
ZLB: A Blockchain to Tolerate Colluding Majorities
Alejandro Ranchal-Pedrosa

University of Sydney and Protocol Labs
Sydney, Australia

alejandro.ranchalpedrosa@sydney.edu.au

Vincent Gramoli
University of Sydney and Redbelly Network

Sydney, Australia
vincent.gramoli@sydney.edu.au

Abstract—In general, consensus cannot be solved if an adver-
sary controls a third of the system. Yet, blockchain participants
typically reach consensus “eventually” despite an adversary
controlling a minority of the system. Exceeding this 1

3
cap is made

possible by tolerating transient disagreements, where distinct
participants select distinct blocks for the same index, before
eventually agreeing on the same block. Until now, no blockchain
could tolerate an attacker controlling a majority of the system.

In this paper, we present Zero-Loss Blockchain (ZLB), the first
blockchain that tolerates an adversary controlling more than
half of the system. ZLB is an open blockchain that combines
recent theoretical advances in accountable Byzantine agreement
to exclude undeniably faulty replicas. Interestingly, ZLB does not
need a known bound on the delay of messages but progressively
reduces the portion of alive but corrupt replicas below 1

3
, and

reaches consensus. Geo-distributed experiments show that ZLB
outperforms HotStuff that cannot tolerate n/3 faults and is
almost as fast as the scalable Redbelly Blockchain.

Index Terms—Byzantine, State Machine Replication

I. INTRODUCTION

Blockchain systems [59] promise to track ownership of
assets without a central authority and thus rely heavily on
distributed nodes agreeing on a unique block at the next
index of the chain. An attacker can exploit a disagreement
to double spend by simply inserting conflicting transactions
in competing blocks.

Some solutions [10], [37], [3], [25] to this problem avoid
forks by guaranteeing that no disagreement can ever occur,
even transiently. Such solutions typically adopt an open per-
missioned model where permissionless clients can issue trans-
actions that n permissioned servers (or replicas) encapsulate
in blocks they agree upon. These solutions typically assume
partial synchrony [29] or that there exists an unknown bound
on the time it takes to deliver any message. Unfortunately, it
is well-known [64] that consensus cannot be solved as soon as
1
3 of these replicas experience a Byzantine fault. Specifically,
in these blockchains an attacker can exploit a disagreement to
double spend if it controls 1

3 of these replicas.
Other solutions, popularized by classic blockchains [59],

[77], [34], [15], assume that the adversary controls only a
minority of the replicas, typically expressed as computational
power or stake. The tolerance to an adversary controlling
more than 1

3 but less than 1
2 of the replicas is made possible

by accepting forks and tolerating transient disagreements that
eventually get resolved in an “eventual” consensus. Unfortu-
nately, as soon as the adversary controls a majority of the
system, then safety gets violated: This was recently illustrated

by the losses of $70, 000 and $18 million in Bitcoin Gold [67],
[45] and $5.6 million in Ethereum Classic [81].

In this paper, we propose the Zero-Loss Blockchain (or
ZLB for short), the first blockchain that tolerates more than a
majority of failed replicas while assuming partial synchrony.
The problem ZLB solves is not simple for two reasons.

First, if a majority of the permissionned replicas stop partici-
pating, we cannot guarantee availability as implied by the CAP
theorem [36]. On the bright side, however, blockchain systems
incentivize replicas to be eventually actively participating:
Typical replicas are either carefully monitored to generate
financial rewards to their owner [59], [77] or incentivized
to send misinformation to deceive honest replicas and steal
assets [48], [33]. This departs significantly from the failure
models found in closed distributed systems (e.g., datacenters,
cloud services or distributed databases) where it is acknowl-
edged [21], [53], [44] that most faults are omissions and rare
commissions are due to unlucky events (e.g., disk errors [21]).
So to cope with a possible liveness issue, we make the
reasonable assumption that less than n/3 of the blockchain
participants commit benign faults (omitting to send messages
or sending unintelligible messages) forever. To this end, we
adopt a slowly-adaptive version of the alive-but-corrupt (a-b-
c) failure model [56]: at the beginning of each epoch there
are f failing replicas among which t Byzantine replicas can
attack safety and liveness but where f−t a-b-c replicas attack
only safety.

Second, if a majority of faulty replicas collude then they can
ensure that honest replicas disagree on the next block. To cope
with this safety issue we rely on recent theoretical advances
in the field of accountability [69], [18], [19] that guarantee
that faulty replicas leave a cryptographically signed trace at
an honest replica when trying to influence the decision of this
replica. Honest replicas can then combine these traces to build
undeniable proofs of fraud. In ZLB, honest replicas exploit
these proofs of fraud to replace detected faulty replicas by
new replicas until consensus is reached. Once honest replicas
gather enough proofs of fraud, they start a membership change,
consisting of an exclusion protocol followed by an inclusion
protocol, during which replicas agree on the replicas to exclude
and to include. The convergence of this membership change
is guaranteed by honest replicas updating their committee at
runtime by removing all replicas for which they receive a proof
of fraud. Note that if no such proofs of fraud can be generated,
then it implies that no disagreement can happen.

To demonstrate the efficiency of ZLB we implement it

with Bitcoin transactions and the formally verified blockchain
consensus protocol, DBFT [6], and compare its performance
to modern blockchain systems. We show that, on 90 machines
spread across distinct continents, ZLB outperforms by 5.6
times the HotStuff [79] state machine replication that inspired
Facebook Libra’s [3], and obtains comparable performance
to the recent Redbelly Blockchain [25], [72] that also builds
upon DBFT. Our empirical results also show an interesting
phenomenon in that the impact of the attacks decreases rapidly
as the system size increases, due to the increased message
delays.

We also develop a Zero-Loss Payment application on top of
ZLB. As opposed to classic blockchain payment systems [59],
[77], [55], [32] that recover from forks a posteriori, our
payment application guarantees deterministic agreement—no
forks—when the number f of failures is lower than n/3.
As opposed to more recent Byzantine fault tolerant payment
solutions [35], [10], [37], [3], [25], our payment application
recovers eventually from a state with a majority of faults. More
generally, our system solves consensus tolerating t < n/3
Byzantine faults, or it instead resolves disagreements to con-
verge to a state where consensus can be solved again for
f < 5n/9 total faults, of which t < n/3 are Byzantine faults
and the remaining f − t are a-b-c faults.

We present the background (§II), our LLB problem (§III),
our ZLB solution (§IV), our evaluation (§V) and our zero-loss
payment application (§VI) before presenting the related work
(§VII) and concluding (§VIII).

II. BACKGROUND AND PRELIMINARIES

A blockchain system [59] is a distributed system maintain-
ing a sequence of blocks that contains valid (cryptographically
signed) and non-conflicting transactions indicating how assets
are exchanged between accounts.1

A. Byzantine state machine replication

A Byzantine State Machine Replication (SMR) [14], [47] is
a replicated service that accepts deterministic commands from
clients and totally orders these commands using a consensus
protocol so that, upon execution of these commands, every
honest replica ends up with the same state despite Byzantine
or faulty replicas. The instances of the consensus execute in
sequence, one after the other, starting from index 0. We refer
to the consensus instance at index i as Γi.

Traditionally, given that honest replicas propose a value, the
Byzantine consensus problem [64] is for every honest replica
to eventually decide a value (consensus termination), for no
two honest replicas to decide different values (agreement)
and for the decided value to be one of the proposed values
(validity). In this paper, we consider however a variant of
Byzantine consensus (Def. 1) useful for blockchains [25], [38],
[39] where the validity requires the decided value to be a

1Note that in §IV we will implement Bitcoin’s transactions where “valid”
implies “non-conflicting” as requested transactions cannot be valid if their
UTXOs are already consumed.

subset of the union of the proposed values, hence allowing us
to commit more proposed blocks per consensus instance.

Definition 1 (Set Byzantine Consensus). Assuming that each
honest replica proposes a set of transactions, the Set Byzantine
Consensus (SBC) problem is for each of them to decide on a
set in such a way that the following properties are satisfied:
• SBC-Termination: every honest replica eventually decides

a set of transactions;
• SBC-Agreement: no two honest replicas decide on differ-

ent sets of transactions;
• SBC-Validity: a decided set of transactions is a non-

conflicting set of valid transactions taken from the union
of the proposed sets;

• SBC-Nontriviality: if all replicas are honest and propose
a common valid non-conflicting set of transactions, then
this set is the decided set.

SBC-Termination and SBC-Agreement are common prop-
erties to many Byzantine consensus definition variants, while
SBC-Validity states that transactions proposed by Byzantine
proposers could be decided as long as they are valid and non-
conflicting (i.e., they do not withdraw more assets from one
account than its balance); and SBC-Nontriviality is necessary
to prevent trivial algorithms that decide a pre-determined value
from solving the problem. As a result, we consider that a
consensus instance Γi outputs a set of enumerable decisions
out(Γi) = di, |di| ∈ N that all n replicas replicate. We refer
to the state of the SMR at the i-th consensus instance Γi as
all decisions of all instances up to the i-th consensus instance.

B. Accountability

The replicas of a blockchain system are, by default, not
accountable in that their faults often go undetected. For
example, when a replica creates a fork, it manages to double
spend after one of the blockchain branches where it spent
coins vanishes. This naturally prevents other replicas from
detecting frauds and from holding this replica accountable
for its misbehavior. Recently, Polygraph [17], [18] introduced
accountable consensus (Def. 2) as the problem of solving
consensus if f < n/3 and eventually detecting fd ≥ n/3
faulty replicas in the case of a disagreement.

Definition 2 (Accountable Consensus). The problem of ac-
countable consensus is: (i) to solve consensus if the number
of Byzantine faults is f < n/3, and (ii) for every honest replica
to eventually output at least fd ≥ n/3 faulty replicas if two
honest replicas output distinct decisions.

C. Solving the Set Byzantine Consensus (SBC)

A classic reduction [4], [5], [23], [18] of the problem of
multi-valued consensus, which accepts any ordered set of input
values, to the problem of binary consensus, that accepts binary
input values, proved promising to solve the SBC problem
(Def. 1) when f < n/3 [25]. The idea consists of executing
an all-to-all reliable broadcast [8] to exchange n proposals:
any delivered proposal is stored in an array proposals at the

2

index corresponding to the identifier of the broadcaster. A
binary consensus at index k is started with input value 1
for each index k where a proposal has been recorded. Once
n − f proposals are delivered locally, a binary consensus at
the remaining indices 0 ≤ ℓ < n where ℓ ̸= k is started with
input value 0. The results of these concurrent binary consensus
instances is stored into a bitmask array. Hence, applying the
bitmask to the proposal array yields a sequence of proposals
whose content is the output of consensus. Polygraph [16], [17],
[18] is the accountable variant of this algorithm where replicas
broadcast certificates, sets of 2n/3 messages signed by distinct
replicas, each time they reliably broadcast or decide a binary
value.

III. THE LONGLASTING BLOCKCHAIN PROBLEM

We consider the classic distributed system model [14], [47]
where messages are delivered within bounded but unknown
time (i.e., partial synchrony [29]). Solving the longlasting
blockchain problem is to solve consensus when possible
(f < n/3), and to recover from a situation where consensus is
violated (n/3 ≤ f < 2n/3) by excluding faulty replicas, re-
solving this violation, and preventing future ones (f ′ < n′/3).

A. Longlasting Blockchain

A Longlasting Blockchain (LLB) is a Byzantine fault toler-
ant SMR that allows for its kth consensus instance, denoted
Γk, to reach a disagreement before fixing the disagreement
by merging the branches of the resulting fork and deciding
the union of all the past decisions using SBC (Def. 1). In
particular, the jth consensus attempt of consensus instance Γk

to reach agreement is denoted Γj
k. More formally, an SMR is

an LLB if it ensures termination, agreement and convergence:

Definition 3 (Longlasting Blockchain Problem). An SMR is
an LLB if all the following properties are satisfied:

1) Termination: For all j, k > 0, the consensus attempt
Γj
k terminates, either with agreement or disagreement.
2) Agreement: For all k > 0, if f < n/3 when Γk starts,

then honest replicas executing consensus attempt Γ1
k reach

agreement.
3) Convergence: There is a finite number of disagreements

after which every consensus attempt of every instance solves
consensus.

Termination does not imply agreement among honest repli-
cas whereas agreement is the classic property of consensus.
Convergence guarantees that there is a limited number of
disagreements (0 if f < n/3) before reaching agreement.

B. Threat model

In this section, we show how our adaptive adversary assigns
Byzantine, alive-but-corrupt and honest roles dynamically.

a) Failures: We adopt the alive-but-corrupt (a-b-c) fault
model [56], that is a refinement of the Byzantine failure
model [48]. In particular, each replica is either Byzantine,
a-b-c or honest. An a-b-c replica can take any action that
violates the agreement property of the consensus protocol but

if it cannot violate agreement then it acts correctly. As the
a-b-c replica acts correctly if it cannot violate agreement,
it never hampers termination. A Byzantine replica behaves
abitrarily [48]. As opposed to an a-b-c replica, a Byzantine
replica can hamper liveness as it can, for example, omit
sending messages. Finally, any replica that is neither a-b-c nor
Byzantine is called an honest replica. Note that each replica
is assigned a specific (a-b-c, Byzantine or honest) role by an
adversary as described below hence even if a Byzantine replica
commits no other fault but agreement violations, it remains a
Byzantine replica until the adversary assigns it a new role.

b) Slowly-adaptive adversary: As other blockchains that
cope with bribery attacks [55], [46], [80], we consider a
slowly-adaptive adversary in that the adversary assigns one
of the three (a-b-c, Byzantine or honest) roles to each replica
that remains unchanged for a time period we refer to as a
static period of the adversary. As opposed to the static alive-
but-corrupt fault model [56] our adversary is adaptive in that
it can change roles at the beginning of each static period. Each
static period p is assigned a consensus instance Γk and p starts
when Γk starts. To cope with pipelined consensus instances,
p may not end exactly when Γk ends, as there can be Γℓ,
. . . , Γm instances running at this time, in which case p ends
(and static period p+1 starts) as soon as Γℓ, . . . , Γm and Γk

have all ended. Let n be the initial number of replicas in our
system when period p starts, we assume that there are at most
f < 5n/9 faulty replicas during p, among which t < n/3 are
Byzantine replicas and f − t replicas are a-b-c. Finally, we
refer to δ = f/n as the fault ratio.

c) f < 5n/9 bound: The bound f < 5n/9 on the
number of total replicas stems from the fact that honest repli-
cas will identify fd ≥ n/3 provably faulty replicas through
accountability, to then run a special membership change that
executes consensus to have honest replicas agree on the
replicas to exclude and the new replicas to include. Honest
replicas start the membership change by locally excluding the
fd replicas that they know are faulty, even if they do not yet
agree on the same set of excluded replicas. As we will explain
(§IV-A1➂) that all honest replicas exclude progressively all
faulty replicas of the same static period of the adversary, the
number of faulty replicas not excluded for the membership
change f ′ may not exceed the bound on the number of faulty
replicas n′/3. As n′ ≤ n − fd and f ′ = f − fd, we have
that f ′ < n′/3. Since n′/3 ≤ (n − fd)/3 and fd ≥ n/3,
this means that n′/3 ≤ n/3 − n/9, thus f ′ < n′/3 is
equivalent to f ′ < 2n/9. Given that f − fd < 2n/9 to ensure
consensus of the exclusion phase of the membership change
(i.e. f ′ < n′/3), and this amounts for f ′ < 2n/9, and since
f ′ = f − fd for at least fd ≥ n/3, then the total number of
tolerated faulty replicas must be f = f ′ + fd = 5n/9. We
refer to previous work [65] and to the technical report [66]
for a more detailed explanation and proofs of both bounds, as
well as to other bounds of interest. The bound t < n/3 on the
number of Byzantine replicas is immediate since without that
bound it is impossible to solve consensus in the first place.

3

d) Relation with rational behaviors: A-b-c faults define
a stronger adversary than rational players, in that a-b-c faults
are always trying to cause a disagreement, whereas rational
players only deviate if deviating benefits them. Recent solu-
tions for consensus in the presence of rational players [42] do
not adhere to the a-b-c model, whereas our solution holds its
properties when replacing a-b-c faults with rational players.
We also denote the fault ratio f/n as δ. A replica that is
not faulty is honest. In order to cope with the dynamism of
our network, we need to be more precise about the number
of participants. Let n be the initial number of replicas in our
system, we assume a number of faulty replicas that satisfies
either t < n/3 Byzantine replicas for consensus, or f < 5n/9
total faults of which at most t < n/3 are Byzantine for
eventual consensus, where f is the total number of faults.
Actually, ZLB can even provide stronger guarantees than
eventual consensus for f ≥ n/3, as honest replicas may detect
the point in which consensus is reached again after a series of
disagreements, even if f < 2n/3, in a property that we refer
to as awareness. We focus here in the case f < 5n/9, t < n/3
and defer the generalisation to and analysis of other bounds,
and of the property of awareness, to the technical report [66],
as well as to the analogous results under the more recent,
stronger Byzantine-deceitful-benign (BDB) adversary.

e) Pool of replica candidates: To model all nodes that
can join as replicas in the system, we assume that there exists
a large pool of m nodes among which at least 2n/3 are honest
nodes (m can be much greater than n) and the rest are a-b-
c. This pool simply indicates that among the entire world of
replicas that will ever be proposed to be included, at least 2n/3
honest ones will eventually be proposed by honest replicas.
Notice this is a significantly weaker assumption than assuming,
for example, that honest replicas always propose other honest
replicas to be included. For simplicity and w.l.o.g., we assume
that no replica from this pool is proposed twice if it has been
included before, within the same static period of the adversary.

Finally, we assume a public-key infrastructure (PKI) that
associates replicas’ identities with their public-keys, and that
is common to all replicas. We also assume a computationally
bounded adversary as can be found in [13], [12]. Note that in
order to offer a zero-loss payment application in Section VI
we will add a series of additional assumptions including an
upper-bound on the amount transferred per block.

IV. THE ZERO-LOSS BLOCKCHAIN

In this section we detail our system. Its two main ideas are
(i) to replace a-b-c replicas undeniably responsible for a fork
by new replicas to converge towards a state where consensus
can be reached, and (ii) to fund conflicting transactions (with-
out rolling back any of them). We will show that ZLB solves
the Longlasting Blockchain problem. As depicted in Figure 1,
we present below the components of our ZLB system, namely
the ASMR (§IV-A) and the Blockchain Manager (BM) (§IV-B)
but we defer the zero-loss payment application (§VI).

As long as new requests are submitted by a client to a
replica, the payment system component of the replica converts

Block Manager (BM)

Accountable SMR(ASMR)

Zero-loss Payment
System

replica pi

Consensus

tx=A B

b=
tx-batch

propose(b)

decision(b,b’…)

refund(B)

Block Manager (BM)

Accountable SMR(ASMR)

Zero-loss Payment
System

replica pj

b’=
tx-batch

report
fraud(k)

refund(B)

exclude(pk)

propose(b’)

decision(b,b’…)

$1M

Network

Consensus
send(*) recv(*) send(*) recv(*)

report
fraud(k)

exclude(pk)

tx’=A C$1M1

2

3

4

5

6

7

7 2

1

3

4

5

6 7

7

include(*)include(*)

Fig. 1: The distributed architecture of our ZLB system relies
on Accountable SMR (ASMR), BM and the payment system.
Consider that Alice has $1M initially and attempts to double
spend by modifying the code of a replica pk and issuing ➊
conflicting transfers tx and tx ′ of $1M from Alice’s account
(A) to Bob’s (B) and Carol’s (C). Upon reception the replicas
batch this transaction in distinct blocks b and b′ ➋ and let
us assume that pk convinces some honest replicas to decide b
whereas others decide b′. ➌–➎ The ASMR component detects
the a-b-c replica pk that tried to double spend, the associated
transactions tx and tx ′ and account A with insufficient funds.
It uses A’s balance to fund transaction tx , ➏ notifies BM that
➐ excludes or replaces replica pk and ➐ funds tx ′ with pk’s
slashed deposit.

them into payments that are passed to the BM component. As
depicted in Fig. 1, when sufficiently many payment requests
have been received, the BM issues a batch of requests to the
ASMR that, in turn, proposes it to the consensus component,
which exchanges messages through the network for honest
replicas to agree. If a disagreement is detected, then the
accounts of the a-b-c replicas are slashed. Consider that Alice
(A) attempts to double spend by (i) spending her $1M with
both Bob (B) and Carol (C) in tx and tx ′, respectively, and
that (ii) pk is faulty and commits a-b-c faults to produce a
disagreement. Once the ASMR detects the disagreement, BM
is notified, replica pk is excluded or replaced and tx′ is funded
with pk’s slashed deposit.

A. Accountable SMR (ASMR)

In order to detect faulty replicas, we now present, as far
as we know, the first accountable state machine replication,
called ASMR. ASMR consists of running an infinite sequence
of five actions: ➀ the accountable consensus (Def. 2) that tries
to decide upon a new set of transactions, ➁ a confirmation
that aims at confirming that the agreement was reached, ➂–
➃ a membership change that aims at replacing a-b-c replicas
responsible for a disagreement by new replicas and ➄ a
reconciliation phase that combines all the decisions of the
disagreement, as depicted in Figure 2.

4

Fig. 2: If there are enqueued requests that wait to be served, then a replica starts a new instance Γk by participating in an
ASMR consensus phase ➀; a series of phases may follow: ➁ the replica tries to confirm this decision to make sure no other
honest replica disagrees, ➂ it invokes an exclusion protocol if faulty replicas caused a disagreement, ➃ it then includes new
replicas to compensate for the exclusion, and ➄ merges the two batches of decided transactions. Some of these phases complete
upon consensus termination (in black) whereas other phases terminate upon simple notification reception (in grey). The replica
starts a new instance Γk+1 without waiting for phases ➁-➄ to terminate, as this is not always guaranteed.

1) The phases of ASMR: For each index, ASMR first
executes the accountable consensus (§II) phase ➀ for a mem-
bership (typically stored in the blockchain [75]) to try to agree
on a set of transactions then it runs four subsequent phases ➁–
➄ to recover from a possible disagreement.

➀ ASMR consensus: Honest replicas propose a set of
transactions, which they received from clients, to the account-
able consensus (Def. 2) in the hope to reach agreement. Note
that as our solution builds upon DBFT, we implemented its
accountable variant called Polygraph [16], [17], [18] that we
also evaluated in Section V. When the consensus terminates,
all honest replicas agree on the same decision or some honest
replicas disagree: they decide distinct sets of transactions.

➁ Confirmation: As honest replicas could be unaware of
the other decisions, they enter a confirmation phase waiting
for messages coming from more distinct replicas than what
consensus requires. If faulty replicas caused a disagreement,
then the confirmation terminates and leads honest replicas to
detect disagreements, i.e., honest replicas receive certificates
supporting distinct decisions. Otherwise, this phase may not
terminate, as an honest replica needs to deliver messages from
more than (δ + 1/3) · n replicas, where δ is the ratio of a-b-
c replicas δ = f/n. In particular, and due to the number of
‘conflicting histories’ [70], [66], in order to guarantee that no
disagreement was possible in the presence of f < 5n/9 faulty
replicas, honest replicas need to receive agreeing messages
from n−x replicas solving ⌊(n−x)/(f −x+1)⌋ = 1, which
translates into at least 8n/9 replicas to guarantee that no dis-
agreement was possible by a fault ratio δ. However, Γk always
terminates, as it proceeds in parallel with the confirmation
without waiting for its termination. If the confirmation phase
terminates, it either confirms that a block is irrevocably final
(no replica disagreed), or a membership change starts. In the
companion technical report [66], we generalize confirmations
to any adversarial size.

➂-➃ Membership change: Our membership change
(Alg. 1) consists of two consecutive consensus algorithms:
one that excludes faulty replicas (line 22), and another that
adds newly joined replicas (line 42). We prove, in the tech-
nical report [66], the correctness of the membership change
under the stronger BDB model by reducing the inclusion
and exclusion consensus to a protocol of the Basilic class of
protocols [65]. We separate inclusion and exclusion in two

consensus instances to avoid deciding to exclude and include
replicas proposed by the same replica. Replica pi maintains
a series of variables: the current consensus instance Γk, the
a-b-c replicas among the whole set C of current replica
ids, a set C ′ of replica ids that is updated at runtime for
the exclusion protocol, the pool of replicas pool , a set of
certificates certificates , a set of proofs of fraud (PoFs) pofs
and of new PoFs new pofs , a local threshold fd of detected
a-b-c replicas, a set cons-exclude of decided PoFs and a set
cons-include of decided new replicas.

➂ Exclusion protocol: Honest replicas identify faulty
replicas by cross-checking received certificates. These cross-
checks produce undeniable PoFs with conflicting signed mes-
sages from the same replica, indicating equivocation. If repli-
cas detect fd = ⌈n/3⌉ faulty replicas (via distinct PoFs), they
stop their pending ASMR consensus (line 19) before restarting
it with the new set of replicas (line 49). Then, honest replicas
start the membership change ignoring messages from these
fd replicas by using instead an updated committee C ′ that
excludes these replicas (lines 20-22). Honest replicas propose
in line 22 their set of PoFs at the start of the exclusion protocol
ex-propose by invoking the Polygraph accountable consensus
algorithm we mentioned in §II-C.

The key novelty of our exclusion protocol is for replicas
to exclude other replicas, and thus update their committee C ′,
at runtime upon reception of new valid PoFs (lines 23-25).
This property has recently been termed ”active accountabil-
ity” [66], [65]. Hence, upon delivering a certificate (line 31),
honest replicas verify that the certificate contains a threshold
⌈2|C ′|/3⌉ of signatures from non-excluded replicas (line 35)
and decide the proposals that the certificate justifies at line 36.
Upon updating their committee, honest replicas re-check all
their certificates (line 27) and re-broadcast their PoFs (line 26).
As the cardinality of C ′ decreases at runtime, the threshold
⌈2|C ′|/3⌉ is guaranteed to be eventually met. As our exclu-
sion protocol solves the SBC problem (cf. Lemma IV.1), it
maximizes the number of excluded replicas by deciding at
least ⌈2|C ′|/3⌉ proposals at once. Note that instead of waiting
for fd PoFs (line 17), replicas could start Alg. 1 as soon as
they detect one fault. However, waiting for at least fd PoFs
guarantees that a membership change is necessary and will
help remove many faulty replicas from the same coalition at

5

Algorithm 1 Membership change at replica pi, consensus Γk

1: State:
2: Γk , kth instance of ASMR consensus pi participates to.
3: C, set of replicas forming the committee
4: C′, updated set of replicas, initially C′ = C
5: certificates , received certificates during exclusion, initially ∅
6: pofs , the set of proofs of fraud (PoFs), initially ∅
7: new pofs , set of newly delivered PoFs, initially ∅
8: cons-exclude, the set of PoFs output by consensus, initially ∅
9: cons-include, the set of new replicas output by consensus, initially ∅

10: pool , the pool of replicas from which to propose new replicas
11: a-b-c ∈ I , the identity of an agreed a-b-c replica, initially ∅
12: fd, the threshold of proofs of fraud to recover, ⌈n/3⌉ by default

13: Upon receiving a list of proofs of fraud pofs:
14: if (verify(pofs)) then � if PoFs are correctly signed
15: new pofs ← pofs\pofs
16: pofs.add(pofs) � add PoFs on distinct replicas
17: if (ex-propose not started) then
18: if (size(pofs) ≥ fd) then � enough to change members
19: if (Γk started and not finished) then Γk .stop()
20: C′ ← C′\new pofs.replicas()
21: ex-propose.update committee(C′) � update committee
22: ex-propose.start(pofs) � exclusion consensus
23: else if (new pofs ̸= ∅ and ex-propose not finished) then
24: C′ ← C′\new pofs.replicas()
25: ex-propose.update committee(C′) � update committee
26: broadcast(new pofs) � broadcast new PoFs
27: ex-propose.check certificates(certificates) � recheck certificates

28: Upon receiving a certificate ex-cert of the exclusion protocol:
29: if (ex-cert ̸∈ certificates and verify certificate(ex-cert)) then
30: certificates.add(ex-cert)

31: ex-propose.check certificates({ex-cert}) � check certificate with current C′

32: function ex-propose.check certificates(certs):
33: for all cert ∈ certs do
34: if (verify certificate(cert)) then
35: if (|cert.replicas() ∩ C′| ≥ 2|C′|

3) then � current threshold
36: ex-propose.cert decide(cert) � decide certificate’s decision

37: Upon deciding a list of proofs of fraud cons-exclude in ex-propose:
38: detected-fraud(cons exclude.get replicas()) � application punishment
39: pofs ← pofs \ cons-exclude.get pofs() � discard the treated pofs
40: C ← C \ cons-exclude.get a-b-cs() � exclude a-b-c
41: inc-prop ← pool.take(|cons-exclude|) � take replicas from the pool
42: inc-propose.start(inc-prop) � inclusion cons.

43: Upon deciding a list of replicas to include cons-include in inc-propose:
44: new replicas ← choose(|cons-exclude|,cons-include) � deterministic
45: for all new replica ∈ new replicas do � for all new to inc.
46: set-up-connection(new replica) � new replica joins
47: send-catchup(new replica) � get latest state
48: C ← C ∪ new replicas
49: if (Γk stopped) then goto ➀ of Fig. 2 � restart cons.

once. Moreover, waiting for fd PoFs allows us to guarantee
agreement of the exclusion protocol.

➃ Inclusion protocol: To compensate for the excluded
replicas, an inclusion protocol inc-propose (line 42) adds new
candidate replicas taken from the pool of candidates (§III-B)
in line 41. This inclusion protocol is also an instance of
Polygraph, like the exclusion protocol, except that it differs in
the format and verification of the proposals: each proposal con-
tains as many new replicas as the number of replicas excluded
(lines 41-42). By contrast with the exclusion protocol, the
inclusion protocol does not update its committee at runtime,
but uses the updated committee (C from line 40 onward),
where honest replicas already excluded at least fd replicas
from C (line 40). Since the union of the ⌈2|C|/3⌉ proposals
contains more than enough replicas to include, we apply a

deterministic function choose (line 44) to the union of all
decided proposals. This function restores the committee size to
n by selecting the replicas evenly from all decided proposals.
This guarantees (i) a fair distribution of inclusions across all
decisions, and (ii) that the fault ratio does not increase even if
all included replicas are a-b-c. At the end, excluded replicas
are punished by the application layer (l.38) and new replicas
are included (l.44-49).

Honest replicas from different partitions might find them-
selves at different consensus instances at the moment they
execute the membership change. For this reason, even after
the membership change terminates, there is a transient period
where honest replicas may receive blocks with certificates
containing excluded replicas, that were decided and broadcast
by other honest replicas in a different partition before they
executed the membership change. Note, however, that all
certificates contain at least 1 honest replica by construction
(since all certificates contain at least ⌈2n/3⌉ signatures and
f < 2n/3), and thus all honest replicas eventually update their
committee and stop generating new certificates with excluded
replicas.

➄ Reconciliation: Upon delivering a conflicting block with
an associated valid certificate, the reconciliation starts by
combining all transactions that were decided by distinct honest
replicas in the disagreement. These transactions are ordered
through a deterministic function, whose simple example is
a lexicographical order but can be made fair by rotating
over the indices of the instances. Note that, once all honest
replicas have reconciled all the conflicting blocks with valid
certificates, honest replicas obtain the same totally ordered
sequence of transactions. Although there could be conflicting
transactions in this agreed transaction sequence, this sequence
guarantees that the blockchain state across all honest replicas is
consistent. For example, consider two conflicting transactions
tx and tx ′ where tx comes first before tx ′ in the sequence.
Upon execution, if tx executed successfully, then the later
execution of tx ′ will fail due to the conflict. This also
means that the state needs to be recomputed any time a new
conflicting block is being discovered. The total order is a direct
consequence of the ASMR, but we will explain in Section VI
how this ASMR can be extended into a zero-loss payment
system by reimbursing the recipient of an unsuccessful trans-
action tx ′ with the assets deposited by the guilty replicas.

Once the current instance Γk terminates, another instance
Γk+1 can start, even if it runs concurrently with a confirmation
or a reconciliation at index k or at a lower index.

B. Blockchain Manager (BM)

We now present the Blockchain Manager (BM) that builds
upon ASMR to merge the blocks from multiple branches of a
blockchain when forks are detected. Once a fork is identified,
the conflicting blocks are not discarded as it would be the
case in classic blockchains when a double spending occurs,
but they are merged. Upon merging blocks, BM also copes
with conflicting transactions, as the ones of a payment system,
by taking the funds of excluded replicas to fund conflicting

6

transactions. We defer to §VI the details of the amount replicas
must have on a deposit to guarantee this funding.

Similarly to Bitcoin [59], BM accepts transaction requests
from a permissionless set of users. In particular, this allows
users to use different devices or wallets to issue distinct trans-
actions withdrawing from the same account—a feature that
is not offered in payment systems without consensus [22]. In
contrast with Bitcoin, but similarly to recent blockchains [35],
[72], our system does not incentivize all users to take part
in trying to decide upon every block, instead a restricted set
of permissioned replicas have this responsibility for a given
block. This is why ZLB offers what is often called an open
permissioned blockchain [25]. Nevertheless, ASMR can offer
a permissionless blockchain with committee sortition [35]
without substantial modifications.

1) Guaranteeing consistency across replicas: By building
upon the accountability of the underlying ASMR that resolves
disagreement, BM features a block merge to resolve forks by
replacing faulty replicas by new replicas. A consensus may
reach a disagreement if f ≥ n/3, resulting in the creation
of multiple branches or blockchain forks. BM builds upon
the membership change of ASMR in order to recover from
forks. In particular, since ASMR excludes fd faulty replicas
each time a disagreement occurs, the ratio of faulty replicas
δ = f/n converges to a state where consensus is guaranteed.
The maximum number of branches that can result from forks
depends on the number t of Byzantine faults and the number
f of total faults [70], with ⌊(n− t)/(f − t+1)⌋ = 3 branches
or less for f < 5n/9, t < n/3.

Algorithm 2 Block merge at replica pi

1: State:
2: Ω, a blockchain record with fields:
3: deposit , an integer, initially 0
4: inputs-deposit , a set of deposit inputs, initially in the first deposit
5: punished-acts , a set of punished account addresses, initially ∅
6: txs , a set of UTXO transaction records, initially in the genesis block
7: utxos , a list of unspent outputs, initially in the genesis block

8: Upon receiving conflicting block block : � merge block
9: for tx in block do � go through all txs

10: if (tx not in Ω.txs) then � check inclusion
11: CommitTxMerge(tx) � merge tx, go to line 17
12: for out in tx .outputs do � go through all outputs
13: if (out.account in Ω.punished-acts) then � if punished
14: PunishAccount(out.account) � punish also this new output
15: RefundInputs() � refill deposit, go to line 24
16: StoreBlock(block) � write block in blockchain

17: CommitTxMerge(tx):
18: toFund ← 0
19: for input in tx .inputs do � go through all inputs
20: if (input not in Ω.utxos) then � not spendable, need to use deposit
21: Ω.inputs-deposit.add(input) � use deposit to refund
22: Ω.deposit ← Ω.deposit − input.value � deposit decreases in value
23: else Ω.consumeUTXO(input) � spendable, normal case

24: RefundInputs():
25: for input in Ω.inputs-deposit do � go through inputs that used deposit
26: if (input in Ω.utxos) then � if they are now spendable
27: Ω.consumeUTXO(input) � consume them
28: Ω.deposit ← Ω.deposit + input.value � and refill deposit

2) Protocol to merge blocks: As depicted in Alg. 2, the state
of the blockchain Ω consists of a set of inputs inputs-deposit

(line 4), a set of account addresses punished-acts (line 5) that
have been used by a-b-c replicas, a deposit (line 3), that is
used by the protocol, a set txs of transactions and a list utxos
of UTXOs. The algorithm propagates blocks by broadcasting
on the network and starts upon reception of a valid block that
conflicts with a known block of the blockhain Ω by trying to
merge all transactions of the received block with those of the
blockchain Ω (line 11). This is done by invoking the function
CommitTxMerge (lines 17–23) where the inputs get appended
to the UTXO table and conflicting inputs are refunded with
the deposit (line 22) of a-b-c replicas. We explain in §VI how
to build a payment system with a sufficient deposit to remedy
successful disagreements.

3) Cryptographic techniques: ZLB is a blockchain that
inherits the same Unspent Transaction Output (UTXO) model
of Bitcoin [59]. To provide authentication and integrity, trans-
actions are signed using the Elliptic Curves Digital Signature
Algorithm (ECDSA) with parameters secp256k1, as in
Bitcoin [59]. Each honest replica assigns a monotonically
increasing sequence number to its transactions. The network
communications use gRPC between clients and replicas and
raw TCP sockets between replicas, but all communication
channels are encrypted through SSL. Finally, the exclusion
protocol (Alg. 1) uses ECDSA for authenticating the sender of
messages responsible for disagreements (i.e., for PoFs). Unlike
ECDSA, threshold encryption cannot be used to trace back
the faulty users as they are encoded in less bits than what
is needed to differentiate users, and message authentication
codes (MACs) are insufficient to provide this transferrable
authentication [20].

C. Fault tolerance and proofs

In this section, we show that ZLB solves the Longlasting
Blockchain problem (Def. 3) hence recovering from a majority
of failures. To show that ZLB solves LLB (Def.3) we first need
to show that both the exclusion and inclusion protocols solve
consensus.

Lemma IV.1. The exclusion protocol solves SBC-consensus.

Proof. SBC-Validity is immediate from the fact that honest
replicas only decide at least fd ≥ n/3 valid PoFs proposed
by another replica. The same occurs with SBC-Nontriviality.
We consider now agreement and termination.
SBC-Agreement. By construction, honest replicas only start
the membership change if they gather at least fd ≥ n/3 PoFs
from distinct replicas, which they exclude at the start of the
exclusion protocol and propose to exclude permanently during
the exclusion consensus. This means that there are not enough
faulty replicas left to cause a disagreement, because (f−fd) <
(n−fd)/3 for f < 5n/9, regardless of whether honest replicas
initially exclude the same or different sets of fd ≥ n/3 faulty
replicas.
SBC-Termination. fd ≥ n/3 must be faulty for the mem-
bership change to even start. If all honest replicas start the
exclusion consensus having excluded the same set of faulty
replicas, then termination is guaranteed because f−fd < n′/3

7

for n′ = n − fd and f < 5n/9. We consider instead
the case that honest replicas start having excluded different
faulty replicas. W.l.o.g. suppose two partitions A and B of
honest replicas at the start of the exclusion consensus. Since
f − fd < n′/3 ≤ 2n/9 for n′ = n − fd, fd ≥ n/3 and
f < 5n/9, this means that if |A| + (f − fd) ≥ 2n′/3 then
|B|+(f−fd) < 2n′/3. As a result, either none or only one of
the two partitions can progress (while the partition lasts), even
if the remaining faulty replicas try to cause a disagreement. Let
pi ∈ A and pj ∈ B start the exclusion protocol excluding each
different sets of fd ≥ n/3 faulty replicas. These sets differ in
at most x ∈ [0, 2n/9] faulty replicas. Suppose no partition of
honest replicas progresses (because remaining faulty replicas
omit). Eventually, both partitions exclude the union of the
faulty replicas fd + x ∈ [n/3, 5n/9), agree on the excluded
set and can terminate after updating the committee. Suppose
instead that pi ∈ A terminates with certificate certpi

that
contains x ∈ [0, 2n/9) replicas that have been excluded by
pj ∈ B. Then, after pj receives the PoFs from pi and excludes
at runtime fd+x replicas, then |certpi |−x ≥ 2(n−fd−x)/3
because |certpi | ≥ 2(n − fd)/3 for pi to terminate with
such certificate. Thus, the exclusion consensus solves SBC-
Consensus

Lemma IV.2. The inclusion protocol solves SBC-consensus.

Proof. By Lemma IV.1 all honest replicas start the inclusion
consensus after agreeing on excluding x ∈ [n/3, 5n/9) faulty
replicas from the original committee C, |C| = n, and such
that the remaining f − x faulty replicas are f − x < n′/3
for n′ = n − x. Since the inclusion protocol is an instance
of Polygraph, f ′ < n′/3 for f ′ = f − x and the adversary is
slowly adaptive, the inclusion protocol solves consensus.

In Theorem IV.3 we prove that ZLB solves LLB. The idea
is that the pool of replicas will eventually decrease the fault
ratio below 1/3, once honest replicas start proposing to include
other honest replicas (§III).

Theorem IV.3 (Convergence). ZLB solves LLB.

Proof. First, agreement and termination follows from the
correctness of the underlying consensus [23], [73]. Thus, if
f < n/3 there is no disagreement and thanks to Polygraph
there is consensus (agreement). If instead f ≥ n/3, since
t < n/3 and a-b-c replicas do not affect termination, there is
still termination, either with agreement or with disagreement.
If there is a disagreement, then there are at least fd faulty
replicas of which at most t < n/3 are Byzantine and the
rest a-b-c, which implies that there will be termination of
this iteration either with or without a disagreement (since a-
b-c replicas do not prevent termination by definition), proving
termination.

For convergence, Lemmas IV.1 and IV.2 show that the
exclusion and inclusion satisfy consensus. Polygraph’s ac-
countability guarantees that every disagreement will lead to
each honest replica identifying at least fd faulty replicas. The
inclusion consensus does not increase the fault ratio, since

the inclusion consensus does not include more replicas than
the number of excluded replicas by the exclusion consensus
(thanks to the deterministic function) and all excluded replicas
are faulty. As the inclusion consensus decides at least 2n′/3
proposals where n′ ∈ [n− fd, n− (f − t)] and the remaining
faulty replicas are f ′ ≤ f − fd < n/3 < 2n′/3, it follows
that some proposals from honest replicas will be decided, and
these proposals contain replicas to include that have been taken
from the pool of replica candidates. As this pool is finite and
no replica is included more than once, it follows that the fault
ratio will eventually decrease (in any sufficiently long static
period of the adversary), after enough membership changes
result in enough honest replicas added from the pool. Some
inclusion consensus will thus eventually lead to a fault ratio
δ < 1/3 (i.e. f < n/3) and agreement is reached from then
on.

V. EXPERIMENTAL EVALUATION

This section answers the following: Does ZLB offer prac-
tical performance in a geo-distributed environment? How
does ASMR perform compared to the HotStuff state machine
replication that inspired Facebook Libra [3] and the recent
fast Redbelly Blockchain [25]? What is the impact of large
scale coalition attacks on the recovery of ASMR? We defer
the evaluation of a zero-loss payment application to §VI, and
further results to the technical report [66].

a) Selecting the right blockchains for comparison: As
we offer a solution for open networks, we cannot rely on the
synchrony assumption made by other blockchains [35]. As
we need to reach consensus, we have to assume an unknown
bound on the delay of messages [29], and do not compare
against randomized blockchains [57], [28], [40], [54] whose
termination proof had some issues [73]. This is why we focus
our evaluation on partially synchronous blockchains. We thus
evaluated Facebook Libra [3], however, its performance was
limited to 11 transactions per second, seemingly due to its
Move VM overhead. Hence, we omit these results here and
focus on its raw state machine replication (SMR) algorithm,
HotStuff and its available C++ code that was previously shown
to lower communication complexity of traditional Byzantine
fault tolerance SMRs [79] (we use the unchanged original
implementation in its default configuration [78]). We also
evaluate the recent scalable Redbelly Blockchain [25], and the
Polygraph protocol [18] as it is, as far as we know, the only
implemented accountable consensus protocol. Nevertheless,
this protocol does not tolerate more than n/3 failures as it
cannot recover after detection.

b) Geodistributed experimental settings: We deploy the
four systems in two distributed settings of c4.xlarge Amazon
Web Services (AWS) instances equipped with 4 vCPU and
7.5 GiB of memory: (i) a LAN with up to 100 machines
and (ii) a WAN with up to 90 machines. We evaluate ZLB
with a number of failures f up to ⌈ 2n

3 ⌉ − 1, however, when
not specified we fix f = d = ⌈5n/9⌉ − 1. All error bars
represent the 95% confidence intervals and the plotted values

8

10 20 30 40 50 60 70 80 90
Number of replicas

0

10

20

30
ZLB Polygraph HotStuff Red Belly

Th
ro

ug
hp

ut

(1
03 t

x/
s)

Fig. 3: Throughput of ZLB compared to that of Polygraph [18],
HotStuff [79] and Redbelly Blockchain [25], [72].

are averaged over 3 to 5 runs. All transactions are ∼ 400-byte
Bitcoin transactions with ECDSA signatures [59].

A. ZLB vs. HotStuff, Redbelly and Polygraph

Figure 3 compares the performance of ZLB, Redbelly
Blockchain (RBB) and Polygraph deployed over 5 availability
zones of 2 continents, California, Oregon, Ohio, Frankfurt and
Ireland (exactly like the Polygraph experiments [18]), with
f = 0. For ZLB, we only represent the decision throughput
that reaches 16, 626 tx/sec at n = 90 as the confirmation
throughput is similar (16, 492 tx/sec).

First, RBB offers the highest throughput. As expected it
outperforms ZLB due to its lack of accountability: it does
not require messages to piggyback certificates to detect PoFs.
Both solutions solve SBC so that they decide more transactions
(txs) as the number of proposals enlarges and use the same
batch size of 10, 000 txs per proposal. As a result ASMR
scales: the cost of tolerating f ≥ n/3 failures even appears
negligible at 90 replicas. Second, HotStuff offers the lowest
throughput. Note that there are various variants of HotStuff
and accountable algorithms have been proposed [69], we used
HotStuff in its default configuration with its dedicated clients,
they transmit the proposal to all servers to save bandwidth by
having servers exchanging only a digest of each transaction.
The performance is explained by the fact that HotStuff decides
one proposal per consensus instance (i.e. one batch of 10, 000
txs), regardless of the number of submitted transactions, which
is confirmed by previous observations [76]. By contrast, ZLB
becomes faster as n increases to outperform HotStuff by 5.6×
at n = 90, thanks to the superblock optimization that allows
ZLB to decide multiple proposals at once per instance of
its multi-valued consensus [24]. Finally, Polygraph is faster
at small scale than ZLB, because Polygraph’s distributed
verification and reliable broadcast implementations [18] are
not accountable, performing less verifications. From 40 nodes,
Polygraph is slower because of our optimizations: e.g., its
RSA verifications are larger than our ECDSA signatures and
consume more bandwidth.

B. Scalability of ZLB despite coalition attacks

To evaluate ZLB under failures, we implemented two
possible coalition attacks: the reliable broadcast attack that
causes a disagreement on delivered proposals , and the binary
consensus attack that causes a disagreement on the decided
bitmask (§II-C), with f = ⌈5n/9⌉ − 1 a-b-c replicas. To
disrupt communications between partitions of honest replicas,
we inject random communication delays between partitions
based on the uniform and Gamma distributions, and the AWS

0
3
6
9

12
15 1000ms

500ms
200ms

aws-like
gamma

10 20 30 40 50 60 70 80 90 100
Number of replicas

0
12
24
36
48
60 200.0ms, rbbcast

500.0ms, rbbcast
1000.0ms, rbbcastDi

sa
gr

ee
m

en
ts

Fig. 4: Disagreeing decisions for various uniform delays
and for delays generated from a Gamma distribution and a
distribution that draws from observed AWS latencies, when
equivocating while voting for a decision (top), and while
broadcasting the proposals (bottom), for f = ⌈5n/9⌉ − 1.

delays obtained in previous measurements [58], [26], [25]. (A-
b-c replicas communicate normally with each partition.)

Fig. 4(top) depicts the amount of disagreements as the num-
ber of distinct proposals decided by honest replicas, caused
by the binary consensus attack. First, we select uniformly
distributed delays between the two partitions of 200, 500
and 1000 milliseconds. Then, we select delays following a
Gamma distribution with parameters taken from [58], [26] and
a distribution that randomly samples the fixed latencies previ-
ously measured between AWS regions [25]. We automatically
calculate the maximum amount of branches that the size of a-
b-c faults can create (i.e., 3 branches for f < 5n/9), create one
partition of honest replicas per branch, and apply these delays
between any pair of partitions. Interestingly, we observe that
our agreement property is scalable: the greater the number of
replicas (maintaining the fault ratio), the harder for attackers
to cause disagreements. This scalability phenomenon is due
to an unavoidable increase of the latency between attackers
as the scale enlarges, which gives relatively more time for the
partitions of honest replicas to detect the faulty replicas, hence
limiting disagreements. With more realistic network delays
(Gamma distribution and AWS latencies) that are lower in
expectation than the uniform delays, a-b-c replicas can barely
generate a single disagreement. This confirms the scalability
of our system.

Fig. 4(bottom) depicts the amount of disagreements under
the reliable broadcast attack. The number of disagreements
is substantially higher during this attack than during the
binary consensus attack, however, it drops faster as the system
enlarges, because the attackers expose themselves earlier.

C. Disagreements due to failures and delays

We now evaluate the impact of even larger coalitions and
delays on ZLB, we measure the number of disagreements as
we increase the fault ratios and the partition delays in a system
from 20 to 100 replicas. These delays could be theoretically
achieved with man-in-the-middle attacks, but are notoriously
difficult on real blockchains due to direct peering between the
autonomous systems of mining pools [30].

While ZLB is quite resilient to attacks for realistic but not
catastrophic delays (Fig. 4), attackers can try to attack when

9

gamma aws 500
1000

10000
Delay (ms)

0

20

40

60

80
Ti

m
e

to
 d

et
ec

t (
s) n=100

n=60
n=20

gamma aws 500
1000

10000
Delay (ms)

0

20

40

60

80

Ti
m

e
to

 e
xc

lu
de

 (s
)

n=100
n=60
n=20

gamma aws 500
1000

10000
Delay (ms)

0

5

10

15

20

25

Ti
m

e
to

 in
clu

de
 (s

)

n=100
n=60
n=20

20 40 60 80 100
Number of replicas

0

2

4

6

8

10

Ti
m

e
to

 c
at

ch
 u

p
(s

)

30 blocks
20 blocks
10 blocks

Fig. 5: (Left to right) Time to detect ⌈n
3 ⌉ a-b-c replicas, exclude them, include new replicas, per delay distribution and number

of replicas; and catch up per number of blocks and replicas, with f = ⌈5n/9⌉ − 1.

the network collapses for a few seconds between regions. Our
experiments show that attackers can reach up to 52 disagreeing
proposals for a uniform delay of 10 seconds between partitions
of honest replicas for the binary consensus attack, and up to 33
disagreements for a uniform delay of 5 seconds, with n = 100.
Further tests showed that the reliable broadcast attack reaches
up to 165 disagreeing proposals with a 5-second uniform delay.

D. Time to merge blocks and change members

To have a deeper understanding of the cause of ZLB delays,
we measured the time needed to merge blocks and to change
members by replacing a-b-c replicas by new ones. We show
here the times to locally merge two blocks for different sizes
assuming the worst case: all transactions conflict. This is
the time taken in the worst case because replicas can merge
proposals that they receive concurrently (i.e., without halting
consensus). Our experiments show that the times to merge two
blocks of 100, 1000, and 10000 transactions are 0.55, 4.20
and 41.38 milliseconds, respectively. It is clear that this time
to merge blocks locally is negligible compared to the time it
takes to run the consensus algorithm.

Figure 5 shows the time to detect fd a-b-c (left), and
to run the exclusion (center-left) and inclusion (center-right)
consensus, for a variety of delays and numbers of replicas. The
time to detect reflects the time from the start of the attack until
honest replicas detect the attack: If the first fd a-b-c replicas
are forming a coalition together and cause a disagreement,
then the times to detect the first a-b-c and the first fd a-
b-c replicas overlap. (We detect all at the same time.) The
time to exclude (57 seconds) is significantly larger than to
include (21 seconds) for large communication delays, due to
the proposals of the exclusion consensus carrying PoFs and
leading replicas to execute a time consuming cryptographic
verification. With shorter communication delays, performance
becomes practical. Finally, Figure 5 (right) depicts the time to
catch up depending on the number of proposals (i.e., blocks).
This time increases linearly with the number of replicas, due to
the catchup requiring to verify larger certificates, but it remains
practical at n = 100 nodes.

VI. A ZERO-LOSS PAYMENT APPLICATION

In this section, we describe how ZLB can be used to
implement a zero-loss payment system where no honest replica
loses any coin. The key idea is to request the consensus
replicas to deposit a sufficient amount of coins in order to

spend, in case of an attack, the coins of faulty replicas to
avoid any honest replica loss.

a) Assumptions: In order to measure the expected impact
of a coalition attack succeeding with probability ρ in forking
ZLB by leading a consensus to disagreement, we first need to
make the following assumptions:

1) Fungible assets. We assume that users can transfer
assets (like coins) that are fungible in that one unit is inter-
changeable and indistinguishable from another of the same
value. An example of a fungible asset is a cryptocurrency.

2) Deposit refund. To limit the impact of one successful
double spending on a block, ZLB keeps the deposit for a
number of blocks m, before returning it. A transaction should
not be considered final (i.e. irreversible) until it reaches this
blockdepth m. We call thus m the finalization blockdepth.
Attackers can fork into a branches, and try to spend multiple
times an amount G (per block), which we refer to as the
gain, obtaining a maximum gain of (a − 1)G. Each correct
replica can calculate the gain by summing up all the outputs of
all transactions in their decided block. Additionally, replicas
can limit the gain to an upper-bound by design, discarding
blocks whose sum of outputs exceeds the bound, or they
can allow the gain to be as much as the entire circulating
supply of assets. Note that this assumption differs from the
traditional blockchain model that cannot offer a zero-loss
payment application: instead of upper-bounding the amount of
instruction steps transactions of the same block can take, we
limit the amount of assets transactions of the same block can
transfer. In general, other mechanisms can provide zero-loss
even for transactions whose spent funds greatly exceed the
stake by, for example, delaying further the finalization (and
the locking period of the stake) w.r.t. the transaction amount.
We leave for future work the analysis of zero-loss result for
variations of the model. The deposit D is a factor of the gain,
i.e., D = b ·G. The goal is for every coalition to have at least
D deposited, and since every coalition has at least size ⌈n/3⌉,
this means that each replica must deposit an amount 3bG/n.

3) Network control restriction. Once faulty replicas select
the disjoint subsets (i.e., the partitions) of honest replicas
to suffer the disagreement, we prevent Byzantine replicas
from communicating infinitely faster than honest replicas in
different partitions. More formally, let X1 (resp. X2) be the
random variable of the time it takes for a message between two
replicas within the same partition (resp. two honest replicas
from different partitions). We have E(X1)/E(X2) > ε, for

10

some ε > 0. Note that the definition of X1 also implies that
it is the random variable of the communication time of either
two honest replicas of the same partition or any Byzantine
replica with any other replica. This probabilistic synchrony
assumption is similar to that of other blockchains (e.g. Bitcoin)
that guarantee exponentially fast convergence, a result that also
holds for ZLB under the same assumptions. In the following,
we show an analysis focusing on the attack on each consensus
iteration, considering a successful disagreement if there is a
fork in a single consensus instance, even for a short period
of time. We discuss in the technical report [66] how to obtain
zero-loss even in partial synchrony, via committee sortition.

This zero-loss payment system can also work with non-
fungible tokens (NFTs) and smart contracts, with the exception
that one of the two recipients of the same NFT (or of
disagreeing states) will see their NFT taken back (or their
returned state reverted) in exchange for a previously agreed-
upon reimbursement for the inconvenience.

b) Zero-loss: The goal of the deposited funds is to
cope with the duplication of coins resulting from successful
disagreements. There can be periods of time where the slashed
stake is less than the stolen funds from double-spent (or
triple-spent) coins. In this case, ZLB simply mints extra coins
(making every coin holder in the system implicitly pay for
the successful attack). However, recall that, as zero-loss is
guaranteed, an event in which there are not enough funds to
pay for stolen coins would be unusual, since an attack is more
likely to fail than to succeed, and so the reserve of slashed
funds is more likely to grow with the number of attacks than
it is to deplete (to a point in which the system can sustain even
a catastrophic event leading to a large amount of funds being
stolen). That is, ZLB trades a disagreement and the resulting
loss of funds and confidence in the system with temporary
inflation. Thanks to zero-loss, this trade is only temporary,
and inflation fades away as more attacks fail and pay for their
own stolen coins along with those of old attacks that generated
the inflation in the first place.

In this sense, ZLB also provides a mechanism for users to
grow their confidence as the number of failed attacks increases
the reserve of slashed funds: ZLB can ensure that it has a
reserve big enough to fight inflation and cope with attacks at
the same time, or even to allow for smaller deposits over time,
or faster finalization. Hence, we argue that temporary inflation
is a sensible approach for the described scenario.

c) Theoretical analysis: We show that attackers always
fund at least as much as they steal. We consider that a
membership change starts before a disagreement occurs or
does not start, which is safer than the general case. Hence,
the attack represents a Bernoulli trial that succeeds with
probability ρ (per block) that can be derived from ε. Out of
one attack attempt, the attackers may gain up to (a−1)G coins
by forking or lose at least D coins as a punishment, which
can be used to fund the stolen funds from successful attacks.

The random variable Y measures the number of attempts
for an attack to succeed and follows a geometric distribution
with mean E(Y) = 1−ρ̂

ρ̂ , where ρ̂ = 1 − ρ is the probability

10 20 30 40 50 60 70 80 90 100
Number of replicas

0

10

20

30

40

50

60

Bl
oc

kd
ep

th

500ms
1000ms
500ms, rbbcast
1000ms, rbbcast

Fig. 6: Minimum finalization blockdepth m to obtain zero-loss
for D = G/10, f = ⌈5n/9⌉ − 1.

that the attack fails. Thus, we define the expected gain of
attacking: G(ρ̂) = (a−1) · (P(Y > m) ·G) , and the expected
punishment as: P(ρ̂) = P(Y ≤ m) ·D. The expected deposit
flux per attack attempt is the difference ∆ = P(ρ̂) − G(ρ̂).
Theorem VI.1 shows zero-loss.

Theorem VI.1 (Zero-Loss Payment System). Let ρ be the
probability of success of an attack per block, D the minimum
deposit per coalition expressed as a factor of the upper-bound
on the gain D = bG, and m the finalization blockdepth to
return the deposit. If g(a, b, ρ,m) = (1 − ρm+1)b − (a −
1)ρm+1 ≥ 0 then ZLB implements a zero-loss payment system.

Proof. Recall that the maximum gain of a successful attack is
G · (a− 1), and the expected gain G(ρ̂) and punishment P(ρ̂)
for the attackers in a disagreement attempt are as follows:

G(ρ̂) =(a− 1) · (P(Y > m) ·G) = (a− 1) · (ρm+1 ·G),

P(ρ̂) =P(Y ≤ m) ·D = (1− ρm+1)D = (1− ρm+1)bG.

Thus the deposit flux ∆ = P(ρ̂)− G(ρ̂):

∆ =
(
(1− ρm+1)b− (a− 1)ρm+1

)
G = g(a, b, ρ,m)G.

If ∆ < 0 then a cost of G(ρ̂) − P(ρ̂) is incurred to
the system, otherwise the punishment is enough to fund the
conflicts. Since the gain is non-negative G ≥ 0, it follows that
g(a, b, ρ,m) ≥ 0 for ∆ ≥ 0, obtaining zero-loss.

Setting c = b
a−1+b , we can either calculate the probability

ρ ≤ c
1

m+1 of success for an attack that ZLB tolerates given a
finalization blockdepth m, or a needed finalization blockdepth
m ≥ log(c)

log(ρ) − 1 for a probability ρ to yield zero-loss, once we
fix the deposit D and upper-bound the gain G.

d) Finalization blockdepth and deposit size: A fault ratio
δ = f

n holds a maximum number of branches a [70]. For
example, for δ = 0.5 then a = 3, and for a probability ρ =
0.55, a finalization blockdepth of m = 4 blocks guarantees
zero-loss even if the deposit is a tenth of the maximum gain
D = G/10, but with ρ = 0.9 then m = 28. Whereas a
increases polynomially with ρ, it increases exponentially as
the fault ratio δ approaches the asymptotic limit 2/3, leading
to m = 37 blocks for δ = 0.6, while m = 46 for δ = 0.64,
or m = 58 for δ = 0.66, with ρ = 0.9 and D = G/10.

e) Experimental evaluation of the payment system:
Taking the experimental results of §V and based on our
theoretical analysis, Figure 6 depicts the minimum required
finalization blockdepth m for a variety of uniform commu-

11

nication delays for D = G/10, f = ⌈5n/9⌉ − 1. Again,
we can see that the finalization blockdepth decreases with
the number of replicas, confirming that the zero-loss property
scales well. Additionally, small uniform delays yield zero-loss
at smaller values of m, with all of them yielding m < 5
blocks for n > 80. The plot focuses on arguably catastrophic,
uniform delays between partitions of correct replicas of 0.5s
and 1s. More realistic delays, for example following Gamma
distributions with realistic parameters, or AWS delays obtained
in previously published measurements traces [58], [26], [25],
barely achieve any disagreement in the first place (only 2
and 3 disagreements and only for n = 20), meaning that
the finalization blockdepth can be significantly smaller (a
finalization blockdepth of 5 suffices for these cases). Despite
the low likelihood of disagreements occurring in the presence
of realistic latencies, ZLB is the first blockchain system that
does not break in the presence of one or more disagreements.
(as it does not need hard forks to resolve disagreements).
Although omitted in the figure, our experiments showed that
even for a uniform delay of 10 seconds, setting m = 50
blocks (resp. m = 168 blocks) yields zero-loss in the case
of a binary consensus attack (resp. reliable broadcast attack).
Nevertheless, if the network performs normally, ZLB will
support large values of f , and will actually benefit from
attacks, obtaining more than is lost.

VII. RELATED WORK

Several works tried to circumvent the upper bound on the
number of Byzantine failures [48] to reach agreement. As op-
posed to permissionless blockchains [59], some permissioned
blockchains rotate the consensus participants to cope with
an increasing amount of colluding replicas without perfect
synchrony [75], [7]. Accountability has originally been applied
to distributed systems in PeerReview [41] and to consensus in
Polygraph [17], but not to recover from inconsistencies.

Slashing stakes aims at disincentivizing blockchain partic-
ipants to misbehave. Casper [11] incurs a penalty in case of
double votes but does not ensure termination even when f <
n/3. Tendermint could become accountable with some trans-
formation [9]. Balance [43] is a theoretical idea to adjust the
size of the deposit to avoid over collateralizing. SUNDR [50]
assumes honest clients that communicate directly to detect
Byzantines. Polygraph [18] detect faults without excluding
them. FairLedger [49] assumes synchrony for detection. Sheng
et al. [69] consider a different definition of accountability
that cannot be achieved with 2n/3 faults. Freitas de Souza
et al. [27] reconfigure replicas in a lattice agreement after
detection. Shamis et al. [68] store messages in a ledger to
punish replicas but requires 2n/3 honest replicas to progress.

Traditionally, closed distributed systems consider that omis-
sion faults (omitting messages) are more frequent than com-
mission faults (sending wrong messages) [21], [44], [53].
Zeno [70] guarantees eventual consistency by decoupling
requests into weak (i.e., requests that may suffer reordering)
and strong requests. ZLB could not be built upon Zeno because
Zeno requires wrongly ordered transactions to be rolled back,

whereas blockchain transactions can have irrevocable side ef-
fects like the shipping of goods to the buyer. BFT2F [51] offers
fork* consistency, which forces the adversary to keep correct
clients in one fork, while also allowing accountability. Stewart
et al. [71] provide a finality gadget similar to our confirmation
phase, however, it does not recover from disagreements.

The BAR model [1] is motivated by multiple administra-
tive domains and corresponds better to the blockchain open
networks, without distinguishing a-b-c faults. Upright [21]
proposes a system that supports n = 2u + r + 1 faults,
where u and r are the numbers of commission and omission
faults, respectively. They can tolerate n/3 commission faults
or n/2 omission faults. Flexible BFT [56] offers results to
support ⌈2n/3⌉ − 1 alive-but-corrupt (abc) replicas. Flexible
BFT requires clients to decide the exact fraction of abc and
Byzantine replicas that they tolerate, tolerating for example
⌈2n/3− 1⌉ abc faults at the cost of no Byzantine replicas, or
⌈n/3⌉ − 1 Byzantine replicas at the cost of no abc faults.

Some hybrid failure models tolerate crash failures and
Byzantine failures but prevent Byzantine failures from par-
titioning the network [52]. Others aim at guaranteeing that
well-behaved quorums are responsive [53] or combine crash-
recovery with Byzantine behaviors to implement reliable
broadcast [2]. Neu et al. [61] show an implementation of a sys-
tem that provides availability in partial synchrony for f < n/3
and finality in synchrony for f < n/2. However, their system
does not tolerate n/3 a-b-c failures in partial synchrony. They
also extend this work to identify an accountability-availability
dilemma that motivates the need for a-b-c replicas [62].

There have been various attacks against blockchains [60],
[31], [63], especially leveraging forks. Most of the these
attacks build upon disagreement and are usually the result
of appending blocks before a unique block is chosen for
the given index. Sometimes these errors are the results of
flaws in the consensus protocols [31], sometimes it is due
to the probabilistic nature of the consensus protocol [74] and
sometimes it is just by design [59], [77], [11]. This is also the
reason why ZLB builds upon a formally verified deterministic
consensus protocol that does not assume synchrony [6]. In
particular, ZLB is immune to the Balance Attack [60] because
it tolerates partial synchrony and copes with other balancing
attacks and nothing-at-stake attacks by eventually merging
branches into a single branch.

VIII. CONCLUSION

In this paper, we proposed ZLB, the first blockchain that
tolerates an adversary controlling a majority of failures by ex-
ploiting accountability and with abc failures. ZLB performance
is superior to HotStuff and close to the Redbelly Blockchain.

Acknowledgments

We wish to thank the anonymous reviewers for their con-
structive feedback on an earlier version of this paper. This
work is supported in part by the Australian Research Council
Future Fellowship funding scheme (#180100496) and the
Ethereum Foundation.

12

REFERENCES

[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.
BAR fault tolerance for cooperative services. In SOSP, 2005.

[2] M. Backes and C. Cachin. Reliable broadcast in a computational hybrid
model with Byzantine faults, crashes, and recoveries. In IEEE/IFIP
DSN, pages 37–46, 2003.

[3] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino. State machine
replication in the libra blockchain. The Libra Assn., Tech. Rep, 2019.

[4] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure
computation. In STOC, pages 52–61, 1993.

[5] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations
with optimal resilience. In PODC, pages 183–192, 1994.

[6] N. Bertrand, V. Gramoli, I. Konnov, M. Lazic, P. Tholoniat, and J. Wid-
der. Holistic verification of blockchain consensus. In C. Scheideler,
editor, DISC, volume 246 of LIPIcs, pages 10:1–10:24, 2022.

[7] A. Bessani, E. Alchieri, J. ao Sousa, A. Oliveira, and F. Pedone. From
byzantine replication to blockchain: Consensus is only the beginning.
In IEEE/IFIP DSN, pages 424–436, 2020.

[8] G. Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput.,
75(2):130–143, 1987.

[9] E. Buchman, R. Guerraoui, J. Komatovic, Z. Milosevic, D.-A. Seredin-
schi, and J. Widder. Revisiting tendermint: Design tradeoffs, account-
ability, and practical use. In IEEE/IFIP DSN (Supplements), pages 11–
14, 2022.

[10] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT
consensus. Technical Report 1807.04938, arXiv, 2018.

[11] V. Buterin and V. Griffith. Casper the friendly finality gadget. Technical
Report 1710.09437v4, arXiv, Jan 2019.

[12] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. In CRYPTO, pages 524–541, 2001.

[13] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography.
Journal of Cryptology, 18(3):219–246, 2005.

[14] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[15] B. Y. Chan and E. Shi. Streamlet: Textbook streamlined blockchains.
In ACM Advances in Financial Technologies (AFT), pages 1–11, 2020.

[16] P. Civit, S. Gilbert, and V. Gramoli. Polygraph: Accountable Byzantine
consensus. In Workshop on Verification of Distributed Systems (VDS),
Jun 2019.

[17] P. Civit, S. Gilbert, and V. Gramoli. Brief announcement: Polygraph:
Accountable byzantine agreement. In DISC, pages 45:1–45:3, 2020.

[18] P. Civit, S. Gilbert, and V. Gramoli. Polygraph: Accountable byzantine
agreement. In IEEE ICDCS, Jul 2021.

[19] P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, and J. Komatovic. As
easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy!
In IEEE IPDPS, 2022.

[20] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. On the (limited)
power of non-equivocation. In PODC, pages 301–308, 2012.

[21] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche. Upright cluster services. In SOSP, pages 277–290, 2009.

[22] D. Collins, R. Guerraoui, J. Komatovic, P. Kuznetsov, M. Monti,
M. Pavlovic, Y. A. Pignolet, D. Seredinschi, A. Tonkikh, and A. Xygkis.
Online payments by merely broadcasting messages. In IEEE/IFIP DSN,
pages 26–38, 2020.

[23] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT: Efficient
leaderless Byzantine consensus and its applications to blockchains. In
IEEE NCA, 2018.

[24] T. Crain, C. Natoli, and V. Gramoli. Evaluating the Red Belly
Blockchain. Technical Report 1812.11747, arXiv, 2018.

[25] T. Crain, C. Natoli, and V. Gramoli. Red Belly: A secure, fair and
scalable open blockchain. In IEEE S&P, 2021.

[26] M. E. Crovella and R. L. Carter. Dynamic server selection in the Internet.
In IEEE HPCS, 1995.

[27] L. F. de Souza, P. Kuznetsov, T. Rieutord, and S. Tucci Piergiovanni.
Brief announcement: Accountability and reconfiguration - self-healing
lattice agreement. In DISC, pages 54:1–54:5, 2021.

[28] S. Duan, M. K. Reiter, and H. Zhang. BEAT: asynchronous BFT made
practical. In CCS, pages 2028–2041, 2018.

[29] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[30] P. Ekparinya, V. Gramoli, and G. Jourjon. Impact of man-in-the-middle
attacks on ethereum. In IEEE SRDS, 2018.

[31] P. Ekparinya, V. Gramoli, and G. Jourjon. The attack of the clones
against proof-of-authority. In NDSS, 2020.

[32] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In USENIX NSDI, pages 45–59, 2016.

[33] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. Commun. ACM, 61(7):95–102, June 2018.

[34] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In E. Oswald and M. Fischlin, editors,
EUROCRYPT, pages 281–310, 2015.

[35] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In SOSP, pages
51–68, 2017.

[36] S. Gilbert and N. Lynch. Perspectives on the CAP theorem. Computer,
45(2):30–36, 2012.

[37] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D. Seredinschi, O. Tamir, and A. Tomescu. SBFT: a scalable
decentralized trust infrastructure for blockchains. In IEEE/IFIP DSN,
pages 568–580, 2019.

[38] V. Gramoli. Blockchain Scalability and its Foundations in Distributed
Systems. Springer, 2022.

[39] V. Gramoli and Q. Tang. The future of blockchain consensus. Commun.
ACM, 66(7):79–80, 2023.

[40] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. Dumbo: Faster
asynchronous BFT protocols. In CCS, pages 803–818, 2020.

[41] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
accountability for distributed systems. In SOSP, 2007.

[42] I. Harel, A. Jacob-Fanani, M. Sulamy, and Y. Afek. Consensus in
Equilibrium: Can One Against All Decide Fairly? In OPODIS, 2020.

[43] D. Harz, L. Gudgeon, A. Gervais, and W. J. Knottenbelt. Balance:
Dynamic adjustment of cryptocurrency deposits. In CCS, 2019.

[44] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin.
All about eve: Execute-verify replication for multi-core servers. In
USENIX OSDI, pages 237–250, 2012.

[45] C. E. Kelso. Bitcoin gold hacked for $18 million. https://news.bitcoin.
com/bitcoin-gold-hacked-for-18-million/, Accessed: 2021-01-31.

[46] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In IEEE S&P, pages 583–598, 2018.

[47] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative Byzantine fault tolerance. In SOSP, 2007.

[48] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[49] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi. Fairledger: A
fair blockchain protocol for financial institutions. Technical Report
1906.03819, arXiv, 2019.

[50] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data
repository (SUNDR). In USENIX OSDI, page 9, 2004.

[51] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine
fault tolerant systems. In USENIX NSDI, page 10, 2007.

[52] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. XFT: practical
fault tolerance beyond crashes. In USENIX OSDI, pages 485–500, 2016.

[53] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni, J. Jove,
R. Malinowsky, and J. McCaleb. Fast and secure global payments with
stellar. In SOSP, pages 80–96, 2019.

[54] Y. Lu, Z. Lu, Q. Tang, and G. Wang. Dumbo-MVBA: Optimal
multi-valued validated asynchronous Byzantine agreement, revisited. In
PODC, pages 129–138, 2020.

[55] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.
A secure sharding protocol for open blockchains. In CCS, 2016.

[56] D. Malkhi, K. Nayak, and L. Ren. Flexible Byzantine fault tolerance.
In CCS, pages 1041–1053, 2019.

[57] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger
of BFT protocols. In CCS, pages 31–42, 2016.

[58] A. Mukherjee. On the dynamics and significance of low frequency com-
ponents of Internet load. Technical Report MS-CIS-92-83, University
of Pennsylvania, 1992.

[59] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008. http:
//www.bitcoin.org.

[60] C. Natoli and V. Gramoli. The balance attack or why forkable
blockchains are ill-suited for consortium. In IEEE/IFIP DSN, 2017.

[61] J. Neu, E. Tas, and D. Tse. Ebb-and-flow protocols: A resolution of the
availability-finality dilemma. In IEEE S&P, pages 446–465, 2021.

13

https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
http://www.bitcoin.org
http://www.bitcoin.org

[62] J. Neu, E. N. Tas, and D. Tse. The availability-accountability dilemma
and its resolution via accountability gadgets, 2021.

[63] J. Neu, E. N. Tas, and D. Tse. Two more attacks on proof-of-
stake ghost/ethereum. In Proceedings of the 2022 ACM Workshop on
Developments in Consensus, 2022.

[64] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[65] A. Ranchal-Pedrosa and V. Gramoli. Basilic: Resilient optimal consen-
sus protocols with benign and deceitful faults. In IEEE CSF, 2023.

[66] A. Ranchal-Pedrosa and V. Gramoli. ZLB, a blockchain tolerating
colluding majorities. Technical Report 2305.02498, arXiv, 2023.

[67] J. Redman. Bitcoin gold 51% attacked - network loses $70,000
in double spends. https://news.bitcoin.com/bitcoin-gold-51-attacked-
network-loses-70000-in-double-spends/ Accessed: 2021-01-31.

[68] A. Shamis, P. Pietzuch, M. Castro, E. Ashton, A. Chamayou, S. Clebsch,
A. Delignat-Lavaud, C. Fournet, M. Kerner, J. Maffre, et al. PAC:
Practical accountability for CCF. Technical report, arXiv, 2021.

[69] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath. BFT
protocol forensics. In CCS, 2021.

[70] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, P. Maniatis, et al.
Zeno: Eventually consistent Byzantine-fault tolerance. In USENIX NSDI,
pages 169–184, 2009.

[71] A. Stewart and E. Kokoris-Kogia. Grandpa: a byzantine finality gadget.
Technical Report 2007.01560, arXiv, 2020.

[72] D. Tennakoon, Y. Hua, and V. Gramoli. Smart redbelly blockchain:
Reducing congestion for web3. In IPDPS, pages 940–950. IEEE, 2023.

[73] P. Tholoniat and V. Gramoli. Formal verification of blockchain byzantine
fault tolerance. In FRIDA, Oct 2019.

[74] P. Tholoniat and V. Gramoli. Formal Verification of Blockchain Byzan-
tine Fault Tolerance, pages 389–412. Springer International Publishing,
2022.

[75] G. Vizier and V. Gramoli. ComChain: A blockchain with byzantine fault
tolerant reconfiguration. Concurrency and Computation, Practice and
Experience, 32(12), Oct 2020.

[76] G. Voron and V. Gramoli. Dispel: Byzantine SMR with distributed
pipelining. Technical Report 1912.10367, arXiv, Dec. 2019.

[77] G. Wood. Ethereum: A secure decentralized generalized transaction
ledger, 2015.

[78] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff:
BFT consensus in the lens of blockchain. Technical Report 1803.05069,
arXiv, July 2019. Version 6 (accessed 21 May 2019).

[79] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In PODC, 2019.

[80] M. Zamani, M. Movahedi, and M. Raykova. RapidChain: Scaling
blockchain via full sharding. In CCS, pages 931–948, 2018.

[81] T. Zimwara. $5.6 million double spent: Etc team finally acknowledges
the 51% attack on network. https://news.bitcoin.com/5-6-million-stolen-
as-etc-team-finally-acknowledge-the-51-attack-on-network/. Accessed:
2021-01-31.

14

https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/
https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/

	Introduction
	Background and Preliminaries
	Byzantine state machine replication
	Accountability
	Solving the Set Byzantine Consensus (SBC)

	The Longlasting Blockchain Problem
	Longlasting Blockchain
	Threat model

	The Zero-Loss Blockchain
	Accountable SMR (ASMR)
	The phases of ASMR

	Blockchain Manager (BM)
	Guaranteeing consistency across replicas
	Protocol to merge blocks
	Cryptographic techniques

	Fault tolerance and proofs

	Experimental Evaluation
	ZLB vs. HotStuff, Redbelly and Polygraph
	Scalability of ZLB despite coalition attacks
	Disagreements due to failures and delays
	Time to merge blocks and change members

	A Zero-Loss Payment Application
	Related Work
	Conclusion
	References

