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Abstract. In state machine replication (SMR), preventing reordering
attacks by ensuring a high degree of fairness when ordering commands
requires that clients broadcast their commands to all processes. This
is impractical due to the impact on scalability, and thus it discourages
the adoption of a fair ordering of commands. Alternative approaches to
order-fairness allow clients do send their commands to only one process,
but provide a weaker notion of order-fairness. In particular, they dis-
advantage isolated processes. In this paper, we introduce Aion, a set of
order-fair protocols for SMR. We first leverage trusted execution environ-
ments (TEEs) to enable processes to compute the times when commands
are broadcast by their issuers. We then integrate this information into
existing consensus protocols to devise order-fair SMR protocols that are
both leader-based and leaderless. To realize order-fairness, Aion only re-
quires that a client sends its commands to a single process, while at the
same time enabling precise ordering during synchronous periods.

Keywords: Order-fairness · Trusted execution environment · State ma-
chine replication.

1 Introduction

The state-machine replication (SMR) paradigm [28] has been used in distributed
systems for decades despite the fact that its specification does not require any
particular ordering: the SMR specification requires an identical order at each
correct replica, but it does not specify which orders are valid. The lack of or-
dering requirement in SMR has only become critical recently with the advent
of blockchain technology [43] and decentralized finance where malicious partic-
ipants have leveraged this shortcoming to reorder transactions [11] and reap
hundreds of millions of dollars [46].

Multiple solutions [24,58,26,9,55] have been devised to ensure fairness in the
ordering of commands. A first paradigm [24,23,9] requires clients to submit their
commands to all processes so that commands can later be ordered using the
relative ordering of commands at a majority of processes. However, having all
clients broadcast their commands is costly and therefore impractical. In a second
paradigm [58], a client only submits its command c to a single process pi so that
pi can forward c to other processes and collect ordering information for c. This
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Fig. 1. Network delays between processes.

new approach is a practical trade-off as it circumvents circular dependencies
and broadcasts by clients at the cost of weakened fairness for isolated processes.
Process isolation is illustrated in Figure 1. Due to the network delays between
processes, process p1 is isolated from processes p2, p3, p4: p2, p3, p4 are close to
each other and distant from p1. Consider a scenario where process p1 broadcasts
a command c1 at time t1 = 0ms, and where process p2 broadcasts a command
c2 at time t2 = t1 + 50ms. Due to the network distribution of Figure 1, a
supermajority of 2f + 1 = 3 processes observe c2 before c1 (cf. Table 1), and
thus c2 must be ordered before c1 despite the fact that c1 was broadcast before c2.
Note that it may sometimes be more interesting to prefer processes with shorter
delays in order to improve throughput. In contrast, our approach proposes a
solution to determine the sending time of commands. For some domains, such as
decentralized finance, our approach provides more fairness by removing biases
due to network delays.

Table 1. Times when commands c1 and c2 are received by processes. Process p1
broadcasts c1 at time t1 = 0ms, whereas p2 broadcasts c2 at time t2 = 50ms. Reception
times are computed by adding the times when commands are broadcast (i.e., 0 or 50)
to the network delays (c.f. Figure 1).

p1 p2 p3 p4

c1, t1 = 0ms 0 + 0 = 0 0 + 120 = 120 0 + 90 = 90 0 + 100 = 100
c2, t2 = 50ms 50 + 120 = 170 50 + 0 = 50 50 + 30 = 80 50 + 20 = 70

One could think of naively compensating this imbalance by using the knowl-
edge of network delays between processes. A process pi that receives a command
c from pj at a time t0, and that knows the network delay dji between pj and
pi, can compute the time tc when c was broadcast by pj using tc = t0 − dji.
Unfortunately, such scheme cannot be implemented candidly in the Byzantine
model. For instance, a Byzantine process pB could make its distances to other
processes appear larger by delaying the sending of all of its messages by an
amount dB > 0. If pB stops delaying its messages before sending a new com-
mand c′, a process pi receiving c′ at time t′0 would believe that c′ was sent at time
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tc′ = t′0− (dji+ dB) < t′0− dji, and c would unfairly preempt earlier commands.
A novelty of our solution is to combine cryptographic challenges [15] with TEEs
to determine safe values of network delays.

To prevent process isolation, it would be sufficient to be able to verify network
delays. In this paper, we present Aion3, a set of leader-based and leaderless
protocols that leverage trusted execution environments (TEEs) to solve process
isolation. First, we take advantage of the security guarantees provided by TEEs
to devise a challenge-response protocol that enables processes to compute safe
values of network delays, and we use an additional protocol such as [4] to increase
the reliability of TEEs clocks. As far as we know, we propose the first solution
that relies on an additional protocol to secure the TEE clocks. The challenges
prevent Byzantine processes from advertising network delays that are shorter
than the actual network delays. Note that a Byzantine process can still advertise
larger network delays simply by retaining messages. Then, we rely on the fact
that the network is synchronous most of the time and that network delays are
stable [40], and require that measured network delays remain constant. This
ensures that if a Byzantine process has inserted biases to increase the values
of its network delays, then it has to abide by those new values. As a result,
processes can determine the times when commands are sent in a safe way because
it prevents Byzantine processes from preempting older commands.

Notice that it is not possible to directly use the timestamps provided by a
TEE because a Byzantine process could generate commands with valid times-
tamps using its TEE, and could then broadcast these commands at a future
time in order to preempt commands that it observes. In the financial domain,
this is characterized as a front-running attack [16] and can have detrimental
economic repercussions. Another novelty of our protocol is to complement the
timestamps provided by TEEs with the verification of network delays to ensure
the freshness of commands. Aion is designed to achieve an accurate ordering of
commands when the network is behaving synchronously. However, networks can
suffer various kinds of failure [10], and can behave asynchronously as a result of
these failures. In these scenarios, the network delays are unknown, and protocols
that assume an upper-bound on message delivery may see their safety properties
violated [44]. Therefore, we devise partially synchronous protocols in order to
preserve safety during asynchronous periods. We discuss the loss of liveness and
mitigation strategies during asynchronous periods in §8.2.

Although enforcing a fair ordering of commands helps at mitigating ordering
attacks in blockchains, it is not sufficient by itself to completely prevent them [23]
as this requires either a commit-reveal scheme [22,37] or a combination of both
a commit-reveal scheme and fair ordering [55]. In this paper, we only focus on
extending the SMR specification with fair ordering. Nevertheless, a commit-
reveal scheme such as in [37] or [55] could be added to our protocols to achieve
the desired result. Requiring a fair ordering from the output of an SMR is not
trivial because most of the existing SMR protocols do not support it off the shelf.

3 Aion is a Hellenistic deity that symbolizes a cyclic time. The name Aion stems from
the fact that our protocols rely on repeating and constant network delays.
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A leader-based protocol such as HotStuff [54] requires a preliminary sequencing
step as in [58]. Other leaderless protocols are either tolerant to crash faults
only [47,6], or require an additional commit protocol as in [55]. Hence, we show
how our protocol for a fair ordering of commands can be integrated into existing
SMR protocols. Specifically, we make the following contributions:

– We leverage TEEs to devise a protocol that enables processes to safely mea-
sure network delays. The novelty of our approach resides in using TEEs so
that the measurements of network delays can be used without compromising
safety.

– We build upon safe values of network delays and compute the times when
commands are broadcast with proven accuracy during synchronous periods,
while preserving safety during asynchronous periods.

– We integrate the sending times of commands with both leader-based and
leaderless consensus protocols to implement Aion, a set of SMR protocols
with fair ordering. Thus, we show that our approach is modular and practical
due its low overhead of only two message delays.

The rest of this paper is organized as follows. We present related work in §2,
and our computational model in §3. We introduce the timestamping protocol
in §4, and use it to build the ordering protocol in §5. We build upon the ordering
protocol to build Leader-Based Aion in §6, and Leaderless Aion in §7. We discuss
our results in §8, and we conclude in §9.

2 Related Work

Order-fair protocols were first investigated by Kelkar et al. [24] with Aequitas. In
Aequitas, a client must broadcast its commands to all processes, and commands
are ordered based on the local orderings of commands observed by processes.
For instance, a command c1 must be ordered before a command c2 if a sufficient
fraction of the processes have observed c1 before c2. However, in large SMR
systems, the number of clients is orders of magnitude larger than the number
of processes [20,58,55,19]. Requiring that clients broadcast their commands to
all processes incurs an extra linear multiplicative cost on communication and
message complexity, and renders the approach intrinsically impractical on a large
scale.

Cachin et al. [9] extend this paradigm by showing related lower bounds.
Specifically, they determine the differential number of processes required to en-
sure any ordering on the commands that are output. Pompē [58] introduces a new
ordering paradigm whereby a client only sends its commands to a single process
who forwards them to all processes. Commands are then ordered based on the
times when other processes have received the forwarded commands. Although
Pompē does not require clients to broadcast their commands to all processes
in order to achieve a fair ordering of commands, it suffers from process isola-
tion (cf. §1). To reduce the latency of Pompē, Lyra [55] uses the network delays
measured between processes so that processes can predict the times when their
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commands are received by other processes. Interestingly, the knowledge of net-
work delays can also be used to compute the times when commands are sent.
Our contribution is to use network delays to compute the times when commands
are sent, and to leverage TEEs to make these computations safe.

Cryptographic challenges were introduced by Dwork and Naor [15] as a way
to limit junk emails. They are commonly used as way to prevent denial-of-service
attacks in networks [51,17,53,27]. In blockchains, lottery-like methods are widely
used as a means to preserve safety against Byzantine processes. Proof of works
were introduced by Hashcash [7] and are used in Bitcoin [43] and Ethereum [52]
to mine new blocks and extend the ledger. Ouroboros [25] and Algorand [20] are
based on proof-of-stake mechanisms that use verifiable random functions [39].

Stathakopoulou et al. [50] use TEEs to add fairness to the ordering of com-
mands. Their approach focuses on preventing front-running attacks, and there-
fore relies on obfuscating commands until they are committed, while delegating
the actual ordering to the total broadcast layer. Therefore, their approach is
closer to a commit-reveal scheme [22]. Gupta et al. [21] also leverage trusted
components in SMR, but focus instead on improving liveness and reducing com-
munication complexity, and although their protocol supports concurrent execu-
tions of consensus, it does not implement order-fairness. In blockchains, multiple
protocols rely on TEEs for implementing SMR. TEEs are used to improve scal-
ability [33], limit the behavior of Byzantine processes [56], or secure off-chain
commands [32,31], but they do not consider fairness in the ordering of com-
mands.

3 Model

3.1 Processes

We examine a system of n processes denoted by Π. We assume the existence of a
dynamic adversary that can corrupt up to f < n

3 processes. As a result, and be-
cause SMR requires consensus [3], our protocols for SMR are resilience optimal
in non-synchronous environments. Processes that are controlled by the adver-
sary are denoted Byzantine and can act arbitrarily [29], whereas non-corrupted
processes are denoted correct. Processes communicate via authenticated and
reliable channels that preserve the integrity of messages.

3.2 Network

We assume that the network is partially synchronous [14]. In a partially syn-
chronous network, messages can be delayed up to a global stabilization time
(GST) whose value is unknown. After GST, the network behaves synchronously
and network delays between correct processes are bounded by a known value ∆.
During synchronous periods, we assume that the network delays are stable and
that the fluctuations in network delays between any two processes are bound
by λ > 0. This assumption relies on recent studies on the probability distri-
butions of network delays [40]. For stable networks, λ is usually less than one
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millisecond [41]. Let dij denote the network delay between pi and pj . During a
synchronous period T , we have

∀t1, t2 ∈ T, ∀pi, pj ∈ Π, |(dij at t1)− (dij at t2)| ≤ λ.

3.3 Trusted Execution Environments

We assume the existence of Trusted Execution Environment (TEE) technology.
A TEE provides a secure environment that ensures that each process executes
the protocol correctly. Formally, a TEE guarantees the following properties [48]:

– authenticity of the code executed by each process,
– integrity and confidentiality of runtime states (memory, registers, I/O,...),
– a trusted time service,
– remote attestation in order to prove correctness to a third-party.

We also assume that TEEs are resilient to both software and hardware attacks.
As a result, when a process becomes corrupted, the adversary can only take
control of resources outside of the TEE (e.g. operating system, network,...).
Such technology is implemented, for instance, by hardware with Intel Software
Guard Extensions (SGX) [38] or ARM TrustZone [1].

3.4 Clocks

We assume that each process pi has a trusted local clock denoted clocki() that
is managed by the TEE environment and that returns timestamps in N. This is
implemented, for instance, in Intel SGX. Although Intel SGX provides access to
a secure timer, a privileged user can still manipulate this timer [5]. Consequently,
we propose that the local clock be secured with an additional protocol such as
TimeSeal [4] to secure the value of clocki(). TimeSeal adopts a holistic approach
to obtain a reliable time stack by securing the timer, ensuring that the timer
can be read in a timely manner, and protecting timekeeping software. During
asynchronous periods, the offsets between clocks can grow unboundedly. But
after GST, the network is synchronous and the offsets between any two clocks
are bounded by δ > 0. Clock synchronization [35] can achieve a value of δ less
than a millisecond, and typically in the order of tens of microseconds [30].

3.5 Intervals

We divide the set N of all possible timestamps into consecutive intervals of size
ℓ. Let Ik denote the kth interval,

∀k ∈ N, Ik = [kℓ, (k + 1)ℓ).

We also define the interval mapping function I that maps any timestamp t to
its corresponding interval I(t) such that t ∈ II(t),

∀t ∈ N, I : N −→ N,
t 7−→ k | kℓ ≤ t < (k + 1)ℓ.
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In the rest of the paper, when the context is unambiguous, we simply refer
to II(t) by I(t). Intervals are used as a basis for implementing a total order
broadcast [12]: to build a totally ordered set of commands, correct processes
reach agreement on the set of commands in each interval.

3.6 Cryptography

We assume the existence of collision-resistant hash functions and a public key in-
frastructure. Each process has a public-private key pair [13] denoted (PKi ,SKi).
The private key of each process resides inside the memory of the TEE and is
protected against unauthorized access. Let ⟨v⟩i denote that the value v has been
signed using the private key SKi of process pi.

⟨v⟩i = private-sign(SKi , v)

We also assume the existence of a (2f + 1, n) threshold signature scheme [49].
Finally, we assume a computationally-bounded adversary that cannot break the
security of cryptographic schemes.

3.7 Consensus

To decide the content of each interval, we rely on a generic consensus abstrac-
tions [45]. Such abstractions enable all correct processes to agree on the set of
commands in each interval. We consider protocols that have the classical ter-
mination and agreement properties, but also an external validity property [8].
External validity relies on a predicate γ and requires that any decided value
contains correctly signed inputs from at least 2f + 1 distinct processes. More
formally, we define the predicate

γ : v 7→ |v| ≥ 2f + 1 ∧ ∀⟨x⟩i ∈ v, public-verify(PKi , ⟨x⟩i).

We assume the following properties for the consensus problem:

– Termination. Each correct process eventually decides a value.

– Agreement. All correct processes decide the same value.

– External Validity. If a correct process decides a value v, then γ(v) holds.

For Leader-Based Aion (§6), we assume the existence of a leader-based con-
sensus protocol, denoted leader-propose, where a leader proposes a value, i.e., the
sequence of commands for an interval, and processes agree on whether to out-
put or not the value of the leader. For instance, HotStuff [54] implements such
abstraction. For Leaderless Aion (§7), we assume the existence of a leaderless
consensus protocol denoted leaderless-propose, where instead of being proposed
by a leader, the decided value comes from all processes. Such abstraction is
implemented, for instance, by BFT-Archipelago [2].
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Table 2. Symbols

Symbol Description

C The set of all possible commands
GST Global Stabilization Time
clocki() Clock of process pi
δ Offset between clocks
∆ Upper bound on network delays
λ Fluctuation in network delays
ℓ Length of an interval
Ik Interval [kℓ, (k + 1)ℓ)
I Interval mapping function
⟨v⟩i Value v signed by the private key of pi
γ External validity predicate

4 Timestamping Protocol

In this section, we present the protocols used by processes to determine the time
when a command is broadcast. First, the Network Challenge protocol (§4.1)
enables processes to obtain reliable values of network delays. Then, these network
delays are used in the Timestamp Validation protocol (§4.2) to determine if the
timestamps requested for commands are valid.

4.1 Network Challenge

The Network Challenge protocol is used by processes to measure network delays.
To this end, processes regularly challenge other processes by sending them cryp-
tographic nonces. The Network Challenge protocol is presented in Algorithm 1.
To prevent Byzantine processes from generating a dictionary of responses to the
challenges, and thus to ensure the freshness of the timestamps received, chal-
lenges that are sent by a process pi are signed by pi (line 6). When a process
pj receives a challenge ⟨u⟩i from pi, pj answers with the signed value ⟨i, u, t⟩j
containing the secure timestamp t generated for u, and the values u and i to
certify that the TEE of pj created the timestamp t for the challenge u sent by
pi (line 12). Upon receiving a response ⟨i, u, t⟩j to its challenge from pj , pi com-
putes the network delay dji from pj to pi using dji = clocki()− t (line 16). Each
process maintains an array D that stores the values of network delays obtained
with these challenges.

4.2 Timestamp Validation

The Timestamp Validation protocol enables processes to validate the timestamp
of a command by inferring the time when the command was sent. It combines the
network delays obtained via the Network Challenge protocol with a requirement
on these message delays to remain constant. The requirement on stable network
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Algorithm 1 Network Challenge Protocol

1: State
2: U ← [] ▷ challenges sent by pi
3: D ← [] ▷ network delays computed by pi

4: function challenge(pj)
5: u← nonce() ▷ generate challenge
6: ⟨u⟩i ← private-sign(SKi , u) ▷ sign challenge
7: send(challenge, ⟨u⟩i) to pj ▷ send challenge to pj
8: U [j]← u ▷ store challenge

9: upon receiving a message (challenge, ⟨u⟩j) from pj do
10: if public-verify(PKj , ⟨u⟩j) then ▷ verify signature
11: t← clocki()
12: ⟨j, u, t⟩i ← private-sign(SKi , (j, u, t)) ▷ sign response
13: send(response, ⟨j, u, t⟩i) to pj ▷ respond to pj ’s challenge

14: upon receiving a message (response, ⟨j, u, t⟩j) from pj do
15: if public-verify(PKj , ⟨j, u, t⟩j) ∧ C[j] = u then
16: dji = clocki()− t ▷ compute network delay
17: D[j]← dji ▷ update network delays
18: U [j]←⊥ ▷ discard challenge

delays is based on recent studies and experiments on the probability distributions
of network delays [40].

Algorithm 2 Timestamp Validation

1: function validate(c, t, j) ▷ validation of c and t received from pj
2: tsend ← clocki()−D[j] ▷ compute send time of c
3: if |tsend − t| ≤ λ+ δ then ▷ check the timestamp of c
4: return true ▷ accept t
5: else
6: return false ▷ reject t

Algorithm 2 shows the protocol for deciding whether to accept or reject
commands based on their requested timestamps. A process simply computes the
time when it believes the command was sent (line 2), and compares it to the
timestamp of the command (line 3). During synchronous periods, the error when
estimating the send time of a command is bounded by 2(δ + λ).

Lemma 1. After GST, a correct process pi validates a command c that has a
requested timestamp t (Alg. 2) only if the difference between t and the actual
send time tactual of c is less than 2(λ+ δ).

∀pi ∈ {p ∈ Π | p is correct}, pi accepts (c, t) ⇒ |t− tactual| ≤ 2(λ+ δ)
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Proof. If a correct process pi validates (c, t), then pi determined that c was sent
at a time test, and that |test − t| ≤ λ + δ. Process pi computed test using a
challenge, and particularly by using the timestamp included in the response to
the challenge and the network delay that pi computed based on the challenge.
After GST, the offsets between the clocks of processes are bounded by δ, and
Byzantine processes cannot drift from the expected network latencies by more
than a quantity λ, so the margin of error for challenges is λ+ δ. As a result, the
margin of error of test is λ+ δ, and thus |t− tactual| ≤ 2(λ+ δ).

5 Ordering Phase

The ordering phase, borrowed from Pompē [58], enables a process pi to request
a timestamp t for a command c and to schedule (c, t) so that c is included in
I(t). The aim of the ordering phase is to ensure that if the network is behaving
synchronously and that a correct process terminates the ordering phase for (c, t),
then c is guaranteed to be included in the interval I(t). This protocol is used as
a preliminary step both in Leader-Based Aion (§6) and in Leaderless Aion (§7).

5.1 Stability of Committed Intervals

In an SMR, all correct processes output commands in the same order. Specifi-
cally, a command is only output when all of its preceding commands have been
delivered. Therefore, after a command c is output, no new command can be
output before c. We refer to this property as the stability of committed inter-
vals: once the consensus instances for the k first intervals have terminated, and
that the sets of commands in these intervals are known, no other command can
be added to an interval Im such that m ≤ k. Hence, the ordering phase must
preserve the stability of committed intervals.

In order to guarantee that the commands that have been successfully or-
dered are committed in their corresponding intervals, while at the same time
preserving the stability of committed intervals, we rely on standard quorum in-
tersections [36]. On the one hand, a command (c, t) is successfully ordered for
the interval I(t) if at least 2f + 1 processes accept to schedule c in I(t). On
the other hand, using the external validity predicate (§3.7), Aion protocols (§6,
§7) determine the content of each interval by collecting the commands that have
been ordered by at least 2f + 1 processes. As a result, if a command (c, t) is
ordered by at least 2f +1 processes in the interval I(t), then c is guaranteed to
be output in the interval I(t).

5.2 Ordering Protocol

The ordering protocol is presented in Algorithm 3. First, a process pi broadcasts
a command c and a requested timestamp t (line 7). Processes validate the times-
tamp t of pi using the Timestamp Validation protocol (Alg. 2). When a process
pj accepts t, pj also sends a threshold encryption share πc,t (line 10) to pi.
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Algorithm 3 Ordering Protocol

1: State
2: S ← [C → []] ▷ shares collected by pi
3: C ← [N→ []] ▷ commands ordered for each interval
4: nextSub ← 0 ▷ next interval submitted by pi

5: function order(c)
6: t← clocki()
7: broadcast(request, (c, t)) ▷ request timestamp t for c

8: upon receiving a message (request, (c, t)) from pj do
9: if validate(c, t, j) then
10: πc,t ← share-sign(accept||c||t) ▷ encryption share of acceptance
11: send(accept, c, πc,t) to pj
12: else
13: send(reject, c) to pj

14: upon receiving a message (accept, c, πc,t) from pj do
15: S[c][j]← πc,t ▷ store share from pj
16: if |S[c]| ≥ 2f + 1 then
17: Πc,t ← share-sombine(S[c]) ▷ create proof of acceptance
18: broadcast(order, c,Πc,t)

19: upon receiving a message (order, c,Πc,t) from pj do
20: if threshold-verify(Πc,t) then
21: C[nextSub]← C[nextSub] ∪ (c,Πc,t)
22: if I(t) ≥ InextSub then
23: send(interval, c, I(t)) to pj ▷ pi submits c in I(t)
24: else
25: send(interval, c, InextSub) to pj ▷ pi submits c in InextSub
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Then, pi waits until it has collected at least 2f + 1 encryption shares (line 16),
and combines these shares into a full proof Πc,t (line 17) that it broadcasts.
When processes receive the full proof Πc,t, they verify the aggregated signature
(line 20) and reply with the interval where they order (c, t) (lines 23 and 25).
The Aion protocols in the following sections (§6, §7) determine the content of
each interval Ik by collecting the commands that have been ordered in Ik by at
least 2f +1 processes. If a process pj has not yet submitted the commands that
it has ordered for I(t), then it accepts to order (c, t) in I(t) (line 23). Otherwise,
pj includes (c, t) in its submission for the next interval (line 25).

Lemma 2. If a command (c, t) is ordered in an interval Ik by at least 2f + 1
processes, and if the content of Ik is determined by collecting the commands
ordered in Ik by at least 2f + 1 processes, then (c, t) is output in Ik.

Proof. If (c, t) is ordered in Ik by 2f + 1 processes, then at least f + 1 correct
processes will include (c, t) in their submissions for Ik. The content of Ik includes
submissions from at least f + 1 correct processes, and therefore there is at least
one correct process that ordered (c, t) in Ik and whose submission is used for
determining the content of Ik.

Note that if a command (c, t) is ordered in I(t) by less than 2f+1 processes,
it may or may not be output in I(t) depending on the set of 2f + 1 processes
whose submissions are used for the interval I(t). Assume that a command does
not get ordered in the requested interval by at least 2f+1 processes, and that the
process that requested the ordering receives a set I = {Ik} of ordered intervals,
where |I| ≥ 2f + 1. Let Imin be the lowest interval among the f + 1 highest
intervals in I. Then, the command is guaranteed to be output no later than in
the interval Imin.

6 Leader-Based Aion

In this section, we present Leader-Based Aion, an order-fair SMR protocol, by
integrating the previous ordering step (§5) with a leader-based consensus pro-
tocol. Our leader-based protocol is analogous to Pompē [58] and consists of (1)
an ordering step (§5) that is executed continuously by processes, and (2) a con-
sensus step for each interval. During synchronous periods, a correct process pi
successfully orders a command (c, t) and all correct processes have received a
full proof Πc,t and ordered (c, t) in the interval I(t) after 3 rounds (cf. Alg. 3).
Consequently, processes can start the agreement protocol to decide the content
of an interval Ik = [kℓ, (k+1)ℓ) when their clocks reach the value (k+1)ℓ+3∆.

The Leader-Based Aion protocol is presented in Algorithm 4. When a process
pi learns that the agreement protocol for the interval Ik can be started (line 6),
and that pi is the leader for the interval Ik, pi broadcasts a collect message
to start collecting submissions for Ik (line 9). In response, processes sign their
submissions (line 13) before sending them to pi. The signatures are used to
verify that the proposal of pi for Ik contains submissions from at least 2f + 1
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Algorithm 4 Leader-Based Aion

1: State
2: C ← [N→ []] ▷ commands ordered for each interval
3: L← [N→ []] ▷ submissions collected for each interval
4: nextSub ← 0 ▷ next interval submitted by pi
5: collecting ← false

6: upon clocki() ≥ (k + 1)ℓ+ 3∆ do ▷ Ik can be decided
7: if i ≡ k (mod n) then ▷ pi is the leader of Ik
8: collecting ← true
9: broadcast(collect, k)

10: upon receiving a message (collect, k) from pj do
11: if j ≡ k (mod n) then ▷ verify leader
12: wait until clocki() ≥ (k + 1)ℓ+ 3∆ ▷ wait for interval

13: ⟨Ck⟩ ← private-sign(SKi , C[k]) ▷ sign submission
14: send(submit, ⟨Ck⟩) to pj ▷ send submission to leader
15: nextSub ← nextSub + 1

16: upon receiving a message (submit, Ck) from pj do
17: if collecting ∧ public-verify(PKj , Ck) then ▷ verify signature
18: L[k]← L[k] ∪ Ck ▷ add submission to proposal
19: if |L[k]| ≥ 2f + 1 then
20: collecting ← false
21: leader-propose(k, L[k]) ▷ leader proposes L[k] for Ik
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distinct processes, and that therefore it satisfies external validity (cf. §3.7). When
pi has collected at least 2f + 1 submissions (line 19), pi starts a consensus
instance over its proposal for Ik (line 21). If the leader is Byzantine, processes
can deterministically decide on a new leader in case the proposal is invalid or
the absence thereof.

Theorem 1. A protocol using Algorithm 4 to output sets of commands in con-
secutive decided intervals starting with I0 implements an order-fair SMR.

Proof. The agreement property of the consensus protocol ensures that each cor-
rect process outputs the same set of commands for each interval. The fact that
output commands come for consecutive intervals, and starting with the first
interval, guarantees the stability of the commands that are output. The order-
fairness property comes from Lemma 1 and the fact that the leader must collect
submissions from at least 2f + 1 processes (Lemma 2).

7 Leaderless Aion

In this section, we present Leaderless Aion, an order-fair implementation of an
SMR, by combining the ordering step (§5) with a leaderless consensus protocol.

7.1 Leaderless Consensus

Without a leader, agreeing on a set of commands for an interval is not straight-
forward. For instance, two correct processes may submit two sets of commands
of equal size that only differ by one command. To achieve consensus without a
leader, [2] relies on an adopt-commit object. Intuitively, an adopt-commit object
enables processes to adopt the highest value that they witness, and later to com-
mit to this value once enough processes have adopted it. Thus, the consensus
algorithm uses consecutive rounds where processes converge towards the highest
value. For two sets of commands, we define the highest value as the largest set.
In case of a tie, two sets can be sorted deterministically using a lexicographical
order.

7.2 Leaderless SMR Protocol

Leaderless Aion comprises the ordering phase that is executed continuously by
processes, and a decision phase for each interval. The decision phase consists
of an exchange step followed by a consensus step. To preserve the guarantees
of the ordering phase (Lemma 2), processes first exchange their sets of ordered
commands before executing the consensus protocol.

Algorithm 5 presents our leaderless algorithm for order-fair SMR. First, when
a process observes that the interval Ik can be decided (line 5), it broadcasts the
set of commands that it has ordered for Ik (line 7). Then, once a process has
received the sets of at least 2f + 1 processes (line 12), it joins the consensus
instance for the interval Ik (line 13). The exchange step ensures that the value
that it broadcasts satisfies the external validity property (cf. §3.7).
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Algorithm 5 Leaderless Aion

1: State
2: C ← [N→ []] ▷ commands ordered for each interval
3: E ← [N→ []] ▷ sets received for each interval
4: nextSub ← 0 ▷ next interval submitted by pi

5: upon clocki() ≥ (k + 1)ℓ+ 3∆ do ▷ Ik can be decided
6: ⟨Ck⟩ ← private-sign(SKi , C[k]) ▷ sign set ordered by pi for Ik
7: broadcast(exchange, ⟨Ck⟩) ▷ broadcast ordered set
8: nextSub ← nextSub + 1

9: upon receiving a message (exchange, Ck) from pj do
10: if public-verify(PKj , Ck) then ▷ verify signature
11: E[k]← E[k] ∪ Ck ▷ store set of pj
12: if |E[k]| ≥ 2f + 1 then
13: leaderless-propose(k,E[k]) ▷ propose E[k] for Ik

Theorem 2. A protocol using Algorithm 5 to output sets of commands in con-
secutive determined intervals starting with I0 implements an order-fair SMR.

Proof. The proof is analogous to the leader-based case. It results directly from
the agreement property of the consensus protocol combined with the stability of
the commands that are output, Lemma 1, and Lemma 2.

8 Discussion

8.1 Comparison to Pompē and Aequitas

In Aequitas [24], a command c1 must be ordered before a command c2 if a
predetermined proportion of processes have observed c1 before c2. The ordering
paradigm of Pompē [58] is strictly weaker than that of Aequitas. In Pompē, to
require that c1 be ordered before c2, it is not sufficient that all processes observe
c1 before c2; it must also be that all correct processes observe c1 before any of
them observe c2. Nevertheless, Pompē is an attractive trade-off because, on the
one hand, it does not require building graphs of potentially cyclic dependencies
between commands, and on the other hand, clients can send their commands to
a single process.

In Aequitas, although the paradigm is fairer than Pompē, a client still has to
send its commands to all processes, and thus, clients can also be disadvantaged
based on their distances to the set of all processes. By assigning timestamps to
commands, we lean towards Pompē’s paradigm which is more scalable [23,58,55].
However, instead of computing a timestamp using the median value of the times-
tamps observed by processes, we compute the send timestamp of a single process.
This enables clients to chose the processes they send their commands to. The
results in [9] rely on differential validity for consensus [18] and show that when
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f = ⌈n
3 ⌉− 1, for two commands c1 and c2, if a single correct process observes c2

before c1, then it cannot be required from any protocol to output c1 before c2.
By leveraging secure timestamping and allowing clients to chose a single process,
a client can select the process it is the closest to. This diminishes the influence
of network delays, both between clients and processes and between processes,
and thus reduces the fairness gap between the two paradigms.

8.2 Byzantine Behaviors and Asynchrony

The use of TEEs prevents Byzantine processes from lying about the values of
their clocks or from using the values of another clock. Byzantine processes may
still introduce biases in the measurements of network delays. First, they can try
to beat the network and reduce network delays by using the lack of triangle
inequality in networks delays [34]. Byzantine processes may also induce longer
network delays by simply retaining messages. In both cases, biases are handled
by verifying network delays: if a Byzantine process introduces a bias, it has to
commit to that bias, and therefore cannot take advantage of it. Actual variations
in network delays are taken into account by the Network Challenge protocol. If a
process detects a change in its network delays, it can impose a cooldown period
on impacted processes before starting to validate their commands again. The
cooldown period allows pending commands from other processes to be committed
before using new values of network delays.

During asynchronous periods, or in the presence of an adversary control-
ling the network, the network delays are unknown, and the clocks can become
desynchronized. In this case, our protocols lose liveness but maintain safety. An
increase in the offsets between the clocks of processes only diminishes the level
of fairness in the ordering of the commands that are output. Finally, various
attacks have been identified against the security of TEEs [57,42], but are out of
the scope of this paper.

9 Conclusion

In this paper, we presented Aion, a set of protocols that enable a secure ordering
of commands. Aion leverages TEEs to help determine the times when commands
are broadcast, and uses this information to realize leader-based and leaderless
SMR protocols with an accurate ordering of commands. Essentially, Aion pro-
tocols do not require clients to broadcast their commands to all processes, and
do not disadvantage processes based on their network delays to other processes.
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12. Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR),
36(4):372–421, 2004.

13. Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

14. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

15. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Advances in Cryptology—CRYPTO’92: 12th Annual International Cryptology
Conference Santa Barbara, California, USA August 16–20, 1992 Proceedings 12,
pages 139–147. Springer, 1993.



18 Pouriya Zarbafian and Vincent Gramoli

16. Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Transparent dis-
honesty: front-running attacks on blockchain. In 3rd Workshop on Trusted Smart
Contracts (WTSC), 2019.

17. Mehran Fallah. A puzzle-based defense strategy against flooding attacks using
game theory. IEEE transactions on dependable and secure computing, 7(1):5–19,
2008.

18. Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for strong
and differential consensus. In Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 211–220, 2003.

19. Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun
Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain
execution by turning ordering curse to a performance blessing. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, pages 232–244, 2023.

20. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th symposium on operating systems principles, pages 51–68, 2017.

21. Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Moham-
mad Sadoghi. Dissecting bft consensus: In trusted components we trust! In Pro-
ceedings of the Seventeenth European Conference on Computer Systems (EuroSys),
2023.

22. Lioba Heimbach and Roger Wattenhofer. SoK: Preventing Transaction Reordering
Manipulations in Decentralized Finance. In 4th ACM Conference on Advances in
Financial Technologies, September 2022.

23. Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
Themis: Fast, strong order-fairness in byzantine consensus. In ConsensusDays 21,
2021.

24. Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness
for byzantine consensus. In Advances in Cryptology–CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17–21, 2020, Proceedings, Part III 40, pages 451–480. Springer, 2020.

25. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Advances
in Cryptology–CRYPTO 2017: 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I, pages 357–388.
Springer, 2017.

26. Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pages 25–36, 2020.

27. Zhang Laishun, Zhang Minglei, and Guo Yuanbo. A client puzzle based defense
mechanism to resist dos attacks in wlan. In 2010 International Forum on Infor-
mation Technology and Applications, volume 3, pages 424–427. IEEE, 2010.

28. Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System,
pages 179–196. Association for Computing Machinery, 2019.

29. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals
Problem, pages 203–226. Association for Computing Machinery, 2019.

30. Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Optimal clock syn-
chronization in networks. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 225–238, 2009.



Aion: Secure Transaction Ordering using TEEs 19

31. Jinghui Liao, Fengwei Zhang, Wenhai Sun, andWeisong Shi. Speedster: An efficient
multi-party state channel via enclaves. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, pages 637–651, 2022.

32. Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter
Pietzuch. Teechain: a secure payment network with asynchronous blockchain ac-
cess. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 63–79, 2019.

33. Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. Scalable byzantine
consensus via hardware-assisted secret sharing. IEEE Transactions on Computers,
68(1):139–151, 2018.

34. Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee. Triangle
inequality and routing policy violations in the internet. In Proceedings of the 10th
International Conference on Passive and Active Network Measurement, PAM ’09,
page 45–54, Berlin, Heidelberg, 2009. Springer-Verlag.

35. Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock
synchronization. In Proceedings of the third annual ACM symposium on Principles
of distributed computing, pages 75–88, 1984.

36. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed com-
puting, 11(4):203–213, 1998.

37. Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value (MEV) protec-
tion on a DAG. In 4th International Conference on Blockchain Economics Security
and Protocols, 2022.

38. Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. Hasp@ isca, 10(1), 2013.

39. Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
40th annual symposium on foundations of computer science (cat. No. 99CB37039),
pages 120–130. IEEE, 1999.

40. Maxime Mouchet, Sandrine Vaton, and Thierry Chonavel. Statistical characteri-
zation of round-trip times with nonparametric hidden markov models. In 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 43–48. IEEE, 2019.

41. Maxime Mouchet, Sandrine Vaton, Thierry Chonavel, Emile Aben, and Jasper
Den Hertog. Large-scale characterization and segmentation of internet path delays
with infinite hmms. IEEE Access, 8:16771–16784, 2020.

42. Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. Plundervolt: Software-based fault injection attacks against intel
sgx. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1466–1482.
IEEE, 2020.

43. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review, page 21260, 2008.

44. Christopher Natoli and Vincent Gramoli. The blockchain anomaly. In 2016 IEEE
15th international symposium on network computing and applications (NCA),
pages 310–317. IEEE, 2016.

45. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

46. Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable
value: How dark is the forest? In 2022 IEEE Symposium on Security and Privacy
(SP), pages 198–214, 2022.



20 Pouriya Zarbafian and Vincent Gramoli

47. Tuanir França Rezende and Pierre Sutra. Leaderless State-Machine Replication:
Specification, Properties, Limits. In 34th International Symposium on Distributed
Computing (DISC 2020), volume 179 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 24:1–24:17, 2020.

48. Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted
execution environment: what it is, and what it is not. In 2015 IEEE Trust-
com/BigDataSE/Ispa, volume 1, pages 57–64. IEEE, 2015.

49. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

50. Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko
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