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Abstract
Blockchain has recently attracted the attention of the industry due, in part, to its ability to
automate asset transfers. It requires distributed participants to reach a consensus on a block despite
the presence of malicious (a.k.a. Byzantine) participants. Malicious participants exploit regularly
weaknesses of these blockchain consensus algorithms, with sometimes devastating consequences. In
fact, these weaknesses are quite common and are well illustrated by the flaws in various blockchain
consensus algorithms [67]. Paradoxically, until now, no blockchain consensus has been holistically
verified.

In this paper, we remedy this paradox by model checking for the first time a blockchain consensus
used in industry. We propose a holistic approach to verify the consensus algorithm of the Red Belly
Blockchain [20], for any number n of processes and any number f < n/3 of Byzantine processes.
We decompose directly the algorithm pseudocode in two parts—an inner broadcast algorithm
and an outer decision algorithm—each modelled as a threshold automaton [37], and we formalize
their expected properties in linear-time temporal logic. We then automatically check the inner
broadcasting algorithm, under a carefully identified fairness assumption. For the verification of the
outer algorithm, we simplify the model of the inner algorithm by relying on its proven properties.
Doing so, we formally verify, for any parameter, not only the safety properties of the Red Belly
Blockchain consensus but also its liveness in less than 70 seconds.
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1 Introduction

1.1 Context
As blockchains require a distributed set of machines to agree on a unique block of transactions
to be appended to the chain, attackers naturally try to exploit consensus vulnerabilities: they
force participants to disagree so that they wrongly believe that two conflicting transactions
are legitimate, leading to what is known as a double spending. In 2014, malicious participants
managed to exploit Bitcoin consensus vulnerabilities to steal $83,000 through a network
attack. In August 2021, 570,000 transactions were reverted in a more recent version of Bitcoin,
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10:2 Holistic Verification of Blockchain Consensus

Bitcoin SV, by forcing its blockchain consensus protocol to violate its safety property (i.e.,
agreement). With 3 attacks on the same blockchain within 4 months, thefts are becoming
commonplace.1 Unsurprisingly, various bugs in specifications and in proofs of blockchain
consensus protocols appear in the literature [1, 65]. This is illustrated by the flaws in the
consensus algorithms now used in in-production blockchains [67]. The crux of the problem is
that reasoning about distributed executions of blockchain consensus protocols is hard due to
several sources of non-determinism, and in particular asynchrony and faults. As a result,
formally verifying that a blockchain consensus protocol is safe and live is key to mitigate
financial losses.

Recent progress in mechanical proofs represent the first steps towards verifying blockchain
consensus. For instance, parameterized model checking aims at verifying algorithms for an
arbitrary number n of processes [11] that is unknown at design time. In some contexts, it
reduces the model checking for any fault number f and its upper bound t to bounded model
checking questions [30]. The threshold automaton (TA) framework for communication-closed
algorithms [37, 7] targets algorithms with thresholds in guards such as “number of messages
from distinct processes exceeds 2t + 1”, and in the resilience condition, typically of the
form n > 3t. The parameterized model checking of threshold automata builds upon a
reduction [27, 43] that reorders steps of asynchronous executions to obtain simpler executions,
which are equivalent to the original executions with respect to safety and liveness properties.
Such a technique has recently proved instrumental in verifying fully asynchronous parts of
consensus algorithms, like broadcast algorithms [37].

Due to the famous unfeasability of deterministic consensus in asynchronous setting [29],
this promising method was not applied to proving deterministic consensus algorithms correct2.
In fact, the aforementioned reduction technique cannot apply to partial synchrony [25]: moving
the message reception step to a later point in the execution might violate an assumed message
delay. Yet, these delays are important as typical partially synchronous consensus algorithms
feature timers to catch up with the unknown bound on the delay to receive a message. Most
known verification techniques therefore target either synchronous (lock-step) or asynchronous
semantics. In addition, partially synchronous consensus algorithms generally rely on a
coordinator process that helps other processes converge and whose identifier rotates across
rounds. Some efforts have been devoted to proving the termination of partially synchronous
consensus algorithms, like Paxos, assuming synchrony [31]. The drawback is that such
algorithms aim at tolerating non-synchronous periods before reaching a global stabilization
time (GST) after which they terminate. Proving that such an algorithm terminates under
synchrony does not show that the algorithm would also terminate if processes reached GST at
different points of their execution. Instead, one would also need to show that correct processes
can catch up in the same round. This would, in turn, require proving the correctness of a
synchronizer algorithm [25].

Verifying consensus is even more subtle when processes are Byzantine as they can execute
arbitrary steps, changing their local state and the values they share. One needs to reason
about executions with all possible scenarios resulting from arbitrary behaviors, multiplying
the already large number of interleaved executions. This is probably the reason why, to our
knowledge, blockchain consensus algorithms have never been holistically verified. Despite
recent efforts towards proving consensus algorithms automatically, these were limited to

1 https://cointelegraph.com/news/bitcoin-sv-rocked-by-three-51-attacks-in-as-many-months
2 Here deterministic means that randomization is forbidden. However, the environment (e.g., communica-

tion delays, scheduler) introduces non-determinism in the algorithm execution.

https://cointelegraph.com/news/bitcoin-sv-rocked-by-three-51-attacks-in-as-many-months
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proving safety properties [3, 9], to checking proofs [46, 45], to synthesizing parameterized
distributed algorithms [66, 26, 48, 49], to deductively verifying implementations [21] or to
proving algorithms with fixed parameters [34]. Without a holistic approach, the verification
of parts of a protocol does not imply that the protocol is verified.

1.2 Contributions
In this paper, we verify holistically the safety and liveness properties of the Byzantine
consensus protocol used in the Red Belly Blockchain system [20], a scalable blockchain
used in industry. Our approach is holistic because it starts from the pseudocode of the
distributed algorithm as typically presented in the distributed computing literature, models
this pseudocode and its components into disambiguated threshold automata (TAs), model
checks both the safety and liveness properties of these components expressed in linear
temporal logic (LTL) formulae, and for any parameters n and f < n/3. The advantage is
that the formally verified algorithm matches the pseudocode and no user-defined invariants
or proofs need to be checked, which drastically reduces the risks of human errors.
1. We formally verify a Byzantine consensus algorithm [19] used for e-voting [14], for

accountability [18] and for blockchains [20]. This consensus algorithm now runs in the
network of the Red Belly Blockchain [20] maintained by the Redbelly Network company. It
executes in asynchronous rounds that broadcast binary values and compares the delivered
values to the parity of the round to decide. To model check the algorithm holistically,
we replace the partial synchrony assumption by a fairness assumption. Interestingly, our
fairness assumption only requires that in any infinite sequence of rounds, there exists a
round where, at all correct processes, a broadcast instance delivers the same binary value,
or bit, first.

2. We exploit the modularity of distributed algorithms in parameterized model checking.
We first model the consensus algorithm into two simpler algorithms modeled as threshold
automata (TAs): (i) an inner broadcast TA modeling a binary value variant of the reliable
broadcast [50] and (ii) an outer decision TA modeling a round-based execution that
inspects the delivered messages [19] to decide. We express the guarantees of the inner
broadcast primitive as temporal logic properties that we automatically verify and we
replace the inner TA in the global TA by a gadget TA that captures the proven temporal
specification. We automatically verify the global TA with model checking.

3. We show the practicality of our verification technique by running the parameterized
model checker ByMC [37] for any number n of processes and any arbitrary number
f < n/3 of Byzantine processes. We compare the execution times when model checking
the naive TA encoding the consensus algorithm and when model checking both the inner
TA encoding the broadcast algorithm and then the outer TA. We demonstrate empirically
that, although a parallel execution of ByMC on 64 cores could not prove the safety of
the naive TA within 3 days, it proves both the liveness and safety of the simplified TA in
about 70 seconds.

1.3 Outline
In Section 2 we introduce our preliminary definitions, in Section 3 we model our binary value
broadcast algorithm pseudocode into a corresponding threshold automaton, in Section 4 we
explain how the formal verification of the properties of the broadcast algorithm helps us
model check the consensus algorithm and in Section 5 we verify the consensus algorithm.
In Section 6 we present the experimental results of the model checker. In Section 7, we

DISC 2022



10:4 Holistic Verification of Blockchain Consensus

present the related work and in Section 8, we conclude. In the Appendix we explain the
multiple-round TA to one-round TA reduction (A), provide examples related to fairness (B),
missing proofs (C and E) and detailed specifications (D and F).

2 Preliminaries

The consensus algorithm runs over n asynchronous sequential processes from the set Π =
{p1, . . . , pn}. The processes communicate by exchanging messages through an asynchronous
reliable fully connected point-to-point network, hence there is no bound on the delay to
transfer a message but this delay is finite.

Failure model. Up to t < n/3 processes can exhibit a Byzantine behavior [56], and behave
arbitrarily. We refer to f ≤ t as the actual number of Byzantine processes. A Byzantine
process is called faulty, a non-faulty process is correct.

Algorithm semantics. The asynchronous semantics of a distributed algorithm executed by
processes in Π assumes discrete time and at each point in time, exactly one process takes a
step. We assume that two messages cannot be received at the same time by the same process.
The global execution then consists in an interleaving of the individual steps taken by the
processes. Process pi sends a message to pj by invoking the primitive “send header(m) to pj”,
where header indicates the type of message and m its contents. Process pi receives a message
by executing the primitive “receive()”. The shorthand broadcast(header, m) represents “for
each pj ∈ Π do send header(m) to pj”. And the right arrow in broadcast(header, m) →
messages indicates, when specified, that “upon reception of header(m) from process p′

j do
messages[p′

j ]← messages[p′
j ] ∪ {m}”. The process id is used as a subscript to denote that a

variable is local to a process—for instance var i is local to process pi—and is omitted when it
is clear from the context.

The verification method considered in this paper exploits the fact that the algorithms are
communication-closed [27], i.e. only messages from the current loop iteration or round of a
process may influence its steps. This can be implemented by tagging every message by its
round number r; during round r all received messages with tag r′ < r are discarded and all
received messages with tag r′ > r are stored for later.

The consensus problem. Assuming that each correct process proposes a binary value, the
binary Byzantine consensus problem is for each of them to decide on a binary value in such
a way that the following properties are satisfied:

1. Termination. Every correct process eventually decides on a value.
2. Agreement. No two correct processes decide on different values.
3. Validity. If all correct processes propose the same value, no other value can be decided.

Threshold automaton (TA). A threshold automaton [38] describes the behavior of a
process in a distributed algorithm. Its nodes are locations representing local states, and
labeled edges are guarded rules. Formally, it is a tuple ⟨L, I, Γ,P,R, RC ⟩ where L is the
set of locations, I ⊂ L is the set of initial locations, Γ is the set of shared variables that all
processes can update, P is the finite set of parameter variables, R is the set of rules, and
RC is the resilience condition over N|Π|

0 . Rules are defined as tuples ⟨from, to, ϕ, u⃗⟩, where
from (resp. to) describes the source (resp. destination) locations, and the rule label is ϕ 7→ u⃗.
Formula ϕ is called a threshold guard or simply a guard.
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1: bv-broadcast(BV, ⟨val, i⟩):
2: broadcast(BV, ⟨val, i⟩)
3: repeat:
4: if (BV, ⟨v, ∗⟩) received from (t + 1) distinct processes and not yet re-broadcast then
5: broadcast(BV, ⟨v, i⟩)
6: if (BV, ⟨v, ∗⟩) received from (2t + 1) distinct processes then
7: contestants ← contestants ∪ {v}

Figure 1 The pseudocode of the binary value broadcast for process pi.

V0

V1

B0

B1

CB0

CB1

B01

C0

C1

C01

r1 : b0++

r2 : b1++

b0 ≥
2t+1−f

r3
b1≥t+1−f 7→ b1++r4

b0≥t+1−f 7→
b0++

r5
b1≥2t+1−f

r6

b1≥t+1−f 7→ b1++r7

b0 ≥
2t+1−f

r8
b1≥2t+1−fr9

b0≥t+1−f 7→
b0++

r10

b1≥2t+1−fr11

b0 ≥
2t+1−f

r12

Figure 2 The threshold automaton model for the binary value broadcast.

▶ Example 1. As an example, Fig. 1 presents the pseudocode of the binary value broadcast
and Fig. 2 its TA. (The modeling of pseudocode (Fig. 1) into TA (Fig. 2) will be described
in detail in Section 3.1.) To illustrate the TA notations, note that two of the locations in
L = {V0, V1, B0, B1, B01, C0, C1, CB0, CB1, C01} are initial: I = {V0, V1}. Shared variables
are b0 and b1 and can be updated by each process traversing the TA, while parameters
are n, t and f and remain unchanged across the execution. The set of rules R consists of
{ri | 1 ≤ i ≤ 12} together with 7 self-loops. The self- loops mimic the asynchrony between
processes in the system. For example, rule r3 is defined as ⟨B0, C0, b0≥2t+1−f, 0⃗⟩. The
resilience condition is n > 3t ∧ t ≥ f ≥ 0.

A multi-round threshold automaton is intuitively defined such that one round is represented
by a threshold automaton, and additional so-called round-switch rules connect final locations
with initial ones, and therefore allow processes to move from one round to the following one.
We typically depict those round-switch rules as dotted arrows. Examples of such multi-round
TA are depicted later in Figures 3 and 4. When it is clear from the context that there are
multiple rounds, we simply call them threshold automata, and to stress that a TA does not
have multiple rounds, we may call it a one-round TA.

Counter systems. The semantics of a (one-round) threshold automaton TA are given by a
counter system Sys(TA) = ⟨Σ, I, T ⟩ where Σ is the set of all configurations among which I

are the initial ones, and T is the transition relation. A configuration σ ∈ Σ of a one-round TA
captures the values of location counters (counting the number of processes at each location
of L, therefore non-negative integers), values of global variables, and parameter values. A
transition t ∈ T is unlocked in σ if there exists a rule r = ⟨from, to, ϕ, u⃗⟩ ∈ R such that
ϕ evaluates to true in σ, and location counter of from is at least 1, denoted κ[from] ≥ 1,
showing that at least one process is currently in from. In this case we can execute transition t

on σ by moving a process along the rule r from location from to location to, which is modeled

DISC 2022



10:6 Holistic Verification of Blockchain Consensus

by decrementing counter κ[from], incrementing κ[to], and updating global variables according
to the update vector u⃗.

A counter system Sys(TA) of a multi-round TA is defined analogously. A configuration
captures the values of location counters and global variables in each round, and parameter
values (that do not change over rounds). Then we define that a transition is unlocked in a
round R by evaluating the guard ϕ and the counter of location from in the round R. The
execution of the transition in σ accordingly updates κ[from, R], κ[to, R] and global variables
of that round, while the values of these variables in other rounds stay unchanged.

Linear temporal logic notations. Following a standard model checking approach, we use
formulas in linear temporal logic (LTL) [57] to formalize the desired properties of distributed
algorithms. The basic elements of these formulas, called atomic propositions, are predicates
over configurations related (i) to the emptiness of each location at each round and (ii) to the
evaluation of threshold guards in each round. They have the following form: (i) κ[L, R] ̸= 0
expresses that at least one correct process is in location L in round R, while κ[L, R] = 0
expresses the opposite (in one-round systems we just write κ[L] ̸= 0 or κ[L] = 0); (ii) the
evaluation of [b0, R]≥2t+1−f depends on the values of the shared variable b0 in round R

and parameters t and f (in one-round systems we just write b0≥2t+1−f). LTL builds on
propositional logic with⇒ for ‘implication’, ∨ for ‘or’ and ∧ for ‘and’, and has extra temporal
operators ♢ standing for ‘eventually’ and □ for ‘always’. LTL formulas are evaluated over
infinite runs of Sys(TA). Examples of LTL properties in a one-round system are (BV − Justv),
(BV −Oblv) and (BV −Unifv) (see page 8). LTL properties in multi-round systems often
have quantifiers over round variables, as for example in (Agreev) and (Validv) (see page 13).

The tool ByMC is used to automatically verify a specific fragment of LTL on one-round
systems [36, 37], which is sufficient to express safety and liveness properties of consensus [10].
Moreover, thanks to communication-closure, the verification for this fragment of temporal logic
on multi-round systems reduces to one-round systems [10, Theorem 6] (see also Appendix A).

The assumption of reliable communication is modeled as follows at the TA level: if the
guard of a rule is true infinitely often, then the origin location of that rule will eventually be
empty. This reflects that an if branch of the pseudo-code is taken if the condition is true.
This progress assumption is in particular crucial to prove liveness properties: in the sequel,
we prepend it to the liveness properties in the TA specification.

3 The Binary Value Broadcast

To overcome the limited scalability of model checking tools, our holistic verification approach
consists of decomposing a distributed algorithm into encapsulated components of pseudocode
that can be modelled in threshold automata and verified in isolation to obtain a simplified
threshold automaton that is amenable to automated verification.

In this section we focus on a binary value broadcast, or bv-broadcast for short, that
will serve as the main building block of the Byzantine consensus algorithm of Section 4.
In Section 3.1 we formally model the bv-broadcast algorithm pseudocode as a threshold
automaton that tolerates a number f of Byzantine failures upper-bounded by t among n

processes. In Section 3.2 we model the specification of bv-broadcast in LTL and verify, within
10 seconds, that it holds. In Section 3.3 we introduce the fairness of an infinite sequence of
executions of bv-broadcast that will play a crucial role in verifying holistically in Section 5
the Byzantine consensus algorithm.
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3.1 Modeling the binary value broadcast pseudocode into a threshold
automaton

The binary value broadcast [50], or bv-broadcast for short, is a communication primitive
guaranteeing that all binary values “bv-delivered” were “bv-broadcast” by a correct process.
It is particularly useful to solve the Byzantine consensus problem with randomization [51, 15]
or partial synchrony [19, 14]. As discussed before, Figures 1 and 2 in Section 2 give its
pseudocode and the corresponding threshold automaton, respectively. We now explain how
we model our bv-broadcast pseudocode (Fig. 1) parameterized by n and f into a threshold
automaton (Fig. 2) using the synthesis methodology [42].

Pseudocode of the binary value broadcast. The bv-broadcast algorithm pseudocode
(Fig. 1) aims at having at least 2t+1 processes broadcasting the same binary value. Each
process starts this algorithm in one of two states, depending on its input value 0 or 1. Once
a correct process receives a value from t+1 distinct processes, it broadcasts it (line 4) if
it did not do it already (line 4); broadcast is not Byzantine fault tolerant and just sends a
message to all the other processes. Once a correct process receives a value from 2t+1 distinct
processes, it delivers it. Here the delivery at process pi is modeled by adding the value to the
set contestants, which will simplify the pseudocode of the Byzantine consensus algorithm in
Section 4.1.

Threshold automaton of the binary value broadcast. To match the two initial states
from which a process starts the bv-broadcast algorithm, we start the corresponding TA of
Fig. 2 with two initial locations V0 or V1, indicating whether the (correct) process initially
has value 0 or 1, resp. We can see form the pseudocode (Fig. 1) that a correct process pi

sends only two types of messages, (BV, ⟨0, i⟩) and (BV, ⟨1, i⟩), these trigger the corresponding
receptions at other processes. We thus define in the TA (Fig. 2) two global variables b0
and b1, resp., to capture the number of the two types of messages sent by correct processes.
Thus, for example, b0++ models a process broadcasting message (BV, ⟨0, i⟩). Because the
algorithm only counts messages regardless of sender identities, we replace the messages from
the pseudocode into b0 and b1 shared variables that are increased whenever a message is sent.

From local to global variables for model checking. While producing a formal model,
extra care is needed to avoid introducing redundancies. For example, line 4 indicates that the
process broadcasts value v if it received v from t+1 distinct processes. Instead of maintaining
local receive variables, it is sufficient to enable a guard based on global send variables.
Indeed, to remove redundant local receive variables, one can use the quantifier elimination
for Presburger arithmetic [58] and obtain quantifier-free guard expressions over the shared
variables that are valid inputs to ByMC [39, 35]. For more details, note that Stoilkovska
et al. [64] eliminated the quantifier over the similar receive variables in Ben-Or’s consensus
algorithm [8] with the SMT solver Z3 [22]. Finally, the point-to-point reliable channels ensure
that pj sends message m to pi implies that eventually pi receives message m from pj . Hence
shared variables b0 and b1 of the TA denote, respectively, the number of messages (BV, ⟨0, i⟩)
and (BV, ⟨1, i⟩) sent by correct processes in the pseudocode.

Modeling arbitrary (Byzantine) behaviors in the TA. In order to model that, among
the received messages, f messages could have been sent by Byzantine processes, we need to
map the ‘if’ statement of the pseudocode, comparing the number of receptions from distinct
processes to t+1, to the TA guards, comparing the number b1+f of messages sent to t + 1.
As b1 counts the messages sent by correct processes and f is the number of faulty processes

DISC 2022



10:8 Holistic Verification of Blockchain Consensus

that can send arbitrary values, a correct process can move from B0 to B01 as soon as t+1−f

correct processes have sent 1, provided that f faulty processes have also sent 1. As a result,
the guard of rule r4 only evaluates over global send variables as: if more than t+1 messages
of type b1 have been sent by correct processes (hence the guard b1 ≥ t+1−f), then the
shared variable b1 is incremented, mimicking the broadcast of a new message of type b1. Rule
r3 corresponds to lines 6–7 and delivers value v = 0 by storing it into variable contestants
upon reception of this value from 2t + 1 distinct processes. Hence, reaching location C0 in
the TA indicates that the value 0 has been delivered. As a process might stay in this location
forever, we add a self-loop with guard condition set to true.

locations V0 V1 B0 B1 B01 C0 CB0 C1 CB1 C01

val. broadcast / / 0 1 0,1 0 0,1 1 0,1 0,1
val. delivered / / / / / 0 0 1 1 0,1

Table 1 The locations of correct processes

Other locations and rules. The locations of the automaton correspond to the exclusive
situations for a correct process depicted in Table 1. After location C0, a process is still able
to broadcast 1 and eventually deliver 1 after that. After location B01, a process is able to
deliver 0 and then deliver 1, or deliver 1 first and then deliver 0, depending on the order
in which the guards are satisfied. Apart from the self-loops, note that the automaton is a
directed acyclic graph. Also, on every path in the graph, a shared variable is incremented
only once. This reflects that in the pseudocode, a value may only be broadcast if it has not
been broadcast before.

3.2 Properties of the binary value broadcast
As was previously proved by hand [50, 51], the bv-broadcast primitive satisfies four properties:
BV-Justification, BV-Obligation, BV-Uniformity and BV-Termination. Here, we formalize
these properties in linear temporal logic (LTL) to formally and automatically prove they hold.
As we will discuss in Section 6, we verify them for any parameters n and t < n/3 in less than
10 seconds.

The BV-Justification property states: “If pi is correct and v ∈ contestantsi, then v has
been bv-broadcast by some correct process” where v ∈ {0, 1}. Alternatively, “if v is not
bv-broadcast by some correct process and pi is correct, then v /∈ contestantsi”. In the TA
from Fig. 2, v ∈ contestantsi corresponds to process i being in one of the locations Cv, CBv

or C01. Thus, justification can be expressed in LTL as the conjunction BV-Just0 ∧BV-Just1
where, BV-Justv is the following formula:

κ[Vv] = 0 ⇒ □
(
κ[Cv] = 0 ∧ κ[CBv] = 0 ∧ κ[C01] = 0

)
. (BV-Justv)

BV-Obligation requires that if at least (t+1) correct processes bv-broadcast the same
value v, then v is eventually added to the set contestantsi of each correct process pi. This
can again be formalized as BV-Obl0 ∧ BV-Obl1 where BV-Oblv is the following formula:

□
(

bv ≥ t+1 ⇒ ♢
( ∧

L∈Locsv

κ[L] = 0
))

, (BV-Oblv)
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where Locsv = {V0, V1, B0, B1, B01, C1−v, CB1−v} are all the possible locations of a process i

if v ̸∈ contestantsi.
BV-Uniformity requires that if a value v is added to the set contestantsi of a correct

process pi, then eventually v ∈ contestantsj at every correct process pj . We formalize this as
BV-Unif0 ∧ BV-Unif1 where BV-Unifv is the following:

♢ (κ[Cv] ̸=0 ∨ κ[CBv ]̸=0 ∨ κ[C01 ]̸=0) ⇒ ♢
∧

L∈Locsv

κ[L]=0 , (BV-Unifv)

where Locsv is defined as in (BV-Oblv).
Finally, the BV-Termination property claims that eventually the set contestantsi of each

correct process pi is non empty. This can be phrased as the following LTL formula BV-Term:

♢
(
κ[V0]=0 ∧ κ[V1]=0 ∧ κ[B0]=0 ∧ κ[B1]=0 ∧ κ[B01]=0

)
, (BV-Term)

forcing each correct process to be in one of the “final” locations C0, C1, C01, CB0, CB1.

3.3 A fairness assumption to solve consensus
The traditional approach to establishing guarantee properties in verification is to require
that all fair computations, instead of all computations, satisfy the property [4]. We thus
introduce a crucial fairness assumption. In order to define it, we first define a good execution
of the bv-broadcast with respect to binary value v as an execution:

▶ Definition 2 (v-good bv-broadcast). A bv-broadcast execution is v-good if all its correct
processes bv-deliver v first.

We express this property in LTL. A bv-broadcast execution is v-good if no process ever visits
locations C1−v and CB1−v:

□
(

κ[C1−v] = 0 ∧ κ[CB1−v] = 0
)

.

Second, we consider an infinite sequence of bv-broadcast executions, tagged with r ∈ N. It
is important to stress that the setting is asynchronous, that is, processes invoke bv-broadcast
infinitely many times, but at their own relative speed. Thus, they do not all invoke the
bv-broadcast tagged with the same number r at the same time. Nonetheless, every process
invokes bv-broadcast infinitely many times and in the rth invocation its behavior depends
on the messages sent in the rth invocation of other processes. Therefore, we refer to the rth

execution of bv-broadcast even though the processes invoke it at different times.

▶ Definition 3 (fairness). An infinite sequence of bv-broadcast executions is fair if there
exists an r such that the rth execution is (r mod 2)-good.

For simplicity, we use the terminology fair bv-broadcast when the infinite sequence of
bv-broadcast executions is fair. We illustrate in Appendix B a possible execution of bv-broadcast
whose existence implies fairness.

4 Simplified Automaton for Byzantine Consensus

In this section we exploit the results of the first verification phase of Section 3 to simplify
the threshold automaton of the Byzantine consensus algorithm. In Section 4.1 we introduce
the pseudocode of the Byzantine consensus algorithm and its threshold automaton obtained
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with the naive modeling described in Section 3.1. In Section 4.2 we replace, in this threshold
automaton, the inner bv-broadcast automaton by a smaller one obtained thanks to the
bv-broadcast properties that are now verified. The verification of the resulting simplified
automaton is deferred to Section 5.

4.1 The Byzantine consensus algorithm
Algorithm 1 is the DBFT Byzantine consensus algorithm [19] that relies on the fair binary
value broadcast of Section 3. It is currently used in the Red Belly Blockchain, a recent
blockchain that achieves unprecedented scalability [20]. More precisely, the DBFT binary
consensus comes in two different variants: (i) a first variant that is safe but not live in the
asynchronous setting, (ii) a second variant that is safe and live under the partial synchrony
assumption. We use the first variant of it (without coordinator or timeout) here and show
that it is live under our new fairness assumption. The DBFT binary consensus invokes
bv-broadcast(·) at line 6 and uses a set contestants of binary values, whose scope is global,
updated by the bv-broadcast (Fig. 1, line 7) and accessed by propose(·) (Alg. 1, line 7).

Algorithm 1 The Byzantine consensus algorithm at process pi

1: Global scope variable:
2: contestants ⊆ {0, 1}, set of binary values, init. ∅.

3: propose(est):
4: r ← 0
5: repeat:
6: bv-broadcast(est, ⟨est, i⟩)
7: wait until (contestants ̸= ∅)
8: broadcast(aux, ⟨contestants, i⟩)→ favorites
9: wait until ∃c1, . . . , cn−t : ∀1 ≤ j ≤ n − t favorites[cj ] ̸= ∅∧ (qualifiers ←
∪∀1≤j≤n−t favorites[cj ]) ⊆ contestants

10: if qualifiers = {v} then
11: est ← v

12: if v = (r mod 2) then decide(v)
13: else est ← (r mod 2)
14: r ← r + 1

As mentioned in Section 2, recall that the algorithm is communication-closed, so that for
simplicity in the presentation we omit the current round number r as the subscript of the
variables and the parameter of the function calls. Variable favorites is an array of n indices
whose jth slot records, upon delivery, the message broadcast by process j in the current round.
Each process pi manages the following local variables: the current estimate est, initially the
input value of pi; and a set of binary values qualifiers. This algorithm maintains a round
number r, initially 0 (line 4), and incremented at the end of each iteration of the loop at
line 14. Process pi exchanges estimate (est) and auxiliary (aux) messages (lines 6–8), until
it receives aux messages from n− t distinct processes whose values were bv-delivered by pi

(line 9). Process pi then tries at line 12 to decide a value v that depends on the content of
qualifiers and the parity of the round. If qualifiers is a singleton there are two possible cases:
if the value is the parity of the round then pi decides this value (line 12), otherwise it sets
its estimate to this value (line 11). If favorites contains both binary values, then pi sets its
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Figure 3 The naive threshold automaton of the Byzantine consensus of Algorithm 1 where the
embedded bv-broadcast automaton is depicted with dashed arrows. Precise formulations of all rules
are in Appendix D. Note that the rules r20, r21 and r22 represent transitions from the end of an
odd round to the beginning of the following (even) round of Algorithm 1, while the dotted edges
represent transitions from the end of an even round to the beginning of the following (odd) one.

estimate to the parity of the round (line 13). Although pi does not exit the infinite loop to
help other processes decide, it can safely exit the loop after two rounds at the end of the
second round that follows the first decision because all processes will be guaranteed to have
decided. Note that even though a process may invoke decide(·) multiple times at line 12,
only the first decision matters as the decided value does not change (see Section 5).

The effect of fairness. Note that the fairness notion from Section 3.3 ensures there is
a round r in which all correct processes bv-deliver (r mod 2) first. The following lemma
states that under the fairness assumption there is a round of Algorithm 1 in which all correct
processes start with the same estimate. The proof is deferred to Appendix C.

▶ Lemma 4. If the infinite sequence of bv-broadcast executions of Algorithm 1 is fair, with the
rth execution being (r mod 2)-good, then all correct processes start round r+1 of Algorithm 1
with estimate r mod 2.

Modeling deterministic consensus. Figure 3 depicts the threshold automaton (TA)
obtained by modeling Algorithm 1 with the method we detailed in Section 3.1. The TA
depicts two iterations of the repeat loop (line 5), since Algorithm 1 favors different values
depending on the parity of the round number. For simplicity, we refer to the concatenation
of two consecutive rounds of the algorithm as a superround of the TA. As one can expect,
this TA embeds the TA of the bv-broadcast which is depicted by the dashed arrows, just as
Algorithm 1 invokes the bv-broadcast algorithm of Fig. 1. We thus distinguish the outer TA
modeling the consensus algorithm from the inner TA modeling the bv-broadcast algorithm.
Although Algorithm 1 is relatively simple, the global TA happens to be too large to be
verified through model checking, as we explain in Section 6; the main limiting factor is its
14 unique guards that constrain the variables to enable rules in the TA. The detail of each
rule of the TA is deferred to Appendix D.

4.2 Simplified threshold automaton
Our objective is to formally prove that Algorithm 1 is unconditionally safe, and that it is live
under the assumption of fairness at the bv-broadcast level. Since the threshold automaton
of Figure 3 is too large to be handled automatically, we build on the properties proved for
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Figure 4 The simplified threshold automaton of the Byzantine consensus of Algorithm 1 obtained
after model checking the bv-broadcast. Rules s′

j , 1 ≤ i ≤ 11, are obtained from sj by replacing each
variable c ∈ {a0, a1, bvb0, bvb1} with its corresponding one c′.

the bv-broadcast to simplify in the threshold automaton from Figure 3 the part representing
the bv-broadcast. On the resulting simpler threshold automaton, assuming fairness of the
bv-broadcast, we prove the termination of Algorithm 1 with ByMC in Section 6.

High-level idea. Ideally, the simplified threshold automaton could be obtained from the
one of Fig. 3 by merging all internal states of the bv-broadcast into a single state with two
possible outcomes. However, such a merge is not trivial because the bv-broadcast procedure
“leaks” into the consensus algorithm. First of all, line 7 of Algorithm 1 refers to contestants,
a global variable that is modified by the bv-broadcast algorithm (Fig. 1). Second, a process
can execute line 8 of Algorithm 1 even if the bv-broadcast has not terminated. To capture
this porosity, we introduce a new shared variable, some additional states and a transition
rule that exploits a correctness property of the bv-broadcast.

A superround R of the simplified automaton from Fig. 4 captures round 2R−1 followed
by round 2R of Algorithm 1. One can thus restate Lemma 4 as the following corollary in the
TA terminology. The proof is deferred to Appendix E.

▶ Corollary 5. Let r ∈ N be such that the rth execution of bv-broadcast in Algorithm 1 is
(r mod 2)-good. Then:

If there exists R ∈ N with r = 2R−1, then □
(
κ[M0, R] = 0) holds.

If there exists R ∈ N with r = 2R, then □ (κ[M ′
1, R] = 0

)
holds.

5 Verification of Byzantine Consensus

In this section we formally prove that Algorithm 1 solves the Byzantine consensus problem
with the fair bv-broadcast and without partial synchrony. (Appendix B provides a counter-
example illustrating why the algorithm does not terminate without the fair broadcast.) In
particular, we apply a methodology developed for crash fault tolerant randomized consen-
sus [10] to our context to prove both the safety (Section 5.1) and liveness (Section 5.2)
properties of the deterministic Byzantine consensus algorithm.

5.1 Safety
Under no fairness assumption, one can prove the safety properties—agreement and validity—
of the Byzantine consensus based on bv-broadcast. Precisely, we formulate these properties
in LTL and want to establish that they hold on the threshold automaton of Fig. 4.

Agreement requires that no two correct processes disagree, that is, if one process decides v

then no process should decide 1−v for all binary values v ∈ {0, 1}. Thus, we want to prove
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that the following formula holds for both values of v:

∀R ∈ N,∀R′ ∈ N
(
♢κ[Dv, R] ̸= 0 ⇒ □κ[D1−v, R′] = 0

)
, (Agreev)

stating that for any two superrounds R and R′, if eventually a process decides v, then globally
(in any superround) no process will decide 1− v. In terms of the TA from Fig. 4, if a process
enters location Dv no process should enter location D1−v (in that superround or any other).

Validity requires that if no process proposes a value v ∈ {0, 1}, no process should ever
decide that value. Hence, we want to prove the following formula for both values of v:

∀R ∈ N
(

κ[Vv, 1] = 0 ⇒ □κ[Dv, R] = 0
)

, (Validv)

stating that if initially no process has value v, then globally (in any superround) no process
decides v. In terms of the TA, if location Vv is initially empty (in superround 1), then no
process should enter location Dv in any superround.

ByMC can only check formulas of the form ∀R ∈ N φ[R] (see Appendix A). Thus, auto-
matically checking (Agreev) and (Validv) is non-trivial, as they both involve two superround
numbers: R and R′ in (Agreev), and 1 and R in (Validv). We instead check well-chosen
one-superround invariants (Inv1 v) and (Inv2 v):

∀R ∈ N
(
♢κ[Dv, R] ̸= 0 ⇒ □

(
κ[D1−v, R] = 0 ∧ κ[E′

1−v, R] = 0
))

, (Inv1 v)

∀R ∈ N
(
□κ[Vv, R] = 0 ⇒ □

(
κ[Dv, R] = 0 ∧ κ[E′

v, R] = 0
))

. (Inv2 v)

The choice of these invariants follows a previous approach used for the crash fault
tolerant consensus where it is shown that these invariants imply (Agreev) and (Validv) [10,
Proposition 2]. Intuitively, this follows from the fact that (i) emptiness of D0 and E′

0 in one
superround leads to the emptiness of V0 in the next superround, and (ii) emptiness of E′

1
(and D1) in one superround leads to the emptiness of V1 in the next superround. Therefore,
in order to prove agreement and validity, we only need to prove (Inv1 v) and (Inv2 v) for both
values v ∈ {0, 1}. We successfully do this automatically with ByMC (see Section 6).

5.2 Liveness
We now aim at proving termination of Algorithm 1. First, we need to prove that every
superround eventually terminates, in the sense that for every round eventually there are no
processes in any location of that round with the exception of the final ones (D0, E′

0 and E′
1).

Formally, using ByMC we prove the following:

∀R ∈ N ♢
( ∧

L∈L\{D0,E′
0,E′

1}

κ[L, R] = 0
)

. (SRoundTerm)

From this property and the shape of the TA from Fig. 4, it easily follows that if no process
ever enters E′

0 and E′
1 of some superround, then all processes visit D0 in that superround.

Similarly, if no process ever enters E0 and E1 of some superround, then all processes visit D1
in that superround. This allows us to express termination as the following LTL property on
the threshold automaton of Fig. 4:

∃R ∈ N
(
□

(
κ[E0, R] = 0 ∧ κ[E1, R] = 0

)
∨ □

(
κ[E′

0, R] = 0 ∧ κ[E′
1, R] = 0

))
. (Term)
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In words, there is a superround R in which either (i) all processes visit D1, or (ii) all processes
visit D0. Here again formula (Term) is non-trivial to check since it contains an existential
quantifier over superrounds, that cannot be handled by the model checker ByMC. Adapting
the technique from [10, Section 7] to a non-randomized context, it is sufficient to prove a
couple of properties on the threshold automaton of Fig. 4, that we detail below. The first
property expresses that if no process starts a superround R with value v, then all processes
decide 1−v in superround R:

∀R ∈ N
(
□

(
κ[V0, R] = 0

)
⇒ □

(
κ[E0, R] = 0 ∧ κ[E1, R] = 0

))
∧

(
□

(
κ[V1, R] = 0

)
⇒ □

(
κ[E′

0, R] = 0 ∧ κ[E′
1, R] = 0

))
. (Dec)

The second property claims that (i) emptiness of M0 in superround R implies (emptiness of
E0 and therefore also) emptiness of D0 and E′

0 in R and (ii) emptiness of M ′
1 in superround R

implies emptiness of E′
1 in R:

∀R ∈ N
((

□κ[M0, R] = 0) ⇒ □ (κ[D0, R] = 0 ∧ κ[E′
0, R] = 0)

)
∧

(
□κ[M ′

1, R] = 0) ⇒ □κ[E′
1, R] = 0

))
. (Good)

The main idea is to exploit the fairness of bv-broadcast, which ensures the existence of a
round r which is (r mod 2)-good. Intuitively, the next superround R = ⌈r/2⌉ is the desired
witness for (Term), namely the one in which all processes decide (not necessarily for the first
time). We formalize this in our main result:

▶ Theorem 6. Assuming fairness of the bv-broadcast, Algorithm 1 terminates.

Proof. First we prove formulas (SRoundTerm) and (Dec) and (Good) automatically using
the model checker ByMC. Formula (SRoundTerm) guarantees that formula (Term) indeed
expresses termination. Next, we show that formulas (Dec) and (Good) together imply (Term).
Indeed, since we assume fairness of the bv-broadcast, from Corollary 5 we know that there is
a superround R in which one of the following two scenarios happen:

□κ[M ′
1, R] = 0. In this case formula (Good) implies □κ[E′

1, R] = 0. Note that the
form of the (dotted) round-switch rules yield that no process starts the superround
R+1 with value 1, that is, we have □κ[V1, R+1] = 0. Then formula (Dec) implies
□

(
κ[E′

0, R+1] = 0 ∧ κ[E′
1, R+1] = 0

)
, which makes formula (Term) true, that is, all

processes visit D0 in superround R+1.
□κ[M0, R] = 0. In this case formula (Good) implies □ (κ[D0, R]∧κ[E′

0, R] = 0)
)
. Now the

round-switch rules yield that no process starts the superround R+1 with value 0, that is, we
have □κ[V0, R+1] = 0. Then formula (Dec) implies □

(
κ[E0, R+1] = 0∧κ[E1, R+1] = 0

)
,

which satisfies formula (Term), that is, all processes visit D1 in R+1.
As a consequence, our automated proofs of properties (SRoundTerm) and (Dec) and (Good)
guarantee termination of Algorithm 1 under fairness of bv-broadcast. ◀

6 Experiments

In this section, we model check the safety but also the liveness properties of Byzantine
consensus for any parameters t and n > 3t. In particular, we show that we formally verify
the simplified representation of the blockchain consensus in less than 70 seconds, whereas we
could not model check its naive representation.
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Experimental settings. We used the parallelized version of ByMC 2.4.4 with MPI. The
bv-broadcast and the simplified automaton were verified on a laptop with Intel® Core™
i7-1065G7 CPU @ 1.30GHz × 8 and 32 GB of memory. The naive Threshold Automaton
(TA) timed-out even on a 4 AMD Opteron 6276 16-core CPU with 64 cores at 2300MHz
with 64 GB of memory. Good and Dec are only relevant for the simplified automaton. The
specification of the termination for ByMC is deferred to Appendix F.

TA Size Property # schemas Avg. length Time

bv-broadcast
(Fig. 2)

4 unique
guards
10 locations
19 rules

BV-Just0 90 54 5.61s
BV-Obl0 90 79 6.87s
BV-Unif0 760 97 27.64s
BV-Term 90 79 6.75s

Naive
consensus
(Fig. 3)

14 unique
guards
24 locations
45 rules

Inv10 >100 000 - >24h
Inv20 >100 000 - >24h
SRound-Term >100 000 - >24h

Simplified
consensus
(Fig. 4)

10 unique
guards
16 locations
37 rules

Inv10 6 102 4.68s
Inv20 2 73 4.56s
SRound-Term 2 109 4.13s
Good0 2 67 4.55s
Dec0 2 73 4.62s

Table 2 Although none of the properties of the naive blockchain consensus could be verified
within a day of execution of the model checker, it takes about ∼4 s to verify each property on the
simplified representation of the blockchain consensus. Overall it takes less than 70 seconds to verify
both that the binary value broadcast and the simplified representation of the blockchain consensus
are correct.

Results. Table 2 depicts the time (6th column) it takes to verify each property (3rd column)
automatically. In particular, it lists the TA (1st column) on which these properties were
tested, as well as the size of these TA (2nd column) as the number of guards locations and
rules they contain. A schema (4th column) is a sequence of unlocked guards (contexts) and
rule sequences that is used to generate execution paths [37] whose average length appears
in the 5th column. It demonstrates the efficiency of our approach as it allows to verify
all properties of the Byzantine consensus automatically in less than 70 seconds whereas a
non-compositional approach timed out. Although not indicated here, we also generated a
counter-example of Inv10 for n > 3t on the composite automaton in ∼4 s.

7 Related Work

Interactive theorem provers [62, 59, 70] already checked proofs of algorithmic components used
in the blockchain industry. In particular, Coq helped prove the Raft consensus algorithm [71]
and parts of crash fault tolerant distributed ledgers [12, 5], neither of which is Byzantine
fault tolerant, but also some safety properties of PBFT [60] and of the Byzantine consensus
algorithm of the Algorand blockchain [3]. In addition, Dafny [31] proved MultiPaxos, a
consensus algorithm that tolerates crash failures. Isabelle/HOL [54] was used to prove
Byzantine fault tolerant algorithms [17] and was combined with Ivy to prove a simplified
variant of the Byzantine consensus [45] of Stellar [44] but without its dynamic quorum
system [46]. Theorem provers check proofs, not the algorithms. Hence, one has to invest
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efforts into writing detailed mechanical proofs.
Specialized decision procedures are a way of proving consensus algorithms. They were

used to prove Paxos [40], which could itself be used in the aforementioned crash fault tolerant
distributed ledgers. Crash fault tolerant consensus algorithms were manually encoded with
their invariants and properties to prove formulae using the Z3 SMT solver [24]. Decision
procedures also proved the safety of Byzantine fault tolerant consensus algorithms when
f = t [9] but not their termination. Similarly, a proof by refinement of the safety of a
Byzantine variant of Paxos was proposed [41] but its liveness is not proven. These decision
procedures require the user to fit the specification into a suitable logical fragment.

Explicit-state model checking fully automates verification of distributed algorithms [32, 72].
It allows to check the reliable broadcast algorithm [33], a common component of various
blockchain consensus algorithms [47, 19, 18]. TLC [72] checked a reduction of fault tolerant
distributed algorithms in the Heard-Of model that exploits their communication-closed
property [16]. And the agreement of consensus algorithms was proved in the asynchronous
setting [55]. These tools enumerate all reachable states and suffer from state explosion.

Symbolic model checkers [13] cope with this explosion by representing state transitions
efficiently. NuSMV and SAT helped check consensus algorithms for up to 10 processes [68, 69].
Apalache [34] uses satisfiability modulo theories (SMT) to check inductive invariants and
verify symbolic executions of TLA+ specifications of the reliable broadcast and crash fault
tolerant consensus algorithms but requires parameters to be fixed. These tools cannot be
used to prove (or disprove) correctness for an arbitrary number of processes.

Parameterized model checking [23] works for an arbitrary number n of processes [11].
Although the problem is undecidable [6] in general, one can verify specific classes of al-
gorithms [28]. Indeed, distributed algorithms with a ring-based topology were checked
with automata-theoretic method [2] and with Presburger arithmetics formulae verified by
an SMT solver [61]. Bosco [63] has been the focus of various parameterized verification
techniques [42, 7], however, it acts as a fast path wrapper around a separate correct consensus
algorithm that remains itself to be proven. The condition-based consensus algorithm [53, 52]
was verified [7] with the Byzantine model checker ByMC [37, 39, 35], only under the condition
that the difference between the numbers of processes initialized with 0 and 1 differ by at least
t. Recently, almost-sure termination was proved by assuming a round-rigid adversary [10],
but this is insufficient to prove our termination. In this paper, we also exploit ByMC but
prove the Byzantine consensus algorithm [19] of an existing blockchain [20].

8 Conclusion

We presented the first formal verification of a blockchain consensus algorithm thanks to a
new holistic approach. By modeling directly the pseudocode into a disambiguated threshold
automaton we guarantee that the “actual” algorithm is verified. By model checking the
threshold automaton for any parameters without the need for user-defined invariants and
proofs, we drastically reduce the risks of human errors.
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A Reducing multi-round TA to one-round TA

Let us first formally define a (finite or infinite) run in a (one-round or multi-round) counter
system Sys(TA). It is an alternating sequence of configurations and transitions σ0, t1, σ1, t2, . . .

such that σ0 ∈ I is an initial configuration and for every i ≥ 1 we have that ti is unlocked in
σi−1, and executing it leads to σi, denoted ti(σi−1) = σi.

Here we briefly describe the reasoning behind the reduction of multi-round TAs to one-
round TAs [10, Theorem 6]. Note that the behavior of a process in one round only depends
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on the variables (the number of messages) of that round. Namely, we check if a transition
is unlocked in a round by evaluating a guard and a location counter in that round. This
allows us to modify a run by swapping two transitions from different rounds, as they do
not affect each other, and preserve LTL-X properties, which are properties expressed in LTL
without the next operator X . The type of swapping we are interested in is the one where
a transition of round R is followed by a transition of round R′ < R. Starting from any
(fully asynchronous) run, if we keep swapping all such pairs of transitions, we will obtain a
run in which processes synchronize at the end of each round and which has the same LTL-X
properties as the initial one. This, so-called round-rigid structure, allows us to isolate a
single round and analyze it. Still, different rounds might behave differently as they have
different initial configurations. If we have a formula ∀R ∈ N. φ[R], where φ[R] is in the
above mentioned fragment of (multi-round) LTL, then Theorem 6 of [10] shows exactly that
it is equivalent to check that (i) this formula holds (or φ[R] holds on all rounds R) on a
multi-round TA, and (ii) formula φ[1] (or just φ) holds on the one-round TA′ (naturally
obtained from the TA by removing dotted round-switch rules) with respect to all possible
initial configurations of all rounds. Thus, we can verify properties of the form ∀R ∈ N. φ[R]
on multi-round threshold automata, by using ByMC to check φ on a one-round threshold
automaton with an enlarged set of initial configurations.

B Examples of fairness and of non-termination without fairness

First, we explain that the fairness is satisfied as soon as one execution of bv-broadcast has
correct processes delivering all values broadcast by correct processes first. Then, we explain
that the Byzantine consensus algorithm cannot terminate without an additional assumption,
like fairness.

Relevance of the fairness assumption

It is interesting to note that our fairness assumption is satisfied by the existence of an
execution with a particular reception order of some messages of the two broadcasts within
the bv-broadcast. Consider that t = ⌈n/3⌉−1 and that at the beginning of a round r, the two
following properties hold: (i) estimate r mod 2 is more represented than estimate (1−r) mod 2
among correct processes and (ii) all correct processes deliver the values broadcast by correct
processes before any value broadcast during the bv-broadcast by Byzantine processes are
delivered. Indeed, the existence of such a round r in any infinite sequence of executions of
bv-broadcast implies that this sequence is fair (Def. 3): as r mod 2 is the only value that
can be broadcast by t+1 correct processes, this is the first value that is received from t+1
distinct processes and rebroadcast by the rest of the correct processes. This is thus also the
first value that is bv-delivered by all correct processes.

Non-termination without fairness

It is interesting to note why Algorithm 1 does not solve consensus when t < n/3 and without
our fairness assumption. We exhibit an example of execution of the algorithm with n = 4
and f = 1, starting at round r and for which the estimates of the correct processes are
kept as (1 − r) mod 2, (1 − r) mod 2, r mod 2 in rounds r and r+2. Repeating this while
incrementing r yields an infinite execution, so that the algorithm never terminates.

▶ Lemma 7. Algorithm 1 does not terminate without fairness.
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Proof. Consider, for example, processes p1, p2, p3 and p4 where p4 is Byzantine and where
0, 0, 1 are the input values of the correct processes p1, p2, p3, respectively, at round 1. We
show that at the beginning of round 2, p1, p2, p3 have estimates 0, 1, 1. First, as a result of
the broadcast (line 2), consider that p1 and p2 receive 0 from p1, p2 and p4 so that p1, p2
bv-deliver 0. Second, p2 and p3 receive 1 from p3, p4 and finally p2 so that p2, p3 bv-deliver 1.
Third, p3 receives 0 from p0, p2 and finally from p3 itself, hence p3 bv-delivers 0. Now we have:
(a) p1, p2, p3 bv-deliver 0, 0, 1 and (b) p2, p3 later bv-deliver 1 and 0, respectively. As a result
of (a), we have p1, p2 broadcast, and say p4 sends, ⟨aux, 0, ·⟩ so that p0 receives these three
messages, p1, p2 broadcast ⟨aux, 0, ·⟩, and say p4 sends, ⟨aux, 1, ·⟩ to p2 so that p2 receives
these messages, p1 broadcasts ⟨aux, 0, ·⟩ while p3 broadcasts, and say p4 sends, ⟨aux, 1, ·⟩ so
that p3 receives these messages. Finally, by (b) we have contestants2 = contestants3 = {0, 1}.
This implies that the n−t first values inserted in favorites1, favorites2 and favorites3 in round
r are values {0}, {0, 1}, {0, 1}, respectively. Finally, qualifiers1, qualifiers2 and qualifiers3
are {0}, {0, 1} and {0, 1}, respectively. And p1, p2, p3 set their estimate to 0, 1, 1.

It is easy to see that a symmetric execution in round r′ = r + 1 leads processes to change
their estimate from 0, 1, 1 to 0, 0, 1 looping back to the state where r mod 2 = 1 and estimate
are (1− r) mod 2, (1− r) mod 2, r mod 2. ◀

C Starting a round with identical estimate

▶ Lemma 8 (Lemma 4). If the infinite sequence of bv-broadcast invocations of Algorithm 1
is fair, with the rth invocation (in round r) being (r mod 2)-good, then all correct processes
start round r+1 of Algorithm 1 with estimate r mod 2.

Proof. The argument is that all correct processes wait until a growing prefix of the bv-
delivered values that are re-broadcast implies that there is a subset of favorites, called
qualifiers, containing messages from n− t distinct processes such that ∀v ∈ qualifiers. v ∈
contestants. As we assume that the infinite sequence of bv-broadcast invocations of Al-
gorithm 1 is fair, with the rth invocation being (r mod 2)-good, then we know that in
round r for every pair of correct processes pi and pj we have pi .qualifiers ⊆ pj .qualifiers or
pj .qualifiers ⊆ pi .qualifiers. If pi .qualifiers = pj .qualifiers for all pairs, then by examination
of the code, we know that they will set their estimate est to the same value depending on
the parity of the current round.

Consider instead, with no loss of generality, that pi .qualifiers is a strict subset of
pj .qualifiers in round r. As their values can only be binaries, in {0, 1}, this means that
pi .qualifiers is a singleton, say {w}. As all correct processes bv-deliver r mod 2 first, which is
then broadcast into pi .favorites, we have w = r mod 2 and pi’s estimate becomes r mod 2 at
line 11. As pj .qualifiers is {0, 1}, the estimate of pj is also set to r mod 2 but at line 13. ◀

D Large TA

Table 3 details the rules for the first half of the threshold automaton from Fig. 3.

E Missing proof of Corollary 5

We restate here Corollary 5 and give its proof.

▶ Corollary 9. Let r ∈ N be such that the rth execution of bv-broadcast in Algorithm 1 is
(r mod 2)-good. Then:
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Rules Guard Update
r1 true b0++

r2 true b1++

r3 b0 ≥ 2t+1−f a0++

r4 b1 ≥ t+1−f b1++

r5 b0 ≥ t+1−f b0++

r6 b1 ≥ 2t+1−f a1++

r14, r15, r16 a0 ≥ n−t−f —
r8 b1 ≥ t+1−f b1++

r9 b1 ≥ 2t+1−f a1++

r10 b0 ≥ 2t+1−f a0++

r11 b0 ≥ t+1−f b0++

r12 b1 ≥ 2t+1−f —
r13 b0 ≥ 2t+1−f —
r7, r18, r19 a1 ≥ n−t−f —
r16 a0 ≥ n−t−f —
r17 a0+a1 ≥ n−t−f —
r20, r21, r22 true —

Table 3 The rules of the threshold automaton from Fig. 3. We omit self loops that have trivial
guard true and no update.

If there exists R ∈ N with r = 2R−1, then □
(
κ[M0, R] = 0) holds.

If there exists R ∈ N with r = 2R, then □ (κ[M ′
1, R] = 0

)
holds.

Proof. By definition of an (r mod 2)-good execution, we know that in this particular invoca-
tion of bv-broadcast, all correct processes bv-deliver r mod 2 first. It follows from Lemma 4,
that all correct processes start the next round with estimate set to r mod 2. There are two
cases to consider depending on the parity of the round: If r mod 2 = 1, then this is the first
round of superround R, i.e., r = 2R− 1. As a result, □

(
κ[M0, R] = 0

)
. If r mod 2 = 0, then

this is the second round of superround R, i.e., r = 2R. As a result, □
(
κ[M ′

1, R] = 0
)
. ◀

F Specification of the termination property in the simplified threshold
automaton for consensus algorithm

The reliable communication assumption and the properties guaranteed by the bv-broadcast
are expressed as preconditions for s_round_termination. The progress conditions work
exactly the same as in [10]. However, since the shared counters representing the bv-broadcast
execution do not represent regular messages, we cannot directly use the reliable communication
assumption. Instead, we use the properties of the bv-broadcast that we proved in a separate
automaton.

In practice, instead of using progress preconditions on the bv-broadcast counters in
s_round_termination, such as:

(locM == 0 || bvb1 < 1) && (locM == 0 || bvb0 < 1) &&
(locM1 == 0 || bvb0 < 1) && (locM0 == 0 || bvb1 < 1)

we use the following:
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/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) && (locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) && (locM0 == 0 || aux1 == 0) &&

One can note that we do not use BV-Justification as a precondition in this specification.
Instead, the BV-Justification property is baked in the structure of the simplified threshold
automaton (in the guard of the transition M →M0, M1).

The complete specification of the termination property follows:
s_round_termination:
<>[](

(locV0 == 0) &&
(locV1 == 0) &&

/* BV-Termination */
(locM == 0) &&
/* BV-Obligation */
(locM1 == 0 || bvb0 < T + 1) &&
(locM0 == 0 || bvb1 < T + 1) &&
/* BV-Uniformity */
(locM1 == 0 || aux0 == 0) &&
(locM0 == 0 || aux1 == 0) &&

/* Business as usual */
(locM1 == 0 || aux1 < N - T) &&
(locM0 == 0 || aux0 < N - T) &&
(locM01 == 0 || aux0 + aux1 < N - T) &&

(locD1 == 0) &&
(locE0 == 0) &&
(locE1 == 0) &&

/* BV-Termination */
(locMx == 0 ) &&
/* BV-Obligation */
(locM1x == 0 || bvb0x < T + 1) &&
(locM0x == 0 || bvb1x < T + 1) &&
/* BV-Uniformity */
(locM1x == 0 || aux0x == 0) &&
(locM0x == 0 || aux1x == 0) &&

(locM1x == 0 || aux1x < N - T) &&
(locM0x == 0 || aux0x < N - T) &&
(locM01x == 0 || aux1x < N - T) &&
(locM01x == 0 || aux0x < N - T) &&

(locM01x == 0 || aux0x + aux1x < N - T)
)

->
<>(

locV0 == 0 &&
locV1 == 0 &&
locM == 0 &&
locM0 == 0 &&
locM1 == 0 &&
locM01 == 0 &&
locE0 == 0 &&
locE1 == 0 &&
locD1 == 0 &&
locMx == 0 &&
locM0x == 0 &&
locM1x == 0 &&
locM01x == 0

);

inv1_0: <>(locD0 != 0) -> [](locD1 == 0 && locE1x == 0);

inv2_0: [](locV0 == 0) -> [](locD0 == 0 && locE0x == 0);

inv1_1: <>(locD1 != 0) -> [](locD0 == 0 && locE0x == 0);

inv2_1: [](locV1 == 0) -> [](locD1 == 0 && locE1x == 0);

dec_0: [](locV0 == 0) -> [](locE0 == 0 && locE1 == 0);

dec_1: [](locV1 == 0) -> [](locE0x == 0 && locE1x == 0);

good_0: [](locM0 == 0) -> [](locD0 == 0 && locE0x == 0);

good_1: [](locM1x == 0) -> [](locE1x == 0);
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