diablo frame-
work (§4) and our experimental settings (§5) before demon-
strating the performance we obtain with 6 state-of-the-art
blockchains (§6). Finally, we present the related work (§7)
and we conclude by arguing for a more thorough evaluation
of upcoming blockchains (§8).

2

2 Problem Statement
It is common to see new blockchain protocols offering sup-
posedly higher performance results than existing ones, how-
ever, these results are usually obtained in isolation and are
often irreproducible, which makes them hard to compare.
Table 1 illustrates the magnitude of the differences between
the announced results of recent blockchains and our actual
measurements.
Solana [43] claims 250,000 TPS and 200,000 TPS on a 50-

node and a 150-node testnets, respectively [34]. However, the
official recommendation is for participants to run Solana on
machines equipped with at least 12 cores and special AVX2
Intel instructions [35]. It also claims sub-second finality [43]
meaning that transactions can supposedly be committed in
less than 1 second. The problem is that the Solana blockchain
can fork into multiple branches, hence leading to potential
inconsistencies, and it is recommended to wait for additional
appended blocks (or “confirmations”) to ensure a transaction
will not abort [5]. We experimented Solana onmachines with
up to 36 vCPUs and 72GiB memory and set the number of
confirmations to 30 [24] but could only observe an average
throughput of up to 8,845 TPS and an average latency of at
least 12 seconds (§6).

Avalanche [30] was initially presented in a technical report
in 2018 where it could achieve 1300 TPS on 2000 machines
with 2 vCPUs and 4GiB memory each [30]. Avalanche now
supports smart contracts and claims to achieve more than
4500 TPS [29] with a 2 second latency [8]. While the settings
where these latest results were obtained are not detailed, our
experiments showed that Avalanche reaches a peak through-
put of 323 TPS and an average latency of 49 seconds. Algo-
rand [17] was shown to achieve 1000 TPS with native trans-
actions, but it recently featured Teal smart contracts. It was
expected to reach 46,000 TPS in 2021 thanks to block pipelin-
ing [26] but recent optimizations led to 6000 TPS in 2022 [22].
Unfortunately, it remains unclear whether Algorand would
deliver one of these throughputs when deployed in a large
network across different countries. In our experiments, we
noticed that the highest average throughput across all our
experiments is 885 TPS, and after communicating with the
development team we got confirmation that only the peak
throughput could reach more than 1000 TPS.
Overall, the results observed are surprisingly far from

the announced results. The announced results could be bet-
ter for many reasons, like batching many transactions at a
single client, sending dummy requests with an empty pay-
load, running short benchmarks whose requests do not clog
any memory pool, however, we believe good blockchain
benchmarking practice should inject real workloads sending
useful transactions mimicking a distributed set of blockchain
clients. This paper is precisely about offering a benchmark
to evaluate blockchains on the same ground when running
realistic applications.

3 The Decentralized Applications Suite
In this section, we present the five default Diablo decentral-
ized applications (DApps) used to measure the performance
of blockchains in a realistic setting. As summarized in Ta-
ble 2, each of these DApps illustrates a distinct behavior and
runs a workload trace taken from a real centralized applica-
tion. For the sake of compatibility with all blockchains, we
developed DApps in three programming languages: (i) So-
lidity v0.7.5, the language supported originally by Ethereum
but also by Avalanche, Quorum and Solana, (ii) PyTeal v5,
the Python language binding for Algorand smart contracts,
and (iii) Move v3, the language for Diem smart contracts.

Exchange DApp / Nasdaq. We implemented an ex-
change DApp as a decentralized exchange (DEX) with a
workload trace taken from the National Association of Secu-
rities Dealers Automated Quotations Stock Market (Nasdaq).
The Nasdaq experiences a boom of trades at its opening
at 9 AM Eastern Time Zone. We extracted the number of
trades for Google (GOOGL), Apple (AAPL), Facebook (FB),
Amazon (AMZN) and Microsoft (MSFT) from the official
website [4]. These workloads proceed in burst by experienc-
ing an initial demand of about 800 TPS for Google, 1300 TPS
for Amazon, 3000 TPS for Facebook, 4000 TPS for Microsoft
and 10,000 TPS for Apple before dropping to 10–60 TPS. The
accumulated workload, denoted GAFAM, runs for 3 min-
utes and experiences a peak of 19,800 TPS before dropping
between 25–140 TPS.
The exchange DApp is implemented as an

ExchangeContractGafam smart contract with func-
tions checkStock, buyGoogle, buyApple, buyFacebook,
buyAmazon, buyMicrosoft. Each order consists of invoking
the corresponding buy* function that, in turn, checks the
availability of the stocks before updating the number of
available stocks and emitting a corresponding event. More
specifically, the process consists of a fungible token available
in limited supply implemented by a single integer counter.
Each transaction buys 1 token by decrementing the counter
after checking that this counter is greater than 0.

Gaming DApp / Dota 2. At the time of writing, gaming
is the most popular type of DApps.2 We thus implemented a
gaming DApp executing the trace of the most popular game
on Steam, which is a Multiplayer Online Battle Arena video
game called Dota 2 [39]. The number of Steam users peaked
at 26.85 million in March 2021 [36]. Each match of Dota 2 is
played between two teams of five players, with each team
occupying and defending their own separate base on the map.
A team wins as soon as they destroy the “Ancient” structure
located within the base of the opponent team. Our DApp
comprises players who interact with each other and with
the environment.

2https://dappradar.com/rankings

3

https://dappradar.com/rankings

DApp Exchange Mobility service Web service Gaming Video sharing

Workload

0 60 120 180
0

5000

10000

15000

20000

0 40 80 120
0

300

600

900

1200

0 60 120 180
0

1500

3000

4500

6000

0 100 200 300
0

4500

9000

13500

18000

0 40 80 120
0

20000

40000

60000

80000

Source trace Nasdaq Uber Fifa Dota 2 YouTube
Characteristics Burst Compute intensive Contended High sending rate Very high sending rate

Table 2. Decentralized applications (DApps) used as Diablo benchmarks and their associated workload based on real traces.
Each graph shows the number of submitted transactions (y-axis) per second (x-axis).

The gaming DApp is implemented as a smart contract
DecentralizedDota whose update function moves the po-
sitions of 10 players along the x-axis and y-axis of a 250-
by-250 map so that they turn back whenever they reach the
limit of the map. The trace lasts for 276 seconds invoking at
an almost constant update rate of about 13,000 TPS, which
is particularly demanding.

Web service DApp / Fifa. Web3 promises to decentralize
the web by offering DApps that are not controlled by a single
institution. We thus naturally implemented a decentralized
web service DApp combined with an existing demanding
website workload. We selected the Fifa website workload
during the 1998 soccer world cup. More than 1.35 billion
requests to the Fifa website were recorded over the course
of the 84 days of the world cup with an average request
length of 3689 bytes. In particular, during the final match on
June 30th , 1998, between 11:30 PM and 11:45 PM, the total
number of requests reached 3,135,993 for an average request
per minute of 209,066. During the most demanded minute
of this period, 215,241 requests were sent, translating into
an average of 3587 TPS.
In order to measure the number of visits hitting the Fifa

website on the day of the final of the 1998 football world cup,
we implemented the web service DApp as a simple Counter
smart contract, with an add function, that gets incremented
at each request, hence its workload is highly contended. The
duration of the workload is 176 seconds, sending an overall
3500 transactions at a rate varying from 1416 to 5305 requests
per second.

Mobility service DApp / Uber. Blockchain is often men-
tioned as a way to bring fairness to the “gig” economy. In
this economy, centralized institutions are often criticized to
offer services or information to consumers using an opaque
algorithm. As an example, Uber has been criticized for ma-
nipulating drivers.3 By contrast, DApps are inherently trans-
parent algorithms because their code is publicly available on
the blockchain, which could incentivize developers to design
fair algorithms.
3https://www.nytimes.com/interactive/2017/04/02/technology/uber-
drivers-psychological-tricks.html

We thus implemented a mobility service DApp based on
a study of Uber requests in New York City (NYC) from
2018 [11]. The study reports a peak of 16,496 requests per
hour between January 2015 and March 2015. As the demand
grew since 2015, this peak throughput does no longer re-
flect the Uber demand. The average number of Uber trips
between January and March 2015 was 70,348, reaching
556,387 in March 2019, resulting in a 7.91-fold increase.4
We thus approximate the current Uber demand in NYC to
16, 496 × 7.91 = 130, 483 requests per hour, which translates
into 36 TPS. To extrapolate this demand to Uber world wide,
we observe that in the first quarter of 2019 nearly 1,55 billion
Uber trips were booked around the world while 63,48 mil-
lion Uber trips were booked in NYC alone [38]. As the NYC
demand represents 1/24 of the world demand, we derive the
Uber demand globally to 24 × 36 = 864TPS. Note that this is
an approximation as the Uber demand varies between cities.
The mobility service DApp consists of a ContractUber

smart contract whose function checkDistance computes
the distance between the customer (the requester) and 10,000
drivers in an area (a 2-dimension grid) of 10, 000 × 10, 000 in
order to match the closest driver to the customer. As neither
the PyTeal nor the Move languages support floating points
or define the square root function √ to compute Euclidean
distances, we implemented the Newton’s integer square root
function in Solidity, PyTeal and Move languages, and used
it to compute the Euclidean distance. As Algorand DApps
state is limited to key-value pairs, the PyTeal implementa-
tion of ContractUber only stores the position of one driver
and computes the Euclidean distance to this unique driver
10,000 times. As the function executes a loop with 10,000
iterations computing the distance, the mobility service DApp
is computation intensive.

Video sharing DApp / YouTube. Blockchains promise
to decentralize the sharing economy by rewarding pro-
sumers instead of large corporations, a tendency illustrated

4https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-
data/.

4

https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/
https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/

Figure 1. The architecture of Diablo comprises configuration files for the Primary to send the right workload for the right
blockchain to a set of Secondaries that then send requests to blockchain nodes and collect performance results from these
blockchain nodes.

by DTube, an alternative to YouTube that rewards the cre-
ation and consumption of video content.5 We thus imple-
mented a video sharing DApp based on the number of videos
uploaded to YouTube [18]. More precisely, from the YouTube
traffic observed during 3 months of 2007, we extracted the
day with the peak request rate and the hour within this day
with the peak request rate of 1,680,274 transactions per hour.
We normalized this result to obtain a request rate of 467
transactions per second. Between 2007 and 2021, the num-
ber of videos uploaded to YouTube has been multiplied by
83 [37], hence we approximate the average throughput to
467×83 = 38, 761TPS, which makes this DApp very demand-
ing. The video sharing DApp corresponds to a smart con-
tract called DecentralizedYoutube with an upload func-
tion that gets some video data as a parameter and assigns
the requester’s address to the data before emitting a corre-
sponding event.

4 Diablo Overview
Diablo, whose architecture is depicted in Figure 1, is a bench-
mark suite to evaluate blockchains with realistic applications.
To facilitate distributed workload generation, Diablo com-
prises two main components, a single Primary and multiple
Secondaries. For the sake of extensibility, Diablo offers a
blockchain abstraction with 4 functions that a developer
can implement to compare their new blockchain protocol
to existing blockchains and Diablo also offers a workload
specification language for a developer to add new DApps.

Primary. The purpose of the Primary machine is to co-
ordinate the experiment: it generates the workload and dis-
patches it between Secondaries, launches the benchmark,
aggregates the results and reports them back.
Prior to starting the benchmark, its workload generator

parses the benchmark and blockchain configuration files.
A benchmark configuration file indicates the requests type,
whether requests are native transfers or DApp invocations,
and their distribution between Secondaries and blockchain

5https://d.tube.

nodes over time (§4). For each workload invoking DApps,
the Primary also deploys the smart contracts listed in the
benchmark configuration file. The blockchain configuration
file is necessary to generate the workload appropriately be-
cause the transaction distribution depends on the number
and locations of the deployed blockchain nodes. Then, the
Primary transmits a description of the transactions to the
Secondaries, waits for all Secondaries to be ready and in-
forms all Secondaries when to start the benchmark.
Once the benchmark is complete, each Secondary sends

its results to the Primary through a TCP interface and an
aggregator collects them to output a JSON file, indicating the
start time and end time of each transaction (as recorded by
the Secondaries). These timestamps can then be used post-
mortem to generate time series and analyze the distribution
of latencies (e.g., Fig. 6) or more simply to output aggregated
values like the average (e.g., Fig. 3).

Secondary. Secondaries are responsible for the presign-
ing of the transactions and the execution of the workload,
interacting directly with blockchain nodes. The number and
specification of the Secondaries are typically chosen tomatch
the resources allocated to the blockchain (cf. Table 3) to be
able to stress test the blockchain. Note that each Secondary
can send requests to multiple blockchain nodes.
Each Secondary spawns a number of explicit worker

threads as told by the Primary and indicated in the bench-
mark configuration file. (Note that the level of concurrency
can be higher due to implicit go routines.) These worker
threads mimic individual clients issuing requests concur-
rently. The Secondary schedules the transactions following
the workload distribution instructed by the Primary.
The Secondary interacts with the blockchain through a

client interface specific to each blockchain. The current clock
is recorded as the submission time right before a transaction
is sent. The Secondaries constantly check if the submission
time is not too late compared to the time demanded by the
Primary and emit a warning otherwise. Each worker thread
constantly polls the blockchain nodes to obtain the last block
and checks whether it contains sent transactions. When a

5

https://d.tube

sent transaction is detected within a block, the current clock
time is recorded as the decision time for this transaction.

Blockchain abstraction. To make Diablo compatible
with various blockchain implementations, we abstract away
the main components of a blockchain. The Diablo bench-
mark specification interacts with the resulting blockchain ab-
straction. A blockchain is modeled as a tuple ⟨E,R, I ⟩ where
E is the finite set of endpoints that act as blockchain nodes,
R is a finite set of resources (e.g., account balance, smart
contract state) maintained in the blockchain state, and I is a
potentially infinite set of interactions types (e.g., asset trans-
fer, smart contract function invocation) between a client and
the blockchain. Let C be the set of clients. An interaction
event is denoted as a tuple {(c, i, r , t)} with c ∈ C , i ∈ I , r ∈ R
and the time t ∈ R.

The benchmark specification contains a functionM map-
ping the Secondaries to the blockchain endpoints, the setsφC ,
φR and φI that specify the clients, resources and interactions
types needed for the test and the interactions {(φc ,φi ,φr , t)}
where φc ∈ φC , φi ∈ φI , φr ∈ φR , t ∈ R. More precisely,
M : S ×E ⇒ φC where S is the set of Secondaries, E is the set
of endpoints, both available only at runtime, and φC is the
set of specified clients, each specified client is implemented
by an explicit worker thread. The two types of interactions
are transfer_X to transfer X coins from one account to an-
other one and invoke_D_Xs to invoke a DApp D with the
parameters Xs.
To add a new blockchain, one has to implement at

least one of these interaction types as well as 4 func-
tions that convert the benchmark specification to an ex-
ecutable test program: (i) s.create_client(E) where
s ∈ S , (ii) create_resource(φr) and φr ∈ φR ,
(iii) encode(φi , r , t) where t ∈ R and r ∈ R to produce an
opaque encoded interaction e , and (iv) c.trigger(e) to send
the encoded interaction from client c to the blockchain. Since
these functions are relatively fine grained, the implementa-
tions for the blockchains we test are small sized: between
1,000 and 1,200 LOC of Go.

Workload specification. The benchmark configuration
file specifies the functionM , the set φR and the interactions
{(φc ,φi ,φr , t)} described above. For example, the gaming
DApp configuration file below defines 4 variables: acc (line 4)
is a set of 2,000 user accounts, dapp (line 5) is a set containing
one instance of the dotaDApp. Those 2 variables form theφR
set. The variable loc (line 2) is the set of Secondaries tagged
with the string us-east-2 (an AWS availability zone) and
end (line 3) is the set of all endpoints. These two variables
are used in the definition of the M function (lines 7-10),
which defines 3 clients invoking the DApp dapp (line 14)
from accounts in acc (line 13) with the parameters parsed
from update(1, 1) (line 15) at the rate specified in the load
section (lines 16-19): each client sends 4432 TPS for the first

50 seconds then 4438 TPS for the next 70 seconds, after which
the benchmark ends.

1 let:

2 - &loc { sample: !location ["us-east -2"] }

3 - &end { sample: !endpoint [".*"] }

4 - &acc { sample: !account { number: 2000 } }

5 - &dapp { sample: !contract { name: "dota" } }

6 workloads:

7 - number: 3

8 client:

9 location: *loc

10 view: *end

11 behavior:

12 - interaction: !invoke

13 from: *acc

14 contract: *dapp

15 function: "update(1, 1)"

16 load:

17 0: 4432

18 50: 4438

19 120: 0

5 Experimental Settings
In this section, we detail the experimental settings to eval-
uate 6 different blockchains when deployed in 5 configura-
tions, called datacenter, testnet, devnet, community and
consortium, on up to 200 machines distributed in 10 coun-
tries around the world.

5.1 Deployment configurations
We deployed Diablo and the blockchains in different config-
urations with up to 200 virtual machines ranging from AWS
c5.xlarge instances (with 2 vCPUs and 4GiB memory each)
to c5.9xlarge instances (with 36 vCPUs and 72GiB memory
each) and spread equally among different geo-distributed
regions in five continents: Cape Town, Tokyo, Mumbai, Syd-
ney, Stockholm, Milan, Bahrain, São Paulo, Ohio, Oregon.
Table 3 (left) lists these different configurations.

Datacenter. The datacenter configuration aims at show-
casing the blockchain peak performance in an idealized set-
ting. Such a configuration features powerful c5.9xlarge ma-
chines located in the closed network of a single datacenter,
the Ohio AWS availability zone. These machines are not
commodity hardware as each machine features 36 vCPUs
and 72GiB memory, the bandwidth and latency between
machines are 10Gbps and 1ms6, respectively, which is not
representative of an open network. Instead, this configura-
tion allows us to evaluate blockchains when a lot of resources
are available.

Testnet. The testnet configuration features small
c5.xlarge machines located in a single datacenter, the Ohio

6https://aws.amazon.com/ec2/instance-types/c5/.
6

https://aws.amazon.com/ec2/instance-types/c5/

Configuration Blockchain nodes Regions
number #vCPUs memory

datacenter 10 36 72 GiB Ohio
testnet 10 4 8 GiB Ohio
devnet 10 4 8 GiB all
community 200 4 8 GiB all
consortium 200 8 16 GiB all

Cape Town
Tokyo

Mumbai

Sydney

Stockholm
Milan

Bahrain

Sao Paulo
Ohio

Oregon

Round trip time (ms)

Cape Town

Tokyo

Mumbai

Sydney

Stockholm

Milan

Bahrain

Sao Paulo

Ohio

Oregon

B
an

d
w

id
th

(M
b

p
s)

26.1 36.0 20.8 59.8 67.1 33.6 27.1 43.6 35.9

354.0 89.3 112.1 42.1 48.1 66.8 39.3 85.8 108.8

272.0 127.2 75.9 81.3 103.2 336.3 30.8 53.3 48.5

410.4 102.3 146.8 32.0 42.4 59.6 31.2 57.0 80.8

179.7 241.2 138.9 295.7 404.6 81.8 48.2 94.7 67.6

162.4 214.8 110.8 238.8 30.2 105.7 49.4 104.9 70.1

287.0 164.3 36.4 179.2 137.9 108.2 29.9 49.4 38.7

340.5 256.6 305.6 310.5 214.9 211.9 320.0 92.3 60.5

237.0 131.8 197.3 187.9 120.0 109.2 212.7 121.9 105.0

276.6 96.7 215.8 139.7 162.0 157.8 251.4 178.3 55.2

Table 3. The experimental settings range from a datacenter scenario with extensive resources to a testnet of collocated
machines, to a geo-distributed devnet, to a large-scale community of machines, to a large-scale consortium of modern
machines. The left side indicates the number of blockchain nodes deployed, the hardware they use and on how many regions
they are spread. The right side indicates the bandwidth (top right corner, in green) and round trip time (bottom left corner, in
red) between each region measured with iperf3 on machines from the devnet configuration.

AWS availability zone. This typically corresponds to a test-
net setting were blockchain developers typically run their
blockchains in order to assess performance and stability dur-
ing development phases. As the machines are cheaper to rent
than c5.9xlarge, they allow the testnet to run for long period
of time, allowing for continuous deployment.

Devnet. The devnet configuration geo-distributes the ma-
chines in an open network to assess the performance in a
setting involving the network latencies over long distances.
This intends to mimic the performance one could expect
from a blockchain devnet, where selected beta testers or pre-
liminary validators from different regions could participate
in the evaluation of the blockchain. Once the evaluation with
external beta testers is successful, then the devnet is ready
to be opened to all internet users as a mainnet.

Community. The community configuration increases the
number ofmachines to about the number of countries around
theworld. This configuration aims at mimicking the behavior
of a geo-distributed mainnet involving as many blockchain
participants as there are jurisdictions (there are currently 195
universally recognized self-sovereign states in the world).
Such a highly distributed setting is often considered to be
particularly censorship resistant because it would not be
strongly affected by political decisions in only one of the
jurisdictions where it operates.

Consortium. The consortium configuration geo-
distributes 200 blockchain nodes similarly to the community
configuration, however, it features more powerful c5.2xlarge
machines that better represent modern computers featuring
8 vCPUs and 16GiB of memory. This aims at mimicking
a consortium of individuals or institutions, like the R3
consortium [27], who have resources to devote modern
machines without specialized hardware to participate in the
blockchain service.

5.2 Blockchains
In this section we describe the six blockchains with smart
contract support that we compare using Diablo. The rea-
son why we chose these blockchains is because they form
a diverse set of representative blockchains: Algorand is a
blockchain that appeared in a peer-reviewed scientific pub-
lication, Avalanche partially orders transactions in a di-
rected acyclic graph, Ethereum is the largest smart contract
blockchain in market capitalization, Quorum is a blockchain
originally developed by the finance industry and Solana is
one of the most recent smart contract blockchains. Their
characteristics are listed in Table 4.

Blockchain Prop. Consensus VM DApp lang.

Algorand [17] prob. BA⋆ [17] AVM PyTeal
Avalanche [30] prob. Avalanche [30] geth Solidity
Diem [9] det. HotStuff [44] MoveVMMove
Quorum [12] det. IBFT [32] geth Solidity
Ethereum [41] ^ Clique [21] geth Solidity
Solana [43] ^ TowerBFT [42] eBPF Solidity
Table 4. Blockchains evaluated in Diablo. They differ by
their language virtual machine (VM), the language in which
their DApps are written, their consensus protocols and the
properties (Prop.) they offer, which are either probabilistic
(prob.), deterministic (det.) or eventual (^).

Algorand. Algorand [17] is a proof-of-stake blockchain
that elects a subset of nodes, through sortition, that can ap-
pend the next block. It does not fork with high probability, so
the transaction is considered final as soon as it is included in
a block.7 Algorand features a blocking API that waits for the
7https://algorand.foundation/algorand-protocol/core-blockchain-
innovation.

7

https://algorand.foundation/algorand-protocol/core-blockchain-innovation
https://algorand.foundation/algorand-protocol/core-blockchain-innovation

transaction to be committed before returning to the client.
Although it makes it natural to use this blocking call to detect
the commit of each transaction, Diablo was too demand-
ing, hence we made Diablo poll every appended block to
detect transaction commits, which improved significantly
Algorand’s performance.

We experimented the Algorand version with commit
116c06e dated from Nov. 23rd 2021 and available at https:
//github.com/algorand. Note that further optimizations were
made in the meantime [22]. We wrote a version of each
DApp of §3 in PyTeal because Algorand only supports the
Transaction Execution Approval Language (Teal), which
is a bytecode language and requires a conversion from the
PyTeal higher level language. Unfortunately, we could not
implement the video sharing DApp in Teal as we needed
data structures that were too large to be stored in the state
whose space is limited by a key-value store with 128 bytes
per key-value pair.

Avalanche. Avalanche [30] is a blockchain offering prob-
abilistic safety and the possibility to spawn subnets. There
are now three blockchain protocols in Avalanche: one featur-
ing the Ethereum Virtual Machine (C-Chain), one supporting
only native transfers (X-Chain), and another one for meta-
data management. To evaluate the DApps of §3, we used
C-Chain, which exposes a web socket streaming API (shared
by Ethereum and Quorum) to access the current blockchain
head or the latest block.

For the experiments, we used the master branchwith com-
mit number 7840200 available at https://github.com/ava-
labs/avalanchego. More precisely, validators only have to
validate the primary network of the C-Chain and as any
subnet is an independent network, we decided not to spawn
any subnet. We initially tried to setup the Avalanche experi-
ments using the RSA4096 cryptographic signature scheme as
recommended by Avalanche. However, this signing process
was taking too long due to the scale of our experiments. As
we could not make Avalanche work after replacing RSA4096
by ED25519, we opted for using ECDSA instead. Avalanche
supports the London release improvement of Ethereum (im-
provement #1559 of August 5th, 2021) with the new gas fee
structure with tips, which means the gas fee is computed
dynamically (differently from Ethereum’s original method).
Avalanche limits the gas per block to 8M gas and seems to
require a period between blocks of at least 1.9 seconds.8

Diem. Diem, formerly known as the Libra blockchain [9],
was initiated by Facebook. It features a variant of the leader-
based HotStuff protocol that solves the consensus problem
deterministically (hence avoiding forks) while reducing the
communication of traditional consensus protocols in good
executions. Like Ethereum, Diem requires that each trans-
action contains a sequence number, i.e., a monotonically

8https://snowtrace.io/chart/blocktime.

incremented integer. The difference with Ethereum is that
Diem nodes only accept a maximum of 100 transactions
from the same signer in their memory pool, limiting the
rate at which a unique signer can submit transactions. To
bypass this limitation, we made workloads submit from 2,000
different accounts in most deployment configurations, how-
ever, we noticed that the provided setup tools would fail
systematically after creating 130 accounts. This is why we
restricted the number of accounts to 130 in the community
and consortium configurations. We explicitly indicate when
this caused issues in §6.
We experimented the testnet branch from Aug. 21st

2021 with commit number 4b3bd1e of the Diem repository
https://github.com/diem/diem. Diem testnet branch is dated
Aug. 20 of 2021, while the main branch was updated at
the time of writing (Feb. 27, 2022). Even though the test-
net branch seems outdated, the official Diem tutorial still
recommends using the testnet branch for development pur-
pose: https://developers.diem.com/docs/tutorials/tutorial-
my-first-transaction/.

Ethereum. Ethereum [41] is the second largest
blockchain in market capitalization. As the default version
of Ethereum uses the proof-of-work cryptopuzzle resolution,
which inherently limits its throughput (to the amount of
gas allowed per block divided by the block period), we
exclusively used the Ethereum proof-of-authority consensus
protocol, called Clique, as available in geth. This version
still requires a minimum period between consecutive
blocks [16]. Just like Avalanche, the Ethereum API exposes a
web socket streaming API to access the current blockchain
head or the latest block.
We evaluated the geth version from the master branch

with commit hash 72c2c0a from Dec. 12 of 2021 available at
https://github.com/ethereum/go-ethereum. In August 2021,
the “London” update to the gas calculation introduced the
notion of tips. With this new version, the gas fee changes at
every block, which can impact the execution of transactions:
when the fee increases then the transaction risks to be un-
derpriced. This is why, we tried to adjust the fee dynamically
during the execution of the benchmark—this implied signing
transactions online.

Quorum. Quorum [12] is a blockchain initiated by J.P.
Morgan and currently maintained by Consensys. It features
different consensus algorithms: Raft, which only tolerates
crash failures, and IBFT and QBFT, which both tolerate
Byzantine failures and partial synchrony. As Quorum fea-
tures the geth Ethereum Virtual Machine, with the latest
changes from the Berlin upgrade (April 15th, 2021), it also
features the Clique proof-of-authority consensus algorithm,
however, it does not feature the more recent London gas fee
computation used by Ethereum and Avalanche.
We experimented the master branch with commit hash

919800f of Quorum from 2 Nov. of 2021 available at https:
8

https://github.com/algorand
https://github.com/algorand
https://github.com/ava-labs/avalanchego
https://github.com/ava-labs/avalanchego
https://snowtrace.io/chart/blocktime
https://github.com/diem/diem
https://developers.diem.com/docs/tutorials/tutorial-my-first-transaction/
https://developers.diem.com/docs/tutorials/tutorial-my-first-transaction/
https://github.com/ethereum/go-ethereum
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum

//github.com/ConsenSys/quorum. Given that Clique is vul-
nerable to message delays [16] and Raft is vulnerable to arbi-
trary failures, we exclusively run Quorum with IBFT in our
experiments. Similar to Ethereum and Avalanche, Quorum
exposes a web socket streaming API to access the current
blockchain head.

Solana. Solana is a recent blockchain that is highly opti-
mized for special features (e.g., Intel instructions). Similar to
Ethereum, Solana may fork and needs to wait for 30 confir-
mations (additional appended blocks) before a stored trans-
action can be considered final [24]. Its algorithm builds upon
proof-of-history and “depends on messages eventually arriv-
ing to all participating nodes within a certain timeout” [43].
To append a block every 400milliseconds, Solana replaces
the Merkle Patricia Trie of Ethereum with a simplified data
structure and replaces the ECDSA signature scheme with
EdDSA (ED25519).
We experimented the commit number 0d36961 of the

master branch of Solana from March 12 of 2022, as avail-
able at https://github.com/solana-labs/solana. Solana uses its
own API, also based on a web socket, that allows the client
to specify a commitment level. The clients listen for new
blocks with the desired commitment level by subscribing
to a web socket interface. Interestingly, Solana fetches the
block hash before issuing transactions because the last block
hash needs to be signed as part of the issued transaction. Pre-
vious tests ran by the Solana team all consisted of requesting
the last block hash before issuing concurrently transactions
withdrawing from different accounts. We could not use this
technique while evaluating realistic DApps because Solana
requires the hash to be created less than 120 seconds before
the transaction request is received while DApps can run
for longer. To cope with this limitation, the Solana-Diablo
interface periodically fetches the last block hash.

5.3 Diablo configuration
To measure the impact of geo-distribution on the blockchain
performance we deployed both the blockchains and Secon-
daries in the deployment configurations of §5.1 as depicted
in Table 3. In all cases we applied the same geo-distribution
strategy to the blockchain nodes and to the Secondaries: each
Secondary submits its requests to its collocated blockchain
node so as to mimic requests being routed from a client to-
wards its closest blockchain node. In all these configurations,
a single Primary was used for setting up the experiment
and gathering the performance results. As the Primary is
not involved during the performance monitoring phase, its
location does not impact the experimental results.
diablo primary -vvv --port=5000 \

--env="accounts=accounts.yaml" \
--env="contracts=dapps-directory" \
--output=results.json --compress --stat \
10 setup.yaml workload.yaml

To run the Primary, we specify the verbosity level, port num-
ber for the secondaries to connect to, path to the accounts
file, DApps source codes, output file path, compress output
(with gzip), printing statistics to standard output, number of
Secondaries (10 in the example), blockchain setup file, and
workload specification file.
diablo secondary -v --tag="us-east-2" \

--port=5000 127.0.0.1

To run the Secondary, we again specify the verbosity level,
port and address of the Primary to connect to and a tag to in-
dicate the Secondary location for collocation with blockchain
nodes.

6 Evaluation Results
In this section, we stress test the blockchains described in §5.2
under the realistic DApps of §3. Due to their decentralized
nature that offers enhanced security, we observe that, on
modern commodity hardware, the blockchains we evaluated
cannot yet handle the workloads experienced by central-
ized applications. We then run a combination of synthetic
workloads and real but less demanding workload traces to
compare the scalability, robustness, universality and avail-
ability of these blockchains.

6.1 Motivating blockchain improvements
To provide an overview of blockchains performance exe-
cuting realistic DApps, we deploy each DApp of §3 in the
consortium deployment configuration (200 machines with
8 vCPUs and 16GiB of memory spread over 10 countries in 5
continents) and generate the workload associated with each
of these DApps. For each run, we make sure that Diablo
uses enough Secondaries to not be the bottleneck.
Figure 2 shows the average throughput, average latency

and the proportion of committed transactions for each
blockchain-DApp pair. Note that these values are extracted
from a time series produced during the execution of each
workload of Table 2 that we inspected to make sure of the
statistical relevance of our measures. We observe that for the
Exchange DApp, which has the lowest average workload,
Nasdaq, of 168TPS only, Avalanche and Quorum commit
more than 86% of the transactions, all the other blockchains
commit 47% or less of the transactions. Although the fact
that none of the evaluated blockchains could commit all
transactions may seem quite pessimistic, note that recent ex-
periments already demonstrated that some blockchain could
commit all of them in the same setting [40].
For the most demanding workload, the YouTube work-

load, the proportion of commits is lower than 1% for all
evaluated blockchains. In addition, when the average work-
load is of 852TPS (like the Uber workload), or 3,483 TPS
(like the Fifa workload), only Quorum maintains a through-
put higher than 622TPS while the other blockchains have a
throughput lower than 170TPS. For higher workloads (like

9

https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://github.com/solana-labs/solana

0

50

100

150

T
h

ro
u

gh
p

u
t

(T
P

S
) workload = 168 TPS

0

200

400

600

800
workload = 852 TPS

0

200

400

600

800
workload = 3483 TPS

0

20

40

60

80

100
workload = 13303 TPS

0

20

40

60

80

100
workload = 37976 TPS

Ethereum Avalanche Diem Algorand Quorum Solana

0

50

100

150

200

250

300

L
at

en
cy

(s
)

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0

50

100

150

200

250

300

Nasdaq
0.00

0.25

0.50

0.75

1.00

C
om

m
it

/
S

u
b

m
it

Uber
0.00

0.25

0.50

0.75

1.00

Fifa
0.00

0.25

0.50

0.75

1.00

Dota 2
0.00

0.25

0.50

0.75

1.00

YouTube
0.00

0.25

0.50

0.75

1.00

Figure 2. Evaluation of blockchain performance when executing realistic DApps. For each DApp (column), we list the average
workload effectively submitted by Diablo (top of each column), average throughput (first row), average latency (second row)
and proportion of committed transactions (third row) for each blockchain. Each blockchain is deployed on 200 machines, each
with 8 vCPUs and 16 GiB of memory, spread among 10 datacenters. The absence of a bar indicates that the blockchain cannot
even commit few requests.

Dota 2), no blockchain maintains a throughput higher than
66TPS. Finally, among all DApps, no blockchains commit
with a latency lower than 27 seconds. These results contrast
with the claimed performance that we describe in Table 1.
We indicate below what are the causes of this performance
gap and how a blockchain developer can use Diablo to find
the causes of such performance results.

6.2 Scalability and deployment
Using Diablo, we quantify scalability as the ability to allow
a large number of unprivileged users to participate to the
blockchain execution. To this end, we deploy the blockchains
on networks of different sizes composed of machines ranging
from enterprise grade hardware with high computational
power (datacenter) to commodity hardware with modest
computational power (community). We then measure their
performance when stressed with a synthetic workload.

More precisely, after having tried the consortium deploy-
ment configuration (§6.1), we now deploy each blockchain
in the four remaining configurations of Table 4: datacenter,
testnet, devnet and community. For each configuration,
we use Diablo to emulate clients sending native transac-
tions to the blockchain during 120 seconds at a constant rate
of 1000 TPS, which is the same order of magnitude as the
average load of the Visa system9. We measure the average
throughput and average latency for each blockchain. If the
measured throughput is close to the workload of 1000 TPS
then we conclude that the blockchain handles the simple
payment use case for the configuration.

9Visa claims 150 million transactions per day = 1,736 TPS on average (https:
//usa.visa.com/run-your-business/small-business-tools/retail.html)

0

200

400

600

800

1000

T
h

ro
u

gh
p

u
t

(T
P

S
)

Ethereum

Avalanche

Diem

Algorand

Quorum

Solana

Datacenter Testnet Devnet Community
0

20

40

60

L
at

en
cy

(s
)

Figure 3. Average throughput and average latency of each
blockchain when stressed with a constant workload of
1,000 TPS on different configurations, from the least chal-
lenging (datacenter) to the most challenging (community).

Figure 3 shows the average throughput and average la-
tency for each blockchain on these four configurations. We
observe that only Solana handles a 1000 TPS constant work-
load for all configurations while maintaining a throughput
higher than 800 TPS with a latency below 21 seconds. Solana
uses an eventually consistent consensus based on a veri-
fiable delay function which puts away all communication
steps but a broadcast. By using a verifiable delay function,
Solana makes the block generation delay independent from
the number of cores the participant uses. By removing most
of the communication steps, Solana also performs relatively
well in a large-scale configuration like community.

Quorum also stands out in the community configuration
with a throughput of 499 TPS for a latency of 13 seconds.
Quorum uses a deterministic consensus algorithm that does

10

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html

not introduce artificial delays and provides immediate fi-
nality. In addition, Quorum benefits from many blockchain
specific optimizations by using geth as a base code. For all
blockchains there is no significant difference between the
datacenter and the testnet configurations. Over all the
configurations, Diem achieves the highest throughput (more
than 982 TPS) and the lowest latency (2 seconds or less) but
only on configurations with a local setup. We conjecture
that Diem is designed to provide very low latency and is
optimized to run on network setups with a low round-trip
time (RTT).
Among the remaining blockchains, only Algorand

achieves a throughput higher than 820 TPS when deployed
on the devnet configuration, which is a geo-distributed net-
work. In particular, the best average throughput that Al-
gorand reaches in 885 TPS on the tesnet. Avalanche de-
livers a relatively low throughput, even in the community
configuration that uses precisely the amount of vCPUs and
memory that Avalanche recommends10. This could be due
to the period between its consecutive blocks11, similar to the
block-period used in Ethereum Clique [16]. For this reason,
we conjecture that Avalanche and Ethereum are designed to
run at a relatively low throughput regardless of the available
computational power or network bandwidth.

6.3 Robustness and denial-of-service attacks
To better understand whether blockchains are robust to high
demand, we used Diablo to inject high workloads and test
whether the blockchain collapses or continues treating re-
quests further. Intuitively, a blockchain is more robust than
another if the workload needed to negatively affect its la-
tency and throughput is higher than the other. This property
is desirable to guarantee a certain service level agreement de-
spite an increasing demand and to better cope with denial-of-
service attacks. The test consists of deploying the blockchain
in a deployment configuration where it performs well un-
der moderate workloads and of observing whether a higher
workload leads to performance degradations.

To compare the blockchain robustness, we deploy each
blockchain in the configuration it performed best (see §6.2)
and observe its performance when stressed with a high work-
load. To this end we configured Diablo to send native trans-
actions to the blockchain during 120 seconds at a constant
rate of 10,000 TPS, which is 10× higher than the sending rate
in the deployment challenge. Although Diablo can send
transactions at higher rates, we found this workload to be
sufficient to show some interesting behaviors of the tested
blockchains.
Figure 4 compares the throughput and latency of each

blockchain when stressed with workloads of 1000 TPS and

10https://github.com/ava-labs/avalanchego#installation.
11https://snowtrace.io/chart/blocktime.

0

200

400

600

800

1000

T
h

ro
u

gh
p

u
t

(T
P

S
)

workload = 1,000 TPS workload = 10,000 TPS

Diem
Testnet

0

20

40

60

80

L
at

en
cy

(s
)

Algorand Ethereum Quorum
Devnet

Avalanche Solana
Community

Figure 4. Throughput and latency of each blockchain when
stressed with a constant workload of 1000 TPS (left bar) or
10,000 TPS (right bar). Each blockchain is deployed in the
configuration where it relatively performs best under a work-
load of 1000 TPS.

10,000 TPS. Diem and Quorum are the most negatively af-
fected by the higher workload: Diem throughput is divided
by 10 while Quorum throughput drops to 0. Interestingly,
Diem and Quorum are the only blockchains we evaluated
that use a deterministic leader-based Byzantine fault tolerant
(BFT) consensus. These algorithms were originally designed
to commit as many client requests as possible, a behavior
that easily leads to saturate memory pools or network queues
when exposed to high workloads. This behavior can increase
the vulnerability of the blockchain to DoS attacks.12 Finally,
note that this conclusion does not generalize to all deter-
ministic BFT consensus protocols, as other experiments [40]
recently showed that Smart Red Belly Blockchain, which
relies on a leaderless Byzantine fault tolerant consensus pro-
tocol, is immune to this problem.

Algorand and Solana are more robust than Diem and Quo-
rum as their throughputs are divided by 1.45 and 1.94, re-
spectively, while the latencies of Algorand and Solana are
multiplied by 2.43 and 4, respectively. These results show
that despite being affected by a high workload, these two
blockchains do not completely collapse and the performance
drop likely results from the inability of the underlying hard-
ware to handle too many requests. Interestingly, Avalanche
throughput is not negatively affected by the higher work-
load, as its throughput is multiplied by 1.38 which makes
it comparable to Solana throughput for the same workload.
This confirms the conjecture of §6.2 that Avalanche throttles
its throughput. It is hard to say something about Ethereum
results since this blockchain only commits 0.09% of the trans-
actions when the workload is 10,000 TPS.

6.4 Universality and DApp executions
To understand whether a blockchain is universal in that it
can handle requests that are made arbitrarily complex, we

12Generating 10,000 TPS with Diablo costs less then 8USD/hour on AWS.
11

https://github.com/ava-labs/avalanchego#installation
https://snowtrace.io/chart/blocktime

0

200

400

600

T
h

ro
u

gh
p

u
t

(T
P

S
)

X X X

Ethereum Avalanche Diem Algorand Quorum Solana
0

25

65

105

145

L
at

en
cy

(s
)

X X X

Figure 5. Throughput and latency of each blockchain when
stressed with the Uber workload of 810 TPS to 900 TPS where
each transaction invokes the computationally intensive Mo-
bility Service DApp. Each blockchain is deployed in the
consortium configuration of 200 geo-distributed machines
and a cross indicates that the blockchain cannot run the
Mobility Service DApp.

test whether the blockchains can handle a DApp with a
potentially complex execution logic.

To test if a blockchain can execute arbitrary programs, we
use the Mobility service DApp (§3), which is CPU intensive
and generates a 810–900 TPS workload during 120 seconds.
We test whether the blockchains can provide the service
delivered by Uber by measuring the throughput and latency
and verify that it matches the demand. As expected, this
workload is more demanding than the aforementioned native
transfer workload. We thus deploy the blockchains in the
consortium configuration (see Table 3), which has the same
number of machines and the same network as the community
configuration but with more powerful machines.
Figure 5 shows the throughput and latency for each

blockchain running the Mobility service DApp on the
consortium configuration. When the blockchain is unable
to execute the smart contract, Figure 5 shows an X letter
instead. Algorand, Diem and Solana are unable to execute
the DApp because the client reports an error of type "budget
exceeded" indicating that the execution ran out of gas or
timed out. This execution limit is hard-coded and cannot
be lifted by paying a higher gas fee in the transaction. We
conjecture that this limit is hard-coded to prevent a rich
adversary from slowing down or completely stopping the
blockchain by executing compute intensive tasks in smart
contracts. Interestingly, the three blockchains able to execute
the DApp use the geth implementation of the Ethereum Vir-
tual Machine (EVM), which comes with no hard limit on gas
budget of a transaction. Over these three blockchains, Quo-
rum has the highest throughput of 622 TPS, which is close
to the average workload, while the two other blockchains,
Avalanche and Ethereum, have a throughput lower than
169 TPS.

0 50 100 150
Google

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0 50 100 150
Microsoft

0 50 100 150
Apple

Ethereum

Avalanche

Diem

Algorand

Quorum

Solana

Latency (s)

Figure 6. CDF of the transaction latencies for each
blockchain when stressed with a peak load of 800 transac-
tions (Google), 4000 transactions (Microsoft) or 10,000 trans-
actions (Apple) followed by a low workload.

6.5 Availability despite load peaks
We measure a very specific notion of the availability of a
blockchain as its ability to commit submitted transactions
in a timely manner even when stressed with load peaks.
A blockchain is more available when it handles more in-
tense bursts of transactions with low latency and without
dropping any transaction. This property is desirable for a
blockchain to handle realistic workloads where users are
likely to send many transactions to the blockchain at the
same time and expect to receive a confirmation from the
blockchain within a reasonable delay. To measure the avail-
ability of the blockchains, we first deployed each blockchain
in the consortium configuration (see Table 3) and then
generates short bursts of transactions of varying intensi-
ties, extracted from the exchange DApp / Nasdaq workload
(§3). In particular, we configured Diablo to evaluate the
blockchains when sending separately the stock trade work-
loads of Google, Microsoft and Apple. Finally, we measured
the proportion of dropped transactions and the latencies of
committed transactions.

Figure 6 shows the cumulative distribution function (CDF)
of the transaction latencies for all blockchains under these
three workloads. Only Quorum commits all the transactions
in the three workloads. Specifically, when stressed with the
Apple workload, which consists of a load peak of 10,000 trans-
actions during the first second, Quorum commits all transac-
tions, among which 91% of the transactions are committed
with a latency of 8 seconds or less. Interestingly, Quorum
commits its transactions with similar latencies of 7 seconds
or less when stressed with lower load peaks. Quorum uses
IBFT, a deterministic BFT consensus that was historically
designed to never drop a client request. We conjecture that
this design choice is still present in the Quorum blockchain
as we already mentioned in §6.3.

12

The other blockchain based on a deterministic BFT con-
sensus, Diem, only commits 75% of the transactions, all of
them in less than 30 seconds. Diem drops transactions during
the load peak because of the limited size of the mempool
on each blockchain node. While this dropping mechanism
prevents Diem from committing all transactions during high
load peaks, it also makes it less prone to completely collapse
during constant loads, as opposed to Quorum (see §6.3). Al-
gorand and Solana also drop transactions, as shown by their
CDF plateauing at 77% and 52% of committed transactions,
respectively, whereas Avalanche and Ethereum keep com-
mitting transactions until the end of the experiment. While
it takes up to 162 seconds for Avalanche to commit some
of the transactions, this blockchain manages to commit 90%
of the submitted transactions. Despite its low throughput,
Avalanche is the second blockchain to commit the most trans-
actions.

As opposed to the Apple workload, the Google workload
presents an initial load peak of 800 transactions during the
first second. As a result, all the blockchains commit more
than 97% of the Google workload transactions. In addition, all
the blockchains but Ethereum commit all the Google work-
load transactions in less than 14 seconds while Ethereum
does it in 118 seconds. The Microsoft workload has a moder-
ate load peak of 4000 transactions during the first second. On
this workload, while all blockchains but Ethereum commit
all transactions, they take more time to do so with the excep-
tion of Quorum, which commits all of its transactions with
a latency of 7 seconds. Specifically, Solana has its maximum
latency rising from 1 second for the Google workload to 59
seconds while Algorand, Avalanche and Diem have their
maximum latency going from 10-14 seconds to 22-37 sec-
onds. On the Microsoft workload, Ethereum commits only
64% of the transactions.

6.6 Discussion
In this section, we summarize the key results of the evalu-
ation (§6). Although the evaluated blockchains are not yet
ready to handle demanding workloads found in centralized
services, our in-depth analysis identifies key factors of per-
formance and shows that some blockchain promises are
fulfilled.

In §6.2, it appears that a blockchain using eventual consis-
tency, like Solana, scales more easily to networks with many
nodes. A decent throughput is also achieved by Quorum, a
blockchain based on long studied consensus protocols but
which also benefits from modern engineering techniques.
More importantly, two blockchains, Diem and Avalanche,
fail at using more challenging configurations, most likely
because they simply do not consider these configurations as
a use case: high RTT networks for Diem and large hardware
resources for Avalanche.

In §6.3, the two blockchains using deterministic BFT con-
sensus protocols, namely Quorum and Diem, are the most

impacted by constantly high workloads. It could be due to
their leader-based BFT consensus protocol design that is
typically known to suffer from scalability limitations [19].
As an example, Smart Red Belly Blockchain, which builds
upon a leaderless deterministic BFT consensus protocol, was
recently shown to perform well under high workloads [40].
The Algorand, Avalanche and Solana blockchains, which
offer probabilistic or eventually consistent guarantees, main-
tain a non negligible throughput when stressed with high
constant workloads.

In §6.5, Quorum and Diem, the least robust blockchains in
the face of peak loads are also the blockchains committing
the largest portion of transactions under reasonable delay.
This seems to indicate that there is a tradeoff between robust-
ness and availability. In §6.4, only the three blockchains using
the geth implementation of the EVM, Avalanche, Ethereum
and Quorum, execute smart contracts with a complex and
computationally demanding logic. The other blockchains
having a virtual machine with a hard limit on the computa-
tional cost of a transaction are unable to provide complex
services.

7 Related Work
Hyperledger Caliper [3] is a blockchain benchmark frame-
work enabling users to evaluate the performance of
blockchains developed within the Hyperledger project, such
as Fabric, Sawtooth, Iroha, Burrow and Besu. It also supports
Ethereum and has plans to extend to other blockchains in the
future. Caliper provides pre-defined workloads, specifying
the calling contract, functions and the rate of transaction
sending over time. Unfortunately, all these workloads are
synthetic and we are not aware of any pre-defined DApps
with realistic workloads that can be used with Caliper.

Blockbench [15] is one of the most notable benchmarking
frameworks for blockchains, as it supports a number of micro
and macro benchmarks. An important feature of Blockbench
is that it features the notable SmallBank [6] database bench-
mark and the YCSB [13] cloud benchmark. Aimed at private
blockchains, Blockbench evaluates the different layers of the
blockchain, such as consensus or data storage, with tailored
workloads, allowing fine-grained testing and measurement
of the effectiveness of each of these layers. The evaluation
metrics available show throughput and latency, but also the
tolerance of faults through injected delays, crashes and mes-
sage corruption. Blockbench evaluates blockchains using
smart contract workloads from 2016. Smart contracts have
since then matured into more complex forms of DApps, like
decentralized exchanges. In addition, smart contract work-
loads at the time were not comparable to the demand of
centralized applications. For example, after seven years of
existence, Ethereum receives now 30× more transactions

13

than at the end of 201613. These workloads remain signif-
icantly lower than the demand of centralized applications,
like on the stock exchange.
The variety of Ethereum adapted blockchains motivated

the development of Chainhammer [23], a benchmark tool
focused on the performance of Ethereum-based blockchains
under extremely high loads. Chainhammer, unlike others,
does not follow a workload curve but provides continuous
high load generation, aiming at measuring the throughput
in extreme situations. Its design is specialized as there is
little flexibility in modifications to support other workloads.
Conversely, as Chainhammer is exclusively for Ethereum, it
can perform post-benchmark analysis and obtain metrics on
information critical to the Ethereum infrastructure, such as
the analysis of transaction costs and block structures.
Most evaluations that were made on blockchains are ad

hoc and do not aim at comparing very different blockchain
designs on the same ground. Some blockchain evalua-
tion [20] focused on comparing Ripple, Tendermint, Corda
and Hyperledger Fabric to evaluate their scalability potential
in the context of Internet of Things. Another experimental
evaluation [33] compared the performance of Burrow, Quo-
rum and Red Belly Blockchain to evaluate the performance
of blockchains relying exclusively on Byzantine fault toler-
ant consensus protocols. A benchmark was also developed
to compare Ethereum and Hyperledger Fabric on top of an
emulated network [31].
A preliminary version of Diablo appeared earlier in a

technical report [10]. It did not feature the diversity of DApps
that are presented here, but was used to evaluate crash fault
tolerant systems, like Hyperledger Fabric. In this paper, we
instead focused our study on secure systems capable of tol-
erating some form of Byzantine failures.

8 Conclusion
We proposed a new benchmark suite called Diablo and
presented the most extensive evaluation of blockchain per-
formance to date. The results indicate that none of the tested
blockchains can treat all requests from any of the realistic
DApps we proposed: gaming, web service, exchange, mobil-
ity service, video sharing. Our in-depth analysis is however
positive and outlines interesting design decisions that affect
performance. We believe that Diablowill be instrumental in
helping improve the current blockchain designs and evaluate
blockchains in a more transparent manner.

Availability
The code of Diablo and its DApps is open source and can
be found along with its documentation on its website at
https://diablobench.github.io.

13https://etherscan.io/chart/tx

Acknowledgments
We wish to thank Harold Benoit for his contributions to the
initial version of Diablo and Aymeric Bacuet for his contri-
butions to the DApps development. We also wish to thank
the Solana development team for confirming that c5.xlarge
instances have insufficient resources to run Solana, the Diem
development team for telling us that we could not speedup
the creation of accounts, the Avalanche development team
for confirming that Avalanche integrated the London update
and the Algorand development team for confirming that the
1000+ TPS throughput they observed was the peak through-
put obtained from load tests. This work is supported in part
by the Australian Research Council and by the Innosuisse
project (46752.1 IP-ICT). Vincent Gramoli is a Principal Inves-
tigator of the Algorand Centre of Excellence SIP. The work
was done while Andrei Lebedev was located at the Technical
University of Munich.

References
[1] 2021. Avalanche: Blazingly Fast, Low Cost, & Eco-Friendly. https:

//www.avax.network/ Accessed:2021-12-06.
[2] 2021. CoinMarketCap. https://coinmarketcap.com/ Accessed:2021-

05-06.
[3] 2021. Hyperledger Caliper. https://hyperledger.github.io/caliper/

Accessed:2021-05-06.
[4] 2022. Nasdaq. https://www.nasdaq.com/ Accessed: 2022-20-04.
[5] 2022. Solana (SOL). https://help.coinbase.com/en/coinbase/getting-

started/crypto-education/SOL Accessed: 2022-19-04.
[6] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm.

2008. The Cost of Serializability on Platforms That Use Snapshot Iso-
lation. In 2008 IEEE 24th International Conference on Data Engineering.
576–585. https://doi.org/10.1109/ICDE.2008.4497466

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference.

[8] Avalanche. 2022. Build Ethereum dApps on Avalanche. Build Without
Limits. https://www.avax.network/developers Accessed: 2022-21-03.

[9] Shehar Bano, Mathieu Baudet, Avery Ching, Andrey
Chursin, George Danezis, Francois Garillot, Zekun Li, Dahlia
Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino.
2019. State Machine Replication in the Libra Blockchain.
https://developers.libra.org/docs/assets/papers/libra-consensus-
state-machine-replication-\in-the-libra-blockchain.pdf Accessed:
2019-10-01.

[10] Harold Benoit, Vincent Gramoli, Rachid Guerraoui, and Christopher
Natoli. 2021. Diablo: A Distributed Analytical Blockchain Benchmark
Framework Focusing on Real-WorldWorkloads. Technical Report 285731.
EPFL.

[11] Abel Brodeur and Kerry Nield. 2018. An empirical analysis of taxi,
Lyft and Uber rides: Evidence from weather shocks in NYC. Journal
of Economic Behavior & Organization 152 (2018), 1–16.

[12] JPMorgan Chase. 2019. Quorum Whitepaper. https:
//github.com/ConsenSys/quorum/blob/master/docs/Quorum%
20Whitepaper%20v0.2.pdf Accessed: 2020-12-04.

14

https://diablobench.github.io
https://etherscan.io/chart/tx
https://www.avax.network/
https://www.avax.network/
https://coinmarketcap.com/
https://hyperledger.github.io/caliper/
https://www.nasdaq.com/
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/SOL
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/SOL
https://doi.org/10.1109/ICDE.2008.4497466
https://www.avax.network/developers
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-\in -the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-\in -the-libra-blockchain.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing.
143–154.

[14] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly:
a Secure, Fair and Scalable Open Blockchain. In Proceedings of the 42nd
IEEE Symposium on Security and Privacy (S&P’21).

[15] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
and Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing
Private Blockchains. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1085–1100.

[16] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. 2020.
The Attack of the Clones against Proof-of-Authority. In Proceedings of
the Network and Distributed Systems Security Symposium (NDSS’20).

[17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. In Proc. 26th Symp. Operating Syst. Principles. 51–68.

[18] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2007.
Youtube Traffic Characterization: A View from the Edge. In Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC).
15–28.

[19] Vincent Gramoli. 2022. Blockchain Scalability and its Foundations in
Distributed Systems. Springer.

[20] Runchao Han, Gary Shapiro, Vincent Gramoli, and Xiwei Xu. 2019. On
the Performance of Distributed Ledgers for Internet of Things. Internet
of Things 10 (Aug 2019).

[21] Thomas Hay. 2021. Hyperledger Besu: Understanding Proof
of Authority via Clique and IBFT 2.0 Private Networks (Part
1). https://consensys.net/blog/quorum/hyperledger-besu-
understanding-proof-of-authority-via-clique-and-ibft-2-0-private-
networks-part-1/ Accessed: 2022-09-05.

[22] RotemHemo. 2022. Interoperability, Speed, and OnChain Randomness.
https://www.algorand.com/resources/blog Accessed: 2022-11-09.

[23] Andreas Krüeger. 2017. Chainhammer: Ethereum benchmarking.
https://github.com/drandreaskrueger/chainhammer Accessed:2021-
05-06.

[24] Solana labs. 2022. Solana confirmations. https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_state/mod.rs#L34
Accessed: 2022-20-04.

[25] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nico-
las Barry, Eli Gafni, Jonathan Jove, Rafał Malinowsky, and Jed McCaleb.
2019. Fast and Secure Global Payments with Stellar. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 80–96.

[26] Silvio Micali. 2020. Algorand 2021 Performance. https:
//www.algorand.com/resources/algorand-announcements/algorand-
2021-performance Accessed: 2022-21-03.

[27] Christopher Natoli and Vincent Gramoli. 2017. The Balance Attack
or Why Forkable Blockchains are Ill-Suited for Consortium. In 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2017, Denver, CO, USA, June 26-29, 2017. 579–590.

[28] Christopher Natoli, Jiangshan Yu, Vincent Gramoli, and Paulo Jorge Es-
teves Veríssimo. 2019. Deconstructing Blockchains: A Comprehensive
Survey on Consensus, Membership and Structure. Technical Report
1908.08316. arXiv. http://arxiv.org/abs/1908.08316

[29] Rocky Rock. 2022. Avalanche. What is transactional through-
put? https://support.avax.network/en/articles/5325146-what-is-
transactional-throughput Accessed: 2022-02-05.

[30] Team Rocket. 2018. Snowflake to Avalanche: A
Novel Metastable Consensus Protocol Family for Cryp-
tocurrencies. Technical Report. https://ipfs.io/ipfs/
QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
Accessed on 2021-11-26.

[31] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. 2020. BCT-
Mark: a Framework for Benchmarking Blockchain Technologies. In

2020 IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA). 1–8.

[32] Roberto Saltini and David Hyland-Wood. 2019. IBFT 2.0: A Safe and
Live Variation of the IBFT Blockchain Consensus Protocol for Eventually
Synchronous Networks. Technical Report 1909.10194. arXiv.

[33] Gary Shapiro, Christopher Natoli, and Vincent Gramoli. 2020. The
Performance of Byzantine Fault Tolerant Blockchains. In Proceedings
of the 19th IEEE International Symposium on Network Computing and
Applications (NCA’20). 1–8.

[34] Solana. 2022. History. https://docs.solana.com/history Accessed:
2022-21-03.

[35] Solana. 2022. Validator Requirements. https://docs.solana.com/
running-validator/validator-reqs Accessed: 2022-16-09.

[36] Statista. 2021. Number of peak concurrent Steam users from January
2013 to September 2021. https://www.statista.com/statistics/308330/
number-stream-users/ Accessed: 2022-20-04.

[37] Statista. 2022. Hours of video uploaded to YouTube every minute as
of February 2020. https://www.statista.com/statistics/259477/hours-
of-video-uploaded-to-youtube-every-minute/ Accessed: 2022-20-04.

[38] Statista. 2022. Number of rides Uber gave worldwide from Q2 2017 to
Q4 2020. https://www.statista.com/statistics/946298/uber-ridership-
worldwide/#:~:text=In%20the%20fourth%20quarter%20of,percent%
20year%2Don%2Dyear Accessed: 2022-20-04.

[39] Steam. 2013. Dota 2. https://store.steampowered.com/app/570/Dota_
2/ Accessed: 2022-20-04.

[40] Deepal Tennakoon and Vincent Gramoli. 2022. Smart Red Belly
Blockchain: Enhanced Transaction Management for Decentralized Ap-
plications. Technical Report 2207.05971. arXiv.

[41] Gavin Wood. 2015. ETHEREUM: A Secure Decentralised Generalised
Transaction Ledger. Yellow paper.

[42] Anatoly Yakovenko. 2019. Tower BFT: Solana’s High Performance
Implementation of PBFT. https://medium.com/solana-labs/tower-bft-
solanas-high-performance-implementation-of-pbft-464725911e79
Accessed: 2022-09-05.

[43] Anatoly Yakovenko. 2021. Solana: A new architecture for a high perfor-
mance blockchain v0.8.13. https://solana.com/solana-whitepaper.pdf
Accessed: 2021-12-06.

[44] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and Re-
sponsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing.

A Artifact Appendix
A.1 Abstract
In this appendix, we present the artifact as the software,
scripts and documentation that were submitted to run the
Diablo framework. This artifact, also available at https:
//diablobench.github.io/artifact, was judged available and
functional by the artifact evaluation committee. After dis-
cussion with the committee, we concluded that the scale of
some of our experiments is beyond the scope of what this
committee can reasonably reproduce.

A.2 Description & Requirements
To run Diablo easily, we provide a VirtualBox image with all
dependencies as indicated in a screencast. We also provide
steps in order to do a fresh install on the geo-distributed
machines specified in the paper.

15

https://consensys.net/blog/quorum/hyperledger-besu-understanding-proof-of-authority-via-clique-and-ibft-2-0-private-networks-part-1/
https://consensys.net/blog/quorum/hyperledger-besu-understanding-proof-of-authority-via-clique-and-ibft-2-0-private-networks-part-1/
https://consensys.net/blog/quorum/hyperledger-besu-understanding-proof-of-authority-via-clique-and-ibft-2-0-private-networks-part-1/
https://www.algorand.com/resources/blog
https://github.com/drandreaskrueger/chainhammer
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_state/mod.rs##L34
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_state/mod.rs##L34
https://www.algorand.com/resources/algorand-announcements/algorand-2021-performance
https://www.algorand.com/resources/algorand-announcements/algorand-2021-performance
https://www.algorand.com/resources/algorand-announcements/algorand-2021-performance
http://arxiv.org/abs/1908.08316
https://support.avax.network/en/articles/5325146-what-is-transactional-throughput
https://support.avax.network/en/articles/5325146-what-is-transactional-throughput
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://docs.solana.com/history
https://docs.solana.com/running-validator/validator-reqs
https://docs.solana.com/running-validator/validator-reqs
https://www.statista.com/statistics/308330/number-stream-users/
https://www.statista.com/statistics/308330/number-stream-users/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/946298/uber-ridership-worldwide/#:~:text=In%20the%20fourth%20quarter%20of,percent%20year%2Don%2Dyear
https://www.statista.com/statistics/946298/uber-ridership-worldwide/#:~:text=In%20the%20fourth%20quarter%20of,percent%20year%2Don%2Dyear
https://www.statista.com/statistics/946298/uber-ridership-worldwide/#:~:text=In%20the%20fourth%20quarter%20of,percent%20year%2Don%2Dyear
https://store.steampowered.com/app/570/Dota_2/
https://store.steampowered.com/app/570/Dota_2/
https://medium.com/solana-labs/tower-bft-solanas-high-performance-implementation-of-pbft-464725911e79
https://medium.com/solana-labs/tower-bft-solanas-high-performance-implementation-of-pbft-464725911e79
https://solana.com/solana-whitepaper.pdf
https://diablobench.github.io/artifact
https://diablobench.github.io/artifact

A.2.1 How to access.
All the code necessary to reproduce our experiments is avail-
able publicly online. In particular, it contains: The Diablo
benchmarking framework source code, including every de-
centralized application benchmark and their associated real-
istic workloads. A set of scripts called minion that helps de-
ploying the code to the availability zones of AmazonWeb Ser-
vices where our paper deployed the evaluated blockchains.
The links to the source code of each of the blockchains we
evaluated:

• Algorand (https://github.com/algorand)
• Avalanche (https://github.com/ava-labs/avalanchego)
• Diem (https://github.com/diem/diem)
• Ethereum (https://github.com/ethereum/go-ethereum)
• Quorum (https://github.com/ConsenSys/quorum)
• Solana (https://github.com/solana-labs/solana)

In order to simplify the tests, we made a VirtualBox image,
step-by-step markdown documentation and a screencast
available at https://diablobench.github.io/redo-howto.

A.2.2 Hardware dependencies.
We recommend using an x86-64 architecture processor to
simplify the evaluation. We used a hardware machine with
Intel Core i5 Comet Lake, 16 GB RAM, and at least 10 GB
of free disk space on which we ran VirtualBox. For a fresh
install, one can use as many as 200 machines, each with up to
36 vCPUs and 72 GiB of memory, spread across 5 continents.

A.2.3 Software dependencies.
VirtualBox, which is used in our screencast, does not sup-
port ARM processors, we thus recommend allocating to the
virtual machine at least: 8 GB RAM, 4 vCPUs (cores) and
10 GB storage space. There is no additional software de-
pendency required, besides VirtualBox, if you download
the VirtualBox image to run Diablo. Otherwise, it is rec-
ommended to use Ubuntu OS and the following software as
indicated in https://diablobench.github.io/fresh-install: make,
gcc, perl, perlbrew-5.34.0, pyenv 3.10.6, python, ssh,
git, minion, diablo.

A.2.4 Benchmarks. In addition to executing native trans-
fers on the 6 blockchains, we also used realistic workloads:
Dota 2, Fifa, Nasdaq, Uber, YouTube. They are separated
from the source code and can be downloaded at the fresh
install page.

A.3 Set-up (1h30min)
We present a simple setup that builds upon a VirtualBox
image that allows to deploy the blockchain protocols, shows
how to run two simple workloads and collect the results.
We defer the instructions to run experiments on up to 200
virtual machines in 5 continents to the online page https:
//diablobench.github.io/fresh-install.

The setup consists of downloading a VirtualBox image
and following the step-by-step documentation at https://

diablobench.github.io/redo-howto or the screencast at the
same page to generate results in a simplified setting.

• Install VirtualBox.
• Download the image from https://diablobench.github.
io/redo-howto.

• Start the image with VirtualBox with login and pass-
word as vagrant.

• Run the experiments on the blockchains
with a simple native transfer workload,
workload-native-10.yaml:

Listing 1. Running native transfers on the blockchains
1 cd minion
2 ./ bin/ eurosys --skip - install workload -native

-10. yaml setup .txt

• Run now the experiments with a DApp workload,
workload-contract-10.yaml:

Listing 2. Invoking smart contracts on the blockchains
1 ./ bin/ eurosys --skip - install workload -contract

-10. yaml setup .txt

Note that the workloads corresponding to each
DApp of the paper are available as well. These
experiments aggregate the performance results
of all blockchains located in files of the name:
[blockchain_name]-[region_number]-[#secondaries]-
[#blockchain_nodes]-[workload_name]-
[timestamp].results.tar.gz

For example, let us look at Algorand’s performance results
after running these experiments:

Listing 3. Retrieving the Algorand performance results
1 tar xf0 algorand -1-1-1- native -10 _2022

-08 -21 -22 -48 -58. tar.gz algorand -1-1-1-
native -10 _2022 -08 -21 -22 -48 -58/

This command outputs the performance obtained by Algo-
rand by inspecting the standard output log of the Diablo
primary node that aggregated the results. For example, dur-
ing the tests recorded in the screencast, we could see that
299 transactions were sent to Algorand, out of which 187
were successfully committed. As none were aborted, the rest
of the transactions were pending. The average load was 10
transactions sent per second, and the average throughput
was 6.3 transactions per second with an average latency of
12.2 seconds and a median latency of 11.4 seconds.

One can also inspect more detailed results by moving the
results to the scripts folder to convert them from the JSON
format to the CSV format:

Listing 4. Analyzing the performance results
1 mv * native *. tar.gz ~/ scripts / results / native /
2 mv * contract *. tar.gz ~/ scripts / results /

contracts /
3 cd ~/ scripts

16

https://diablobench.github.io/redo-howto
https://diablobench.github.io/fresh-install
https://diablobench.github.io/fresh-install
https://diablobench.github.io/fresh-install
https://diablobench.github.io/redo-howto
https://diablobench.github.io/redo-howto
https://diablobench.github.io/redo-howto
https://diablobench.github.io/redo-howto

4 ./csv - results results results .csv

On each line of results.csv, we can now see the per-
formance results of an archive for each given blockchain
as depicted in the page https://diablobench.github.io/redo-
howto#results-specification. The latencies are expressed in
seconds and follow the transaction submission times. In the
screencast example, the first submitted transaction for Algo-
rand at time 0.10 second took 0.53 seconds to commit (first
line).

A.4 Evaluation workflow
A.4.1 Major Claims. We enumerate here the major
claims (Cx) of the paper.

• (C1): We demonstrate that the performance of 6 state-
of-the-art blockchains, including Algorand, Avalanche,
Ethereum, Diem, Quorum and Solana is heavily depen-
dent on the underlying experimental settings in which
they are evaluated.

• (C2): Real DApps may not even execute successfully as
some of their functions would consume more than the
maximum allowed gas per transaction.

• (C3): The Algorand, Avalanche, Ethereum, Diem, Quo-
rum and Solana blockchains are not capable of handling
the demand of the selected centralized applications when
deployed on modern commodity computers from indi-
viduals across the world.

A.4.2 Experiments. We now describe how to verify the
claims C1-C3 using the following experiments E1-E3:

Experiment (E1): The first experiment shows that the type
of workload impacts the performance of a blockchain.
[Preparation] Follow up the instructions in Section A.3.
[Execution] Execute both workloads, with 10 transactions
sent per second and 100 transactions sent per second:

Listing 5. Run different workloads
1 ./ bin/ eurosys --skip - install workload -native

-10. yaml setup .txt
2 ./ bin/ eurosys --skip - install workload -100. yaml

setup .txt

[Results] You can see that both workloads led to different set
of results, for example in Algorand:

Listing 6. Compare the results
1 tar xfO algorand -1-1-1- native -10 _2022

-08 -21 -22 -48 -58. results .tar.gz algorand
-1-1-1- native -10 _2022 -08 -21 -22 -48 -58.
results /diablo -primary -127.0.0.1 - out.log

2 tar xfO algorand -1-1-1- native -100 _2022
-08 -21 -23 -08 -04. results .tar.gz algorand
-1-1-1- native -100 _2022 -08 -21 -23 -08 -04.
results /diablo -primary -127.0.0.1 - out.log

This confirms that different experimental settings lead to
different results.

Experiment (E2): The second experiment shows that cer-
tain realistic DApps cannot be executed because of the gas
per transaction cap.
[Preparation] Follow up the instructions in Section A.3.
[Execution] Execute Uber workload:

Listing 7. Run different workloads
1 ./ bin/ eurosys --skip - install workload -uber.yaml

setup .txt

[Results] The out log of Solana do not show any commit-
ted transactions while the err log indicates “Computational
budget exceeded”.

Listing 8. Compare the results
1 tar xfO solana -1-1-1- smart - uber_2022

-08 -21 -22 -48 -58. results .tar.gz solana
-1-1-1- smart - uber_2022 -08 -21 -22 -48 -58.
results /diablo -primary -127.0.0.1 - out.log

2 tar xfO solana -1-1-1- smart - uber_2022
-08 -21 -22 -48 -58. results .tar.gz solana
-1-1-1- smart - uber_2022 -08 -21 -22 -48 -58.
results /diablo -primary -127.0.0.1 - err.log

Similarly, the Algorand err log indicates “budget exceeded”.
This confirms that some blockchains cannot execute some
realistic DApps due to transaction gas limit.

Experiment (E3): This experiment consists of observing
that none of the tested blockchains can commit all transac-
tions of any DApp workloads on a fresh install on 200 AWS
VMs of type c5.2xlarge (8 vCPUs, 16 GB memory) spread
equally across the following availability zones: Cape Town,
Tokyo, Mumbai, Sydney, Stockholm, Milan, Bahrain, São
Paulo, Ohio and Oregon. For more details, follow the fresh in-
stall described at https://diablobench.github.io/fresh-install.

17

https://diablobench.github.io/redo-howto#results-specification
https://diablobench.github.io/redo-howto#results-specification
https://diablobench.github.io/fresh-install

	Abstract
	1 Introduction
	2 Problem Statement
	3 The Decentralized Applications Suite
	4 Diablo Overview
	5 Experimental Settings
	5.1 Deployment configurations
	5.2 Blockchains
	5.3 Diablo configuration

	6 Evaluation Results
	6.1 Motivating blockchain improvements
	6.2 Scalability and deployment
	6.3 Robustness and denial-of-service attacks
	6.4 Universality and DApp executions
	6.5 Availability despite load peaks
	6.6 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up (1h30min)
	A.4 Evaluation workflow

