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Abstract—In recent years, opportunistic traders have extracted
hundreds of millions of dollars from blockchains by reordering
financial transactions. The problem stems from the fact that
blockchains implement a state machine replication that orders
transactions in any consistent order, regardless of the order
in which these transactions were received. Existing attempts at
enforcing the order perceived by honest participants suffer from
cyclic dependencies or message delays.

In this paper, we propose the Asynchronous Ordered Atomic
Broadcast (AOAB) protocol. It does not suffer from cyclic
dependencies or message delays because (i) it assigns an ab-
solute timestamp to transactions, and (ii) it tolerates unbounded
message delays. Besides being the first protocol to solve this prob-
lem, AOAB is communication-optimal and resilience-optimal.
In particular, AOAB makes use of threshold signatures and
information dissemination to reach a communication complexity
of O(nℓ + λn2), where n is the number of processes, ℓ is the
input (transaction) size and λ is the security parameter. This is
optimal when ℓ ≥ λn.

Index Terms—order-fairness, asynchronous atomic broadcast,
optimal communication complexity, MEV

I. INTRODUCTION

Between 2020 and 2022, opportunistic traders have ex-
tracted hundreds of millions of dollars by including, excluding,
and changing the order of decentralized finance (DeFi) trans-
actions [1]. This problem has been known as miner extractable
value (MEV) and stems from the fact that, on the one hand,
the payloads of transactions can be seen by anyone before the
order of transactions is determined, and on the other hand, the
order of transactions can be manipulated because a blockchain
implements a state machine replication (SMR) [2] that se-
quences transactions in any consistent order. In particular,
front-running [3], which is an illegal trading strategy whereby
a privileged player makes a profit by exploiting non-public
information, can be done in blockchains due to the lack of
regulation.

In order to obfuscate the payloads of transactions and
therefore circumvent MEV attacks, one solution is to rely on
a commit-reveal scheme [4] and only reveal the contents of
transactions after their final orderings have been determined.
Fino [5] implements a performant commit-reveal scheme
where processes encrypt their transactions with a symmetric
encryption key. This approach ensures that all correct pro-
cesses decrypt the same payload for each transaction and,
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at the same time, keeps the payloads of transactions hidden
until the final ordering of transactions is known. However, a
commit-reveal scheme does not guarantee a fair ordering of
transactions. In particular, it does not require that the final
ordering of transactions reflects the order in which correct
processes observe transactions. This means that a Byzantine
leader can always order his transactions first and thus preempt
anterior transactions.

The solutions proposed to solve the ordering of transactions
either suffer from cyclic ordering dependencies [6], [7] or
message delays [8]. Furthermore, they have an O(n3) commu-
nication complexity [6], [8], [9]. As a result, such solutions
can generally not meet the blockchain needs [10]. Relative
ordering solutions [6], [7], [11], which can work in asyn-
chronous networks, order transactions by building dependency
graphs based on how processes perceive the relative ordering
of transactions with respect to each other. Unfortunately, cyclic
dependencies often arise when building these graphs of trans-
actions. To avoid this problem, absolute ordering solutions [8],
[12], [13] opt instead for assigning a unique timestamp to
each transaction. The problem with absolute ordering is that
it requires some level of synchrony. They typically discretize
time into timeslots and assign transactions to timeslots based
on collected timestamps. In an asynchronous network, where
message delays are unbounded, the risk is that the set of
observed timestamps for a transaction expires, hence leading
to the violation of the Atomic Broadcast validity property
[14]: “if a correct process broadcasts a transaction t, then t is
eventually delivered by all correct processes”.

In this paper, we propose the Asynchronous Ordered Atomic
Broadcast (AOAB) protocol that does not suffer from cyclic
dependencies or message delays. AOAB is the first asyn-
chronous absolute ordering protocol and the first implementa-
tion of order-fairness with optimal communication complexity.
Our protocol also satisfies the Atomic Broadcast validity prop-
erty by ensuring that transactions broadcast by correct pro-
cesses cannot become obsolete. Finally, for MEV resilience,
AOAB relies on the commit-reveal scheme presented in [5] to
ensure that the payloads of transactions are only revealed once
these transactions have been committed.
AOAB has an optimal communication complexity. As de-

picted in Table I, all solutions proposed for implementing an
ordering of transactions [6]–[8], [11] either incur an O(n3)-bit
communication complexity per transaction [7], [8], [11], or are



TABLE I
AVERAGE COMMUNICATION COMPLEXITY IN BITS PER TRANSACTION OF EXISTING PROTOCOLS FOR ORDER-FAIRNESS. ℓ DENOTES THE SIZE OF A

TRANSACTION, AND λ IS THE SECURITY PARAMETER.

Protocol Definition Corruption Liveness Partially Sync
or Async Complexity

Aequitas [11] Block OF∗ n > 4f weak Async O(n4ℓ+ λn4)
Themis [6] Deferring OF n > 4f standard Partially Sync O(n2ℓ+ λn2)‡

Quick OF [7] Differential OF n > 3f weak Async O(n2ℓ+ λn3)
Pompē [8] OL† n > 3f standard Partially Sync O(n3ℓ+ λn3)

Our AOAB Fair Ordering n > 3f standard Async O(nℓ+ λn2)

∗OF: Order Fairness †OL: Ordering Linearizability ‡in the optimistic case, the communication complexity is O(nℓ+ λn)

designed for synchronous networks [6]. In particular, previous
implementations [6]–[8], [11] compensate for the absence of
a trusted time service by collecting ordering information from
f = Ω(n) processes. Themis [6] has a similar quadratic
communication when it only handles 1/4 corruption.1 To
achieve optimal quadratic communication complexity, AOAB
takes advantage of threshold signatures to reduce the cost by
an extra linear multiplicative factor. In addition, to prevent
Byzantine processes from blowing up the cost per transaction,
AOAB applies data dissemination [16] to distribute the output
transactions to all processes. Finally, it is important to note
that the AOAB protocol is designed to tolerate up to f < n

3
Byzantine failures. This level of fault tolerance aligns with
the optimal resilience achievable in an asynchronous network,
as determined by the upper bound of resilience proposed by
Bracha [17].

Our protocol proceeds in consecutive epochs, and during
each epoch, all correct processes output the same set of
transactions in the same order. Each transaction is output with
a unique sequence number used to order the transaction in
the epoch. The set of transactions output during each epoch
sequentially extends the output of the SMR. This ensures a
total ordering of transactions (cf. Theorem 1). Each epoch
is divided into an ordering phase and an agreement phase.
During the ordering phase, the issuer of each transaction t (1)
collects for t a set S[t] of 2f+1 distinct sequence numbers, (2)
builds a threshold signature Σ for the median value s of S[t],
and (3) broadcasts t, s, and Σ. Then, during the agreement
phase, processes agree on a set of transactions and associated
sequence numbers {t, s,Σ} that are output for the current
epoch. The fact that s is the median value of a set of size
2f +1 ensures that s is upper bounded and lower bounded by
values of sequence numbers assigned to t by correct processes.
At the same time, the proof Σ proves the value of s while
keeping communication costs low.

The rest of the paper is organized as follows. We present
the related work in Section II. In Section III, we discuss
the model and provide a formal definition of the AOAB

1They also show that, in theory, communication may be further reduced
by using Succinct Non-Interactive Argument of Knowledge (SNARK) [15];
however, there is still an omitted quadratic term in this calculation, let
alone SNARK has its own drawbacks, e.g., heavy proving cost, relying on
unfalsifiable computational assumptions, etc.

protocol. Section IV introduces the broadcast protocols and
consensus primitives that are essential for our protocol. Our
proposed protocol, AOAB, is presented in Section V, where
we not only present the construction of the protocol but also
conduct a formal analysis of its security and complexity. In
Section VI, we show how to make our protocol MEV resilient.
We analyze Byzantine behaviors in Section VII. Lastly, our
work is summarized in Section VIII.

II. RELATED WORK

In [18], Daian et al. investigate MEV (Miner Ex-
tractable Value) attacks in decentralized exchanges such as
Ethereum [19]. To mitigate the risks associated with MEV
attacks, various techniques have been developed, focusing on
achieving MEV-resistant order-fairness properties. There are
two fundamental types of order-fairness properties: blind order
fairness and time order fairness.

Blind order fairness aims to prevent adversaries from ob-
taining advanced knowledge of a transaction’s payload [4]. It
was introduced by Cachin et al. [9] under the denomination of
causal order. It is crucial to apply state machine replication
to services that involve confidential transactions. It needs to
make sure that the adversary does not learn the content of
a transaction until the moment the transaction is committed
[6], [9]. The idea behind causal order is to achieve input
causality [20] by ensuring that Byzantine processes cannot
submit transactions based on the contents of other transactions
that have been broadcast but not yet committed. Blind order
fairness can be achieved by encrypting the transaction’s pay-
load, thus ensuring its confidentiality until it is committed. By
hiding the content of a transaction, adversaries are unable to
exploit it to their advantage. This concept has been extensively
researched, and various approaches have been proposed to
address concerns related to MEV (although these works do not
explicitly target MEV mitigation). Some notable works in this
field include Secure Causal Atomic Broadcast [9], Honeybad-
gerBFT [21], Dumbo [22], and sDumbo [23], among others.
The most recent contribution to this area is Fino [5], which
introduces the use of encrypted transactions in a Directed
Acyclic Graph (DAG) structure. Once the transactions are
committed, they can be decrypted using either an optimistic or
a pessimistic path. However, blind order fairness is considered
weaker than time order fairness [6], [13] as it does not prevent
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reordering attacks based only on metadata and reordering by
a Byzantine leader.

On the other hand, time order fairness is a mechanism
that restricts the final ordering of transactions based on their
relative orders of arrival at a majority of processes. This
relative order of arrival is then used to determine the ordering
of the transactions that are output. In essence, time order
fairness aims at adhering to the order of transactions observed
by processes, whereas blind order fairness aims at preventing
Byzantine processes from using the content of transactions
that have not been committed yet. Our final protocol combines
blind order fairness and time order fairness. Kelkar et al. [11]
propose time order fairness as a supplementary property in
SMR protocols. The first paradigm for time order fairness can
be classified as relative ordering as processes build graphs
of dependencies between transactions to determine the final
ordering. In this approach, a leader takes on the responsibility
of initiating transaction proposals. It starts by proposing a
transaction, and for a transaction to be processed and output,
it must be received by a majority of processes. Once the
transaction is received by a majority, it is considered that the
transaction was ordered, and the transaction proceeds through
further processing to generate the desired output. By ensuring
that the majority of processes receive and process transactions
in a time-ordered manner, this technique promotes fairness
and prevents adversaries from manipulating the transaction
order for their own benefit. The first implementation of relative
ordering is Aequitas [11], which is a collection of order-fair
protocols designed for both synchronous and asynchronous
setups. In Themis [6], Kelkar et al. solve liveness issues
with Aequitas and show that a communication complexity
of O(n2)-bit per transaction can be achieved using zero-
knowledge proofs. However, the authors do not provide any
implementation. Relative ordering is more precisely defined in
Quick-Order-Fairness [7] where Cachin et al. rely on differen-
tial consensus [24] to show the lower bounds in the differential
number of processes’ ordering preferences in order to con-
straint the ordering of committed transactions. Unfortunately,
Quick-Order-Fairness also has a communication complexity of
O(n3) bits per transaction.

Another paradigm for order-fairness, absolute ordering,
is introduced by Pompē [8] for a partially synchronous
network [25]. Absolute ordering is derived from the input
causality approach introduced in [26]. In Absolute ordering,
processes leverage sequence numbers assigned to events to
achieve a total ordering of transactions. However, Pompē’s
aim is to mitigate the influence of transaction reordering by
Byzantine processes. To this end, Pompē draws inspiration
from the partial order defined in linearizability [27]. In Pompē,
transactions are assigned ordering indicators that are upper
bounded and lower bounds by values assigned by correct
processes. Pompē is designed to overcome cyclic dependencies
in relative ordering, but it comes at the cost of a weakened
validity property in terms of Atomic Broadcast. This is because
transactions broadcast by correct processes in Pompē can still
expire, even in the case of a partially synchronous network, not

to mention in an asynchronous network. This limitation poses
a significant challenge in ensuring the reliable delivery of
transactions from correct processes. Furthermore, Pompē has a
communication complexity of O(n3) bits per transaction [7].
Our protocol guarantees the eventual commitment of all the
transactions broadcast by correct processes. Additionally, it
achieves an optimal communication complexity of O(n2) bits
per transaction. Finally, Wendy [28] and Lyra [13] also have
an O(n2)-bit communication complexity, but require partial
synchrony.

III. MODEL AND PROBLEM STATEMENT

A. System model

We consider a system P consisting of n processes.
For the sake of simplicity, we denote these processes as
{p1, p2, . . . , pn}. In our system, we assume that the identities
of the processes are public and can be verified through a
Public Key Infrastructure (PKI). Each process pi is associated
with a public/private key pair denoted as (pki, ski), where pki
represents the public key and ski represents the private key
of a process pi. Furthermore, before the protocol begins, a
trusted third party is responsible for setting up all the threshold
cryptosystems involved in the system.

Processes that follow the prescribed protocol are denoted
correct. A Byzantine process, as denoted in [29], refers to a
process that has been compromised and can deviate arbitrarily
from the protocol, potentially exhibiting malicious behavior.
To allow agreement between correct processes [30], we assume
that at any time, there can only be up to f = ⌈n3 ⌉−1 Byzantine
processes.

We consider the faulty processes to be under the full control
of a static adversary [9], [21]. This adversary model implies
that prior to the start of the protocol, the adversary can select
f processes to be completely corrupted. The adversary has
access to the initial internal states of these faulty processes
and can manipulate their behavior arbitrarily throughout the
execution of the protocol.

To communicate with each other, we assume that processes
have access to reliable and authenticated communication chan-
nels that guarantee that messages sent by correct processes
are eventually delivered untampered. In our assumptions, the
network is considered to be asynchronous, and there are no
bounds on message delays. This means that the adversary has
the ability to arbitrarily delay messages, introducing unpre-
dictable delays in communication. However, it is important
to note that the values sent between correct processes will
eventually be delivered, ensuring eventual message delivery
despite potential delays caused by the adversary.

Finally, we assume the existence of asymmetric cryptogra-
phy alongside both a (f + 1, n) threshold signature scheme
and a (f + 1, n) threshold encryption scheme. The details of
these schemes are presented in the section IV. We also assume
the existence of a collision-resistant hash function denoted
h(). The security of these schemes holds in the presence of a
computationally bounded adversary.
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B. Atomic Broadcast

To achieve a total order on transactions [29], we rely on
the largely studied Atomic Broadcast problem [14]. Let T
denote the set of all transactions. When a process pi submits
a transaction t to an Atomic Broadcast protocol, we say that
pi AB-broadcasts t. When t is output by the protocol, we say
that t has been AB-delivered.

Definition 1 (Atomic Broadcast [14]). An Atomic Broadcast
protocol ensures the following properties.

• AB-Validity. If a correct process AB-broadcasts a trans-
action t, then t is eventually AB-delivered by all correct
processes.

• AB-Agreement. If a transaction t is AB-delivered by a
correct process, then t is eventually AB-delivered by all
correct processes.

• AB-Integrity. A transaction t is AB-delivered by a correct
process at most once, and only if t was previously AB-
broadcast.

• AB-Total-order. If a transaction t1 is AB-delivered before
a transaction t2 by a correct process, then all correct
processes AB-deliver t1 before t2.

In this paper, the protocol does not individually determine
the delivery of each transaction that is AB-delivered. Instead,
we divide time into logical epochs, and processes sequentially
decide the output of each epoch. In each epoch, correct
processes agree on a set of transactions and their associated
sequence numbers. This set of transactions extends the output
of the SMR. Each process operates within a continuous epoch
k and transitions to epoch k+1 when it has completed epoch
k. Processes start with epoch 0 and successively decide the
transactions that are output in each epoch e ∈ N. In this paper,
we assume that the epoch number is encoded in a constant
number of bits. Note that in practice, this is enough to prevent
an overflow because Byzantine processes cannot artificially
increment the epoch number (see Section V). Intuitively, each
epoch is decided using inputs from a quorum of at least 2f+1
processes.

C. Goal: Asynchronous Atomic Broadcast with Fair Ordering

In this paper, our goal is to design an efficient Atomic
Broadcast protocol along with fair ordering of transactions
among n processes against f static corruptions in an asyn-
chronous network. For simplicity, we call it Asynchronous
Ordered Atomic Broadcast (AOAB).

Our definition of order-fairness is based on ordering lin-
earizability. Ordering linearizability is a paradigm for the
absolute ordering of transactions. It was introduced by Zhang
et al. [8] and is derived from the notion of linearizability [27].
Ordering linearizability ensures that if the lowest ordering
indicator assigned by any correct process to a transaction
t2 is greater than the highest ordering indicator assigned by
any correct process to a transaction t1, then transaction t1
will precede transaction t2 in the final output. This property
guarantees a consistent ordering of transactions in the final
output, whereby transactions with lower assigned ordering

indicators will always appear before transactions with higher
assigned ordering indicators, and adds fairness in the final
ordering of transactions. In this paper, the ordering indicators
assigned by processes consist of a pair of elements.

Definition 2 (Assigned Sequence Number). When a process
pi receives a transaction t for the first time, it assigns to t an
ordering indicator o = (e, s) where e is the current epoch at
pi and s is the value of pi’s sequence number. Let seqi denote
the function assigning sequence numbers to transactions at
process pi.

∀ pi ∈ P, seqi : T −→ N× N,
t 7−→ seqi(t) = (e, s).

Definition 3 (Pair Relation). We define the less than ordering
relation, denoted <, between two pairs of sequence numbers
o1 = (e1, s1) and o2 = (e2, s2) by

o1 < o2 ⇐⇒ (e1 < e2) ∨ (e1 = e2 ∧ s1 < s2).

For a correct process pi, at any time, the output of the
Atomic Broadcast protocol consists of the transactions output
by consecutive epochs until the latest known epoch. Inside
each epoch, transactions are ordered using the following
relation:

Definition 4 (Partial Order). In each epoch, a transaction t1,
with an ordering indicator o1 = (e1, s1), must be executed be-
fore a transaction t2, with an ordering indicator o2 = (e2, s2),
if o1 < o2. We say that t1 is ordered before t2 and denote it
t1 ≺ t2.

In our protocol for Asynchronous Ordered Atomic Broad-
cast (AOAB) (Section V), epochs are decided based on the
inputs of processes. For each epoch e, our AOAB protocol
comprises two steps: an ordering step (Algorithm 1) and a
consensus step (Algorithm 2). In the ordering step, a process
pi obtains a sequence number (e, s) for its transaction t, and
then tries to order t so that t is output in epoch e. During
the consensus step, processes decide the transactions output
in epoch e based on the transactions ordered in e during the
ordering step. For the consensus step, each process pi includes
a transaction t with sequence number (e, s) in its submission
for epoch e only if pi has not yet submitted in epoch e (line
41). If pi has already been submitted in epoch e, pi will include
t in its next epoch submission (i.e., in epoch nextSub).

Definition 5 (Local Process Ordering). A process pi orders
a transaction t with sequence number (e, s) in epoch e′ =
max(nextSub, e) if pi includes t in its submission for epoch
e′. This is denoted t ⊏i e

′.

Definition 6 (Successful Ordering). A transaction t is suc-
cessfully ordered in epoch e if t is ordered in epoch e by at
least 2f + 1 processes, and we denote t ⊏ e.

t ⊏ e ⇐⇒ |{pi ∈ P | t ⊏i e}| ≥ 2f + 1

We can now formalize our definition of a fair ordering.
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Definition 7 (Fair Ordering). Let omax
1 = (emax

1 , smax
1 ) (resp.

omin
2 = (emin

2 , smin
2 )) be the highest (resp. lowest) sequence

number assigned by correct processes to a transaction t1 (resp.
t2). The ordering of the transactions output by an Atomic
Broadcast protocol is fair if, when omax

1 is less than omin
2

and t1 and t2 are successfully ordered in epochs emax
1 and

emin
2 , respectively, then t1 is ordered before t2. Formally, the

output of an SMR ensures fair ordering if and only if

omax
1 < omin

2 ∧ t1 ⊏ emax
1 ∧ t2 ⊏ emin

2 ⇒ t1 ≺ t2.

In Definition 7, the requirement for t1 and t2 to be suc-
cessfully ordered in their assigned epochs means that if a
transaction t is not successfully ordered in its assigned epoch
e, then it may not be included in the consensus for epoch e
and output with the transactions decided in epoch e. However,
the BA-validity property ensures that if t is AB-broadcast by
a correct process, then t will eventually be output (i.e., in a
subsequent epoch).

IV. PRELIMINARIES

In this section, we present the definitions for several funda-
mental building blocks that form the foundation of our system.
These definitions are essential for understanding and analyzing
the new protocol AOAB described in this paper.

A. Cryptographic Primitives

Throughout this paper, we assume that the security of these
schemes holds in the presence of a computationally bounded
adversary.

Negligible function. A function negl is considered negligible
if, for any positive integer k, there exists an integer Nk such
that for all x > Nk, we have

|negl(x)| < 1/xk.

If an event happens with negligible probability, it means that
the probability of an event is a negligible function in security
parameter λ. In contrast, in the case of an event happening
except with negligible probability, the event is said to happen
with overwhelming probability.

Digital signature (DS) [31], [32]. It enables processes to sign
arbitrary data with their respective private keys, and enables
other processes to verify the authenticity of signatures. A
DS scheme consists of a tuple of algorithms (DS.KeyGen,
DS.PrivateSign, and DS.PublicVerify).

• (pk , sk)← DS.KeyGen(λ): generate a public-private key
pair using as input the security parameter.

• σm ← DS.PrivateSign(m, ski): sign message m with the
private key ski of process pi.

• 0/1 ← DS.PublicVrf(m,σ, pk i): verify whether σ is a
valid signature by pi for m.

To ensure the correctness and security of the scheme,
we have the following requirements except with negligible
probability.

• Correctness: The correctness property guarantees that for
any given message m,

Pr[DS.PublicVerify(m,DS.PrivateSign(m, sk), pk)]=1.
• Security: The security property ensures that unless the

private key sk is compromised or leaked, it is computa-
tionally infeasible for any probabilistic polynomial-time
(P.P.T.) adversary to produce a valid signature, except
with negligible probability.

In our system, we make the assumption that at the beginning
of the protocol, the generation of public/private key pairs
(DS.KeyGen) is initialized n times. Each process pi is assigned
its own private key ski , which it uses for signing purposes.
Furthermore, each process is provided with the set of all the
public keys belonging to the other processes in the system.

Threshold Signature (TS) [33]: A (f + 1, n) threshold
signature scheme is defined as a collection of algorithms
involving n processes, where at most f processes can be
corrupted. Formally, a (f + 1, n)-threshold signature scheme
consists of the following algorithms:

• {mpk, {tpki}pi∈P , {tski}pi∈P } ← TS.KeyGen(f +
1, n, 1λ): this algorithm takes a threshold f + 1, the
number of processes n, and a security parameter λ as
inputs, and outputs a threshold public key mpk, public
key set {tpki}pi∈P , and secret key set {tski}pi∈P . Each
process pi is assigned with (mpk, {tpki}pi∈P , tski).

• σi ← TS.SigShare(m, tski): this algorithm takes as
inputs a message m and a threshold secret key tski, and
outputs a signature share σi for m.

• 0/1← TS.VerifyShare(m,σi, tpki): this algorithm takes
as inputs a message m, a signature share σi, and a public
key tpki, and outputs 1 if σi is correctly generated by
process i by TS.SigShare(m, tski) and 0 otherwise.

• σm ← TS.Combine(m, {i, σi}i∈S , {tpki}pi∈P ): this al-
gorithm takes as inputs a message m, a list of signature
shares {σi}i∈S , where |S| = f +1, and the set of public
keys, and outputs a full signature σm if all the signature
shares in {σi} are valid.

• 0/1 ← TS.Verify(m,σm,mpk): this algorithm takes as
inputs a message m, a full signature σm, and the threshold
public key, and outputs 1 if the signature is valid and 0
otherwise.

Except with negligible probability, a threshold signature
scheme satisfies the following properties:

• Correctness. The correctness property of a threshold
signature scheme requires that:
(1) for any message m, and pi ∈ P ,

Pr[TS.VerifyShare(m,σ, tpki) = 1 | σ ←
TS.SigShare(m, tski)] = 1.

(2) for any message m, and S ⊂ P , |S| = f + 1,

Pr[TS.Verify(m,TS.Combine(m, {i, σi}i∈S , {tpki}pi∈P )
= 1 | ∀ i ∈ S, σi ← TS.SigShare(m, tski)] = 1.

• Unforgeability. Given f corrupted processes, an adversary
cannot forge a valid full signature of message m unless
it receives a signature share produced by some correct
process.
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• Robustness. Given f + 1 valid signature shares, it must
induce a valid full signature.

Threshold encryption (TE)) [34]. It is a cryptographic
primitive that allows any process to encrypt a value with an
encryption public key, such that processes must work together
to decrypt it. We consider an (f + 1, n) scheme where if
any f + 1 correct processes compute and reveal decryption
shares for a ciphertext, then the plaintext can be recovered.
This scheme ensures that the adversary gains no information
about the plaintext unless at least one correct node reveals its
decryption share. More formally, a TE scheme encompasses
the following algorithms:

• {epk , {eski}pi∈P } ← TE.Setup(f + 1, n, 1λ): this algo-
rithm generates a public encryption key epk and a set of
secret keys, one for each process.

• c ← TE.Encypt(m, epk) →: this algorithm encrypts a
value m using the public encryption key and returns its
cipher c.

• σi ← TE.DecryptShare(c, eski): this algorithm produces
a decryption share σi for decrypting the cipher c.

• 0/1← TE.VerifyShare(c, σi, epk): this algorithm verifies
whether σi is a valid decryption share for the cipher c.

• m← TE.Decrypt(c, {σi}, epk): this algorithm combines
a set of at least f + 1 valid decryption shares {σi} and
outputs the plaintext m of the cipher c.

• Consistency. The consistency property of threshold en-
cryption requires that for any ciphertext c,

Pr[TE.VerifyShare(c, σi, epk) = 1 | σi ←
TE.DecryptShare(c, eski)] = 1.

• Correctness. The correctness property of threshold en-
cryption requires that for any message m,

Pr[m ← TE.Decrypt(c, {σi}, epk)
∣∣ |{σi}| =

f + 1 ∧ ∀σi, σi ←
TE.DecryptShare(TE.Encypt(m, epk), eski)] = 1.

B. Broadcast and Consensus Primitives

Multi-valued validated Byzantine agreement (MVBA): The
MVBA protocol, as introduced in [9], [35], [36], goes beyond
the restriction of binary values and enables agreement on
arbitrary values. In this protocol, a public global predicate
Q is pre-established and is common knowledge among all
participating processes. The form of the predicate function
Q is determined based on the specific requirements of the
application and can be computed efficiently in polynomial
time. The predicate Q is equivalent to an external validity
property [9] and is used to determine the validity of the values
proposed during the execution of the protocol.

The fundamental concept of the MVBA protocol involves
each participating process proposing a value that could incor-
porate validation information as input. The protocol guarantees
that the output value is proposed by at least one process.
Hence, the output value also satisfies the predicate Q. All
correct processes only input values v to MVBA such that
Q(v) = 1. Formally, an MVBA protocol satisfies the following
properties with all but negligible probability:

• MVBA-Termination. If every correct process pi inputs a
value vi, then every correct process outputs a value;

• MVBA-External-Validity. If a correct process outputs a
value v, then Q(v) holds;

• MVBA-Agreement. For any two distinct correct processes
pi and pj , if pi outputs vi and pj outputs vj , respectively,
then vi = vj .

Complexity: In our paper, we adopt the MVBA protocol
proposed by Lu et al. in [36]. In this MVBA protocol,
time complexity is O(1) and message complexity is O(n2).
Furthermore, the communication complexity is O(nℓ+ λn2),
where ℓ is the size of the input value and λ is the security
parameter.

Provable reliable broadcast (PRBC) [22]. As discussed
in [22], a PRBC protocol extends Bracha’s reliable broadcast
protocol [17]. We denote PRBC[id] the PRBC protocol in-
stance with identifier id. A correct process submits a value
v to the instance id of the protocol using PRBC[id](v).
Then, PRBC ensures that each correct process pi delivers
the same value v accompanied by a proof σ that shows that
all correct processes will eventually deliver the value v. We
say that pi PRBC-delivers (v, σ) from PRBC[id]. Formally,
a PRBC[id] protocol satisfies the following properties except
with negligible probability:

• PRBC-Agreement. If any two correct processes pi and pj
PRBC-deliver v and v′ from PRBC[id], respectively, then
v = v′;

• PRBC-Totality. If any process PRBC-delivers a valid
proof σ from PRBC[id], then every correct process
eventually PRBC-delivers v and a valid proof σ from
PRBC[id];

• PRBC-Validity. If the sender is correct and inputs a value
v to PRBC[id], then every correct process PRBC-delivers
v and a valid proof σ from PRBC[id];

• PRBC-Succinctness. The size of a valid proof σ is inde-
pendent of the size of the value v.

Complexity: In this paper, we employ the PRBC protocol
proposed by Guo et al. in [22]. This specific PRBC protocol
exhibits a message complexity of O(n2). Furthermore, the
communication complexity of the protocol is O(nℓ + λn2),
where ℓ represents the size of the input value and λ is the
security parameter.

Asynchronous Data Dissemination (ADD) [16]. According
to the discussion in [16], the protocol can ensure that if at
least f+1 correct processes receive the same value v as input,
while other correct processes start with an initial value ⊥, then
it guarantees eventual consensus among all correct processes
to output the same value v. This condition holds when there
are n = 3f + 1 processes in total, and up to f processes are
potentially malicious. Formally, an ADD protocol satisfies the
properties listed below:

• ADD-Agreement. For any two distinct correct processes
pi and pj , if pi outputs vi and pj outputs vj , respectively,
then vi = vj .
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• ADD-Totality. If any correct process outputs v, then every
correct process outputs v;

• ADD-Validity. If at least f+1 correct processes input the
same value v and the rest of the correct processes input
⊥, then every correct process outputs v.

Complexity: Throughout this paper, we utilize the ADD proto-
col proposed by Das et al. in [16]. It has a message complexity
of O(n2). Additionally, the communication complexity of the
protocol is O(nℓ + λn2), where ℓ represents the size of the
input value and λ is the security parameter.

Other Notations. In the rest of the paper, we use the following
notations (see Table II for a summary of the symbols and
acronyms utilized in this paper):

• Π[id] represents an instance of the protocol Π with
a session identifier id. Π[id](x) denotes invoking the
instance Π[id] with input x.

• y ← Π[id](x) denotes waiting for Π[id] to finish its
execution and assigning the output to the value y.

• ℓ represents the bit length of each transaction.
• λ denotes the cryptographic security parameter, which

encompasses the size of the (threshold) signature and the
length of the hash value.

• h refers to a collision-resistant hash function.

TABLE II
LIST OF SYMBOLS AND ACRONYMS, AND A BRIEF DESCRIPTION.

Symbol Description

P set of all processes
n number of all processes
f maximum number of Byzantine processes

AB Atomic Broadcast
AOAB Asynchronous Ordered Atomic Broadcast

DS Digital signature
TS Threshold signature
TE Threshold encryption

MVBA Multi-valued Byzantine agreement
PRBC Provable reliable broadcast
ADD Asynchronous data dissemination
seqi Sequence assigning function of process pi

o = (e, s) ∈ N× N sequence number assigned to a process
t1 ≺ t2 t1 is ordered before t2
t ⊏i e t ordered in epoch e by pi
t ⊏ e t successfully ordered in epoch e

Π[id](x) instance id of protocol Π with input x
ℓ bit length of each transaction

λ
security parameter, size of signatures

and hash value
h(t) hash of t

V. ASYNCHRONOUS ORDERED ATOMIC BROADCAST

In this section, we present our Asynchronous Ordered
Atomic Broadcast (AOAB) protocol and show that it im-
plements an Atomic Broadcast [14] with a fair ordering of
transactions.

High level overview. Our protocol is designed with two
distinct phases for each epoch: the transaction ordering phase
and the consensus phase. The transaction ordering phase’s ob-
jective is to determine the sequence number of each transaction

and schedule the transaction so that it is output in its assigned
epoch. The sequence number used to order each transaction t
is the median value of a set of 2f +1 sequence numbers that
have been assigned to t by processes.

The purpose of the consensus phase is to ensure that all
correct processes agree on which transactions to output. To
achieve optimal communication complexity, we use the hash
value of transactions as the input for the consensus phase
instead of inputting the transactions themselves. However,
to ensure that all the values corresponding to the hashes
can be received by all correct processes without causing a
significant increase in communication complexity, we employ
a strategy during the ordering phase. Specifically, we ensure
that for each hash value, its corresponding value has been
received by a sufficient number of correct processes during
the ordering phase. This guarantees that even if some correct
processes did not receive this value during the ordering phase,
these correct processes can still receive the value by the end
of the consensus phase without blowing up communication
complexity.

A. Implementation

In this section, we describe the construction of our protocol.
During each consecutive epoch e, starting with e = 0, the pro-
tocol decides a set of transactions extending the SMR output.
Each epoch e comprises an ordering phase (cf. Algorithm 1)
and an agreement phase (cf. Algorithm 2). In particular, the
consensus phase yields a collection of transactions in each
epoch, each accompanied by its respective sequence number.
Subsequently, these delivered transactions are output (AOAB-
delivered) based on their corresponding sequence numbers. If
two transactions t1 and t2 are output with sequence numbers
s̄1 and s̄2, respectively, and that s̄1 = s̄2, then t1 and t2 are
sorted deterministically using a lexicographical order.

The transaction ordering phase consists of four logical
phases, and the protocol follows the steps outlined below:

1) Broadcast transaction. When a process pi receives a
transaction t from a client, pi submits t to the AOAB
protocol via the AOAB-broadcast method (line 7), this
step lets process pi request a set of sequence numbers
for its transaction t (line 8).

2) Assign sequence number. Upon receiving such request
(line 9) for the first time, processes assign to t a pair
(e, s) consisting of the combined values of their epochs
and sequence numbers and return this value signed with
their private keys. When pi has collected a set S[t] of
2f + 1 sequences numbers (line 18), pi will broadcast
S[t] in order to collect threshold signature shares for the
median value of S[t].

3) Decide median. When processes receive S[t] (line 20),
they send back to pi a threshold signature share of the
median value of S[t]. When pi has collected at least
f +1 shares for the median value s of S[t] (line 28), pi
combines these shares into a full proof Σ and broadcast
(ORDER-REQUEST, h, s,Σ) to all processes. This is the
key step that makes our protocol optimal in terms of
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Algorithm 1 Transaction Ordering Step, code for pi
1: State
2: epoch ← 0 ▷ consensus epoch
3: seqi ← 0 ▷ local sequence number
4: T ← [T → []] ▷ median threshold shares
5: S ← [T → []] ▷ collected sequence numbers
6: M ← [] ▷ submission buffer

7: function AOAB-BROADCAST(t)
8: broadcast(SEQUENCE-REQUEST, t)

9: upon receiving (SEQUENCE-REQUEST, t) from pj do
10: if t is received for the first time by pi then
11: s← ⟨epoch, seqi⟩
12: seqi ← seqi + 1
13: σ ← DS.PrivateSign(h(t) || s, ski)
14: broadcast(SEQUENCE-RESPONSE, h(t), s, σ)

15: upon receiving (SEQUENCE-RESPONSE, h, s, σ) from pj
do

16: if DS.PublicVerify(h(t) || s, σ, pkj )=1 then
17: S[t]← S[t] ∪ (j, s, σ)
18: if |S[t]| = 2f + 1 then
19: broadcast(MEDIAN-REQUEST, h, S[t])

20: upon receiving (MEDIAN-REQUEST, h, S[t]) from pj do
21: if |S[t]| = 2f + 1 ∧DS.PublicVerify(h || s, σ, pkj ) = 1

for ∀ (j, s, σ) ∈ S[t] then
22: s← Median(S[t])
23: σh,s ← TS.SigShare((h, s), tski)
24: send(MEDIAN-RESPONSE, h, σh,s) to pj

25: upon receiving (MEDIAN-RESPONSE, h, s, σ) from pj do
26: if TS.VerifyShare((h(t), s), σ, tpkj )=1 then
27: T [t]← T [t] ∪ (j, σ)
28: if |T [t]| = f + 1 then
29: Σ← TS.Combine((h, s), T [t], {tpki})
30: multicast(ORDER-REQUEST, h, s,Σ)

31: upon receiving (ORDER-REQUEST, h, s,Σ) ∧ (h, ∗, ∗) /∈
M ∧ h /∈ decidedHash do

32: if TS.Verify((h, s),Σ,mpk) = 1 then
33: M ←M ∪ (h, s,Σ)

communication complexity: a valid full proof Σ can
prove that at least f+1 correct processes have received a
transaction t that satisfies h(t) = h, and as a result, with
the help of ADD (line 55, in Algorithm 2), all correct
processes can also receive the transaction t.

4) Add ordered transaction to submission buffer. When-
ever a correct process pi receives a valid message
(ORDER-REQUEST, h, s,Σ), pi adds it to its submission
buffer (line 33). The submission buffer of each process

Algorithm 2 Epoch Consensus Step, code for pi
34: State
35: epoch ← 0 ▷ consensus epoch
36: nextSub ← 0 ▷ next submission epoch
37: M ← [] ▷ submission buffer
38: P ← [] ▷ submissions collected for each epoch
39: Q :X→ |X|= n−f∧∀(j,σ) ∈X,σ is valid proof for

PRBC[j,e] ▷ MBVA predicate
▷ K = Ω(n)

40: upon |M | ≥ K ∧ pi has not submitted in epoch do
41: PRBC[i, e](EPOCH-SUBMISSION,M)
42: nextSub ← nextSub + 1

43: upon PRBC-delivering (EPOCH-SUBMISSION,Mj , σj)
from PRBC[j, e] do

44: P [e]← P [e] ∪ (j, σj)
45: if |P [e]| ≥ n− f then
46: Pdecided ← MVBA[e](P [e])
47: for ∀ (k, σ) ∈ Pdecided do
48: wait until PRBC[k, e] outputs (EPOCH-SUBMIS-

SION,Mk) do ▷ wait PRBC
49: decidedBuffers ← decidedBuffers ∪Mk

50: decidedTxs ← ∅
51: for ∀ (h, s,Σ) ∈ decidedBuffers do
52: if received t satisfy h(t) = h then
53: t← ADD[e](t);
54: else
55: t← ADD[e](⊥);
56: decidedTxs ← decidedTxs ∪ (t, s)
57: decidedHash ← decidedHash ∪ (h)

58: Sort(decidedTxs)
59: for ∀ t ∈ decidedTxs do
60: AOAB-DELIVER(t)

61: M ←M \ Pdecided ▷ remove decided txs
62: decidedBuffers ← ∅
63: epoch ← epoch + 1 ▷ increment epoch

contains tokens, where each token represents a transac-
tion that can be reliably delivered by correct processes
(via ADD) and that is associated with a sequence number
that is verifiably the median value of a set of 2f + 1
signed sequence numbers. Intuitively, the submission
buffers of processes constitute their inputs to the epoch
consensus phase.

The aforementioned four phases are detailed in Algorithm 1
and constitute the transaction ordering phase of the AOAB
protocol. The ordering phase is followed by a consensus phase
described in Algorithm 2. The consensus phase consists of the
three following steps:

1) Broadcast submission buffer. During each epoch, pro-
cesses only submit their submission buffers once. When
the size of its submission buffer M reaches a size of
K = Ω(n) (line 40), process pi submits M to the PRBC
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protocol.
2) Invoke MVBA. Upon receiving a string (j, σj) from

PRBC[j, e], processes gather them in their proposal P [e]
for epoch e (line 44). When a process pi has gathered a
set P [e] of at least n−f strings for epoch e, pi inputs its
proposal P [e] to the MVBA instance of epoch e. When a
valid proposal Pdecided is selected by MVBA for epoch
e, process pi waits for PRBC-delivery of all related
submission buffers {(EPOCH-SUBMISSION,Mk)} and
collects them in decidedBuffers (line 49); additionally,
these corresponding hash values will be included in
decidedHash (line 57).

3) Deliver transaction. For each element (h, s,Σ) in
decidedBuffers , if process pi has received a transaction
t that satisfies h(t) = h, then t is input to the ADD
function. Otherwise, ⊥ (null value) is input to ADD.
Once the corresponding transaction t is received, it is
added to decidedTxs as (t, s). Afterwards, all elements
in decidedTxs are sorted in ascending order based on
their sequence numbers s.
Finally, when their transactions have been AOAB-
delivered (line 60), clients can be notified that their
transactions have been committed.

B. Security analysis

In this section, we present the detailed proofs for our
construction. First, we prove that Algorithm 1 and Algorithm 2
satisfy all the properties of Atomic Broadcast [14].

Lemma 1 (Delivery Guarantee). For any valid element
(h, s,Σ) in the submission buffer, the protocol guarantees that
all correct processes can receive the corresponding transac-
tion t such that h(t) = h.

Proof. A valid (h, s,Σ) indicates that at least one
correct process has received the corresponding
(MEDIAN-REQUEST, h, S[t]) message. Moreover, it
implies that at least f + 1 correct processes have sent
(SEQUENCE-RESPONSE, h, s, σ) messages. Therefore, at
least f + 1 correct processes have received a transaction t
satisfying h(t) = h according to the code (lines 9-16). With
the assistance of the ADD protocol implemented in the code
(lines 54-58), we can ensure that all correct processes receive
the corresponding transaction t.

Lemma 2 (Inclusion Guarantee). If a transaction t is success-
fully ordered in epoch e, then t is AOAB-delivered in epoch
e.

Proof. If t is ordered in epoch e by at least 2f+1 processes, at
least f+1 correct processes will include t in their submission
buffers for epoch e. Because of the predicate Q (line 39), the
proposal Pdecided output by MVBA for epoch e contains valid
submission buffers from at least 2f +1 distinct processes, out
of which at least f + 1 are correct. Since two sets of f + 1
correct processes necessarily intersect, the decided proposal of
epoch e will include at least one correct process that included
t in its submission buffer.

Theorem 1. The AOAB protocol (Algorithm 1 and Algo-
rithm 2) implements an Atomic Broadcast protocol (cf. Defi-
nition 1).

Proof. We prove each property separately.
1) AB-Validity. If a correct process pi AOAB-broadcasts a

transaction t, as 2f + 1 ≤ n − f , a correct process pi
will eventually receive a set S[t] of 2f + 1 sequences
numbers that are correctly signed for its transaction t. A
correct process pi then eventually collects f + 1 shares
for the median value s of S[t], combines them into a
proof Σ, and broadcasts t and Σ. The communication
channel ensures that (t, s) is eventually added to the
submission buffers of all correct processes, that is, at
least n − f ≥ 2f + 1 correct processes will add (t, s)
to their submission buffers. Hence, (t, s) is successfully
ordered at this time, and due to Lemma 2, t is AOAB-
delivered.

2) AB-Agreement. If a correct process pi AOAB-delivers
a transaction t in an epoch e, then t was output by a
corresponding MBVA instance. Lemma 1 ensures that
t is received by all correct processes, and the MVBA-
Agreement property ensures that t is eventually AOAB-
delivered by all correct processes in epoch e.

3) AB-Integrity. Each AOAB-delivered transaction has
been submitted by a unique issuer process and comprises
a unique nonce from its issuer. Correct processes thus
only AOAB-deliver a transaction at most once. To be
AOAB-delivered, a transaction must have collected a set
of sequence numbers, and by the code, it must then also
have been broadcast by some process pi.

4) AB-Total Order. Each correct process AOAB-delivers
decided epoch proposals in the same order using an
ascending order based on epoch numbers. The MVBA-
Termination property ensures that all correct processes
can output a proposal for each epoch, and the MVBA-
Agreement property ensures that each correct process
AOAB-delivers the same set of transactions for each
epoch. The transactions in each epoch are also AOAB-
delivered in the same order using an ascending order
based on their respective sequence numbers, and they
are sorted deterministically using a lexicographical order
in case of a tie. As a result, if a transaction t1 is AOAB-
delivered by a correct process before a transaction t2,
then all other correct processes also AOAB-deliver t1
before t2.

We now prove that our AOAB protocol implements a fair
ordering of transactions.

Lemma 3 (Upper Bounded-Lower Bounded). The sequence
number output by the AOAB protocol for a transaction t is
upper bounded and lower bounded by the sequence numbers
assigned to t by correct processes.

Proof. The sequence number s output by the protocol for a
transaction t is determined using the median value of a set
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S[t] of signed sequence numbers assigned to t by 2f + 1
distinct processes. As there can only be f Byzantine processes,
s is necessarily upper bounded and lower bounded by the
sequence numbers assigned to t by at least one correct process.
Furthermore, the threshold of f + 1 used when building a
threshold signature for s ensures that at least one correct
process has verified that the signatures in S[t] are correct and
that s is the median of S[t].

Theorem 2 (Fair Ordering). The AOAB protocol implements
a fair ordering of transactions (Definition 7).

Proof. From Lemma 2, if t1 and t2 are successfully ordered in
epochs emax

1 and emin
2 , respectively, then t1 and t2 are AOAB-

delivered in epochs emax
1 and emin

2 , respectively. By Lemma 3,
the sequences numbers (e1, s1) and (e2, s2) decided for t1
and t2, respectively, are upper bounded and lower bounded by
sequences numbers assigned by correct processes, and because
(emax

1 , smax
1 ) < (emin

2 , smin
2 ), we have (e1, s1) < (e2, s2) and

therefore t1 is ordered before t2.

C. Complexity Analysis

In this section, we provide a comprehensive breakdown
of the costs associated with our construction. Recall that ℓ
denotes the size of the input, and that λ denotes the security
parameter. Note that in a typical financial application, a
transaction would carry a client identifier. As a result, ℓ can
be influenced by a logarithmic factor relative to the number of
clients. However, we make an abstraction of the application
domain and simply use ℓ as the size of the input. Finally, when
sending a set of signed sequence numbers, each of size O(λ),
we do not account for the process identifier of size log(n).
This is because the sequence number from pj can simply be
the jth element of the set.

Theorem 3 (Optimal Communication Complexity). The av-
erage communication complexity is O(nℓ + λn2) bits per
transaction, which is optimal when ℓ ≥ λn.

Proof. Consider a process pi that submits a transaction t of
size ℓ to the AOAB protocol so that t can be output. Based
on the pseudocode of Algorithm 1, the cost breakdown of the
ordering phase can be summarized into the following phases.

1) Broadcast transaction. In this phase, the sender pi
broadcasts t to all processes in order to collect sequence
numbers for t, and thus costs nℓ bits.

2) Assign sequence number. During this phase, each pro-
cess sends for t a signed sequence number of size λ to
pi. In the presence of up to f corrupted processes that
may also send the same SEQUENCE-REQUEST message
to all, this phase incurs a communication cost of O(λn2)
bits.

3) Build median proof. In this phase, pi broadcasts to all
processes a MEDIAN-REQUEST message containing a set
of O(n) sequence numbers that pi has collected for t.
This step costs λn2 bits.

4) Collect median shares. Each process sends back to pi a
threshold signature of size λ for the median value of the

set broadcast by pi in the previous phase. This incurs a
cost of O(λn) bits.

5) Order t. Finally, pi orders t by broadcasting to all
processes a full signature of size λ for the median value
of its set S[t]. This step also has a cost of O(λn).

Consequently, the communication complexity per transac-
tion of the ordering phase is O(nℓ + λn2). According to
the pseudocode of Algorithm 2, the cost breakdown of the
consensus phase can be split into the following phases.

1) Broadcast submission buffer. This phase involves each
process submitting its submission buffer to the PRBC
protocol. Since each submission buffer contains Ω(n)
transactions, and each transaction is represented by its
hash (size λ), a sequence number (size λ), and a proof
(size λ), the size of each submission buffer is O(λn)
bits. As a result, the cost of each PRBC is O(λn2), and
the total cost for this phase is O(λn3) bits.

2) Invoke MVBA. The size of the input for MVBA is λn,
thus resulting in a total coast of O(λn2) for this phase.

3) Deliver transaction. The cost of this phase is incurred by
the invocation of the ADD protocol. The cost of each
ADD invocation is O(nℓ + λn2). Therefore, the cost
for delivering the Ω(n) transactions decided during the
epoch is O(n2ℓ+ λn3).

This results in a communication complexity of O(n2ℓ+λn3)
for Ω(n) transactions, and thus in a communication complexity
of O(nℓ + λn2) per transaction during the consensus phase.
Summing up, the total communication complexity per trans-
action for the entire protocol is O(nℓ+ λn2) bits.

Batching is a common technique where processes submit
a batch of transactions instead of a single transaction. This
enables the amortization of the cost of consensus over the
batch. Note that our protocol does not use batching and that
the cost of O(n2) bits is, therefore, a cost per message of
size ℓ. Thus, by modifying our protocol to have each process
AOAB-broadcast a batch of transactions instead of a single
transaction, the cost per transaction can be further reduced.

VI. AOAB WITH MEV RESILIENCE

In this section, we enhance our AOAB protocol with MEV
resilience. The fundamental idea revolves around integrating
two key principles: blind order fairness and time order fairness.
To achieve MEV resilience, we leverage the commit-reveal
framework presented in Fino [37]. In Fino, a process first
generates a symmetric encryption key K that it uses to encrypt
its transaction t. Then, two distinct methods are employed at
the same time to distribute K to ensure that K can be revealed
once t is committed. The first approach involves distributing K
using secret sharing [38], while the second approach employs
encrypting K using threshold encryption [39]. Ultimately, the
participating processes are provided with a secret share of K,
a threshold-encrypted version of K, and a hash value hK of
K. As introduced in [9], this approach also serves as a method
to achieve secure causal atomic broadcast by preventing the
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𝐾 ← 𝑆𝑌𝑀.𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝜆)

𝑐௧ ← 𝑆𝑌𝑀. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑡, 𝐾)

𝑐௄ ← 𝑇𝐸. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝑘𝑝𝑘)

Encrypt transaction Output transaction Decrypt transaction

AOAB-broadcast(𝑐௧, 𝑐௄)

AOAB-deliver(𝑐௧, 𝑐௄)
𝑡 ← 𝑆𝑌𝑀.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐௧, 𝐾)

𝐾 ← 𝑇𝐸.𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑐௄, 𝜎 , 𝑘𝑝𝑘)
𝑡 𝑡𝑐௧ 𝑐௧

Fig. 1. Overview of AOAB with MEV Resilience. A process first encrypts its transaction t before submitting it. Once the cipher ct of t is output, t can be
decrypted and committed.

adversary from learning the payloads of transactions before
transactions are committed.

Following the commit phase, the framework reveals K, thus
enabling all correct processes to decrypt t. Specifically, in
Fino, once a transaction is committed, the optimal route is
called the happy path and involves attempting to reconstruct
K by combining at least f + 1 secret shares of K. If the
reconstructed key K ′ does not align with the hash value
hK , the framework proceeds to generate K ′ using threshold
encryption. For the sake of simplicity, our paper focuses solely
on the pessimistic path, which involves utilizing only threshold
encryption, foregoing the inclusion of a happy path similar
to the one described in the Fino framework. However, for
practical purposes, the same happy path as in Fino could easily
be incorporated into our protocol.

The process of enhancing AOAB with MEV resilience is
illustrated in Figure 1. Upon receiving a client transaction t,
process pi proceeds as follows.

1) Encrypt transaction. Process pi generates a symmetric
encryption key K and uses it to encrypt t, yielding a
ciphertext ct. Process pi then uses threshold encryption
to create an encryption cK of the key K.

2) Output transaction. Process pi AOAB-broadcasts
(ct, cK). Whenever a correct process pj AOAB-delivers
(ct, cK), pj generates a threshold decryption share for
cK , and broadcasts it along with the hash of ct.

3) Decrypt transaction. Each correct process first decrypts
K using threshold decryption shares for cK , and then
decrypts t using K so that t can be committed.

The MVBA-Termination and MVBA-Agreement properties
ensure that all correct processes deliver the same set of transac-
tions in each epoch and therefore, broadcast a decryption share
of cK , thus ensuring that all correct processes reconstruct K
and subsequently decrypt t.

The input size of AOAB is O(ℓ+λ). Additionally, the size
of both the threshold decryption share and the hash value is
O(λ). Consequently, the communication complexity for each
transaction is O(n(ℓ + λ) + λn2) + O(λ) ∗ n ∗ n, resulting
in an overall complexity of O(nℓ+λn2). Thus, adding MEV
resilience preserves the optimal communication complexity of
our protocol.

VII. BYZANTINE BEHAVIORS

In Pompē, a transaction broadcast by a correct process
can end up being discarded if its collected set expires in
the partial synchrony network setting, for example, if the
pre-chosen time bound is shorter than the actual network
delay and a network adversary obstructs the ordering of a
collected set. By removing the synchrony assumptions, we
can ensure the eventual delivery of transactions broadcast by
correct processes. This not only improves censorship resilience
but also prevents denial-of-service attacks whereby Byzantine
processes blow up communication complexity. Furthermore,
the use of a commit-reveal scheme mitigates network attacks
as the adversary does not know the payloads of transactions.

Using a sequence number that is the median value of a set
of 2f + 1 sequence numbers ensures that all the sequence
numbers output by our protocol are both upper bounded
and lower bounded by values that have been assigned by
correct processes. This approach circumvents the behaviors
of Byzantine processes that could assign superficially large
or small sequence numbers to the transactions they observe.
Note however that the ordering guarantee only applies to non-
concurrent transactions, i.e., to two transactions t1 and t2
such that the sets S1 and S2 of sequence numbers assigned
by correct processes to t1 and t2, respectively, are disjoint.
If S1 and S2 are not disjoint, we say that t1 and t2 are
concurrent, and t1 and t2 can be output in any order. This
results directly from the fact that a transaction t can be output
with a sequence number that ranges from the lowest to the
highest sequence number assigned to t by a correct process.
As a result, although the ordering guarantee of our protocol is
conditional only to f < n

3 , it can be weakened if Byzantine
processes induce disparity among the sequence numbers of
correct processes. This attack can be mitigated by having
correct processes update their sequence numbers by increasing
it to a value that is the minimum of a set of f + 1 observed
sequence numbers.

VIII. CONCLUSION

In this paper, we leveraged cryptographic, broadcast, and
agreement protocols to devise the first asynchronous order-fair
protocol with optimal communication complexity and optimal
fault tolerance. Our protocol improves the communication
complexity of previous solutions and implements broadcast
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validity by ensuring that transactions broadcast by correct pro-
cesses are eventually committed. We then made our protocol
MEV resilient by integrating a commit-reveal scheme that
ensures payload obfuscation.
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[7] C. Cachin, J. Mićić, N. Steinhauer, and L. Zanolini, “Quick order
fairness,” in International Conference on Financial Cryptography and
Data Security. Springer, 2022, pp. 316–333.

[8] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine ordered
consensus without byzantine oligarchy,” in OSDI, 2020, pp. 633–649.

[9] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and effi-
cient asynchronous broadcast protocols,” in Advances in Cryptology—
CRYPTO 2001: 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19–23, 2001 Proceedings. Springer,
2001, pp. 524–541.

[10] L. Heimbach and R. Wattenhofer, “Sok: Preventing transaction re-
ordering manipulations in decentralized finance,” in Proceedings of
the 4th ACM Conference on Advances in Financial Technologies AFT,
M. Herlihy and N. Narula, Eds. ACM, 2022, pp. 47–60.

[11] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness for
byzantine consensus,” in Annual International Cryptology Conference.
Springer, 2020, pp. 451–480.

[12] P. Zarbafian and V. Gramoli, “Brief announcement: Ordered reliable
broadcast and fast ordered byzantine consensus for cryptocurrency,” in
35th International Symposium on Distributed Computing, DISC, ser.
LIPIcs, vol. 209. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, pp. 63:1–63:4.

[13] ——, “Lyra: Fast and scalable resilience to reordering attacks in
blockchains,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2023.
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