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Abstract

Sharding is a well known technique to scale distributed systems horizontally. With the recent advent of

blockchains, which typically run in open networks in the presence of malicious participants, new forms of

sharding techniques have arisen. While the database sharding was typically seemless for the client of the

system, blockchain sharding allows clients to select the location of their data, or the shardchain where their

contract executes.

A critical requirement in this new adversarial environment is for clients to be able to consult the current

sharding state without being fooled by malicious participants, a property we refer to as transparency.

In this chapter, we survey classic sharding techniques inherited from the database literature and more recent

sharding techniques inherited from the blockchain literature. Finally, we focus on a recent technique that builds

upon these techniques and exploits the smart contract logic to adjust sharding on demand and the transparency

of the blockchain to let clients consult the current sharding state securely.

1 Introduction

Sharding is a term originally tossed in the context of massively multiplayer online games, in which parallel worlds

use the same database source but evolve different database runtime dedicated to different players. One explanation

for the term “shard” stems from the game Ultima Online whose fictional story mentioned shattering a crystal into

shards, holding copies of a world continent, such that these copies evolve in parallel [15].

Due to the growing amount of transactions, sharding became popular to scale databases horizontally [6, 8].

The sharding technique consists of replicating a database structure across multiple machines while splitting its

dataset into chunks, each maintained by a distinct set of machines, called a shard. In particular by assigning

different machines to the maintenance of separate rows of a table, sharding lowers the size of the database index

at each machine. This allows to speed up the information retrieval by searching into a smaller index. By adding

resources, sharding helps increasing the performance of database services. In particular, sharding can be used to

dynamically adjust the provisioning of resources based on the demand, a notion often referred to as elasticity [23,

22, 24, 2].

Due to the scalability limitations of classic blockchains [20, 29], sharding has naturally been applied to

blockchains [19, 14, 32] in the hope of scaling blockchains horizontally. However, the context of blockchains

differs significantly from the traditional context in which databases operate: instead of running in the closed

networks of datacenters, blockchains typically run in open networks where users are incentivized to steal digital

assets. The arbitrary (byzantine) failure model that can mimic a coalition of malicious users is thus a central

problem of blockchains and differs radically from the crash failure or isolated arbitrary failure models present in

datacenters. As an example, Figure 1 illustrates two different contexts in which the techniques used for database

sharding and blockchain sharding can be implemented.

Due to the growing demand for decentralized applications (DApps), the blockchain sharding techniques are

evolving from static sharding techniques [25] to more dynamic sharding techniques [1]. These dynamic sharding

techniques promise the elasticity of database sharding [23, 22, 24, 2]: they aim at adjusting the resource provi-

sioning based on the demand. In some cases, the user could exploit this dynamism by deploying its popular DApp

1



Figure 1: The database sharding (left) is typically using a load balancer to direct requests to the right shards run-

ning in closed networks whereas the blockchain sharding (right) typically uses different chains, like a mainchain

and multiple shardchains, that run in open networks where malicious participants can collude to attack the system.

in a separate blockchain shard to avoid the congestion in other shards. In some other cases, one could migrate less

demanded DApps in the same shard to decommission resources.

Unfortunately, most dynamic blockchain sharding solutions focus on creating or modifying shards [16], with-

out considering how to access the existing sharding state. In other words the shard state is not transparent. If a

user requests to adjust the amount of resources in a shard, then it typically ignores whether this adjustment was

successful. The problem of offering transparency is not easy precisely because of the open networks in which the

blockchains operate. A user could for example easily be fooled by a malicious participants that misinforms it of

the success of its request, while the malicious participant never relayed it to the rest of the blockchain participants.

In this chapter, we survey existing sharding techniques and describe a new design that could leverage the

inherent transparency of the blockchain to offer dynamic sharding that can be securely monitored, despite the

presence of byzantine failures.

The rest of the chapter is organized as follows. In Section 2 we present the preliminaries. In Section 3, we

present the database sharding techniques and in Section 4, we survey the blockchain sharding techniques. We

present transparent sharding in Section 5. Finally, we present the related work in Section 6 and conclude in

Section 7.

2 Preliminaries

We consider a distributed system of n nodes that exchange messages via a network. The failure model is different

depending on the type of networks. The network can be closed, in which case nodes need to be authorized to

join the network or open, in which case any nodes can join the network. Examples of closed and open networks

are a local area network within a single datacenter and the Internet, respectively. It is typically more frequent to

observe arbitrary failures in an open network than in a closed network, simply because one does not control the

nodes joining the open network or their motivations.

In general, we consider that nodes communicate via point-to-point reliable channel. Hence if a node sends

a message to another node and none of them fail, then the message is eventually received. Note that point-to-

point channels can be implemented using secure channel. At times, we consider that every message takes less

than some amount of time to be delivered, in which case we say that the network is synchronous. However, it is

hard to predict the time a message will take in an open network due to various reasons (e.g., congestion, failures,

disasters) that are out of the control of any administrator. Hence we often relax the synchrony assumption and

assume that the network is partially synchronous [11] in that the bound exists but is not known by the protocol.

We assume the presence of up to f nodes that can fail among the n nodes of the group (we consider the group

as either all nodes or just the nodes taking part in a shard). And we consider two types of failures: crash failures

after which the faulty node stops acting and does no longer send messages and byzantine failures, when the faulty

node behaves arbitrarily by not necessarily following the protocol. Interestingly, since byzantine nodes can store

2



and send any arbitrary data to other nodes, it is important to provide a secure way for correct (i.e., non-faulty)

nodes to retrieve the correct information. The property by which the system offers a node the possibility to retrieve

correct information about the system is called transparency.

Blockchains are distributed systems [20]. Upon receiving client transactions, blockchain nodes first validate

and broadcast them to the blockchain network. Then, all correct nodes in the blockchain agree upon the order to

execute client transactions. This is known as reaching consensus on the order of transactions. Subsequently, all

correct nodes execute transactions according to the order determined by consensus, reaching the same final state.

After execution, the blockchain nodes store the transactions in blocks and each block points to the previous block

forming a chain of blocks (i.e., an immutable ledger), hence the name “blockchain”. Finally, the client queries

the blockchain to retrieve the result of the execution from the blockchain nodes. Just like databases, blockchains

store the results of transaction executions, however, blockchains differ by the openness of the network in which

they typically operate and the crytpography they require to avoid trusting a central entity.

3 Database Sharding

Sharding comes originally from the database literature where it proved instrumental for optimizing performance.

It offers a natural way to adjust resource provisioning to serve the demand.

3.1 Storage Database Sharding

Google has been influential in the design of novel sharding techniques to scale its storage systems, in particular

with BigTable [6] and Spanner [8].

BigTable [6] offers eventual consistency to NoSQL data by replicating the data on clusters of machines to

offer horizontal scalability. It is optimized to offer low latency single-value reads and writes. The client requests

a front-end server that redirects the request to a bigtable cluster, whose nodes, called tablet servers handle subsets

of requests. One can improve the performance by adding tablet servers to the cluster. Bigtable stores data in

tables, each being a key-value map, that is sharded into blocks of contiguous rows but tablet servers simply points

to the data without hosting them, hence rebalancing tablets from one node to another is fast.

Spanner [8] is an SQL distributed database that scales horizontally. Rows are organized lexicographically by

primary keys. Spanner replicates data across multiple zones. The data is sharded by ranges of rows across the

multiple replicas of a zone. The replicas execute the Paxos consensus protocol to guarantee that consistent data

are sufficiently replicated to tolerate potential crash failures before being committed. In case of failures, the data

are migrated across machines to balance the load.

3.2 Dynamic Database Sharding

Dynamic sharding consists of modifying the sharding state at runtime. It is key to provide database elasticity.

Slicer [2] is a dynamic sharding solution for datacenters that proved effective to allocate resources to web-

service frontends and increase the efficiency of web caches. Slicer derives a key from a request and exploits a

centralized slicing service that monitors load and task availability to map key ranges or slices to tasks. Slicer

combines with the Google Stubby’s RPC system to balance tasks across datacenters. Slicer minimizes resource

usage by 63% compared to a static sharding technique. Slicer uses a centralized algorithm rather than a client-

based consistent hashing.

Accordion [22] offers the possibility to scale out and scale in a distributed database system by provisioning

more or less servers as the load varies. Usually, databases are horizontally partitioned such that each partition is

owned by exactly one server. The partitioning algorithm is key to the performance of the system but the placement

of partitions is generally static. Accordion makes this mapping of partition to servers dynamic. E-Store [24] is an

elastic technique for on-line transaction processing that exploits a two-tier horizontal partitioning technique that

migrates data when load imbalance is detected to address the problem of the workloads being skewed towards the

same resources.
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Basil [23] presents a vertical database sharding approach for ACID transactions, maintaining a sharded key-

value store in a byzantine fault-tolerant setting. This facilitates the execution of transactions concurrently in

different shards. Basil requires the clients (i.e., the transaction senders) to decide to commit or abort the transac-

tions based on the votes of replicas in a shard. Consequently, the client relays the outcome to the application. By

ensuring byzantine isolation, whereby correct clients observe a state of the database produced by correct clients

alone, and byzantine independence, whereby byzantine participants cannot collude to abort a client’s transaction,

Basil provides safety and liveness. However, the dynamism of Basil is limited as it does not explain how to change

the number of shards at runtime. It also requires 5f+1 replicas per shard to ensure the aforementioned properties.

4 Blockchain Sharding

As blockchain typically operate in open networks, the blockchain sharding solutions must typically cope with

byzantine failures. This is why multiple probabilistic techniques able to rotate the shard membership in an unpre-

dictable way have become popular.

4.1 Deterministic sharding

Deterministic sharding [5, 7, 10] consists of assigning transactions to shards deterministically. The advantage of

such an approach is that the current shard state is inherently transparent as anyone can infer the shard responsible

for each transaction by simply computing a local deterministic function.

SharPer [5] creates shards deterministically based on geographical distribution. Nodes that are located close to

each other are assigned to the same shard. Red Belly Blockchain [10] shards only the verification without sharding

the consensus nodes. The motivation stems from the fact that the verification of cryptographic signatures is CPU

intensive. Instead of having all nodes verifying all transactions, Red Belly Blockchain assigns deterministically

each transaction, based on its hash, to two subsets of nodes: its f + 1 primary verifiers and its f secondary

verifiers. The secondary verifiers wait for some time for the primary verifiers to verify the transaction. If the

primary verifiers are too slow or unresponsive, then the secondary verifiers start verifying the transaction. A node

detects whether a transaction is properly signed once it receives the same response from f + 1 distinct verifiers.

The drawback of deterministic sharding is that the outcome of the function is predictable, which makes the

system vulnerable to attacks. In particular, an attacker can exploit this information in order to bribe the nodes

that are responsible of a shard. If the attacker manages to bribe a sufficient portion of a shard then it can prevent

the members of this shard from reaching consensus, potentially leading the system to an inconsistent state. Such

inconsistent states are called “forks” and are exploited by various attacks [21, 12] to double spend. SSChain [7]

allows nodes to freely join a shard deterministically. To avoid shard-takeovers SSChain follows a two-chained

approach: a root chain that verifies the blocks coming from each shard before committing them, and a shardchain

that agrees upon blocks to send to the root chain. The root chain is able to make an accurate verification of shard

blocks by keeping the full state of the blockchain.

4.2 Probabilistic sharding

To cope with the predictability of deterministic sharding, probabilistic sharding protocols were proposed [14,

19, 32, 13]. Probabilistic sharding relies on a mainchain also known as beacon chain, final committee, or main

committee, that performs administrative tasks like creating new shards and synchronizing the states of multiple

shards. The mainchain creates each shard, also called shardchain, probabilistically which maintains separate

state, transactions, blocks and a chain. Each shard verifies a unique subset of transactions and executes consen-

sus separately on those transactions. Unlike deterministic sharding, the probabilistic creation of shards mitigate

risks of shard-takeovers. For this purpose, probabilistic sharding mechanisms typically select a shard size and a

number of shards to guarantee with high probability that the shard members can reach a consistent state through

consensus. In particular, when the network is open, one cannot predict the time a message takes to be delivered,

hence the sharding mechanisms must ensure that less than 1/3 of the shard members are byzantine nodes with
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high probability [11]. In probabilistic sharding to mitigate bribery from slowly-adaptive adversaries, shards are

changed within a specific time period known as an epoch. This is to avoid a shard-takeover potentially causing

double spending.

OmniLedger [14] is a permissionless sharded blockchain that creates shards probabilisitically based on the

RANDHOUND protocol and a VRF. A shard remains active in a time period known as an epoch. OmniLedger

assumes synchrony for shard creation and partial synchrony in a shard epoch. OmniLedger handles cross-shard

transactions using an atomic commit-abort protocol run by clients sending transactions. However, clients can

censor cross-shard transactions as they are tasked with creating cross-shard transactions. OmniLedger has per-

formance enhancements such as concurrent processing of non-conflicting transactions in a shard as well as using

state blocks as checkpoints to reduce the size of the downloaded blockchain when syncing. The fault tolerance of

clients is not mentioned. Assuming synchrony for shard creation is not realistic for real-world cases.

RapidChain [32] assumes synchrony within an epoch but assumes partial synchrony in all other parts of the

protocol. RapidChain’s probabilistic shard creation involves a reference committee using proof-of-work (PoW)

coupled with randomization to assign nodes to shards in a way that minimizes the probability of f > n/3 where

f is the number of byzantine nodes and n is the number of shard nodes.

In contrast, Monoxide [27] assumes asynchrony and creates zones (i.e., shards) by assigning random identi-

fiers to miners which assign those miners to zones. Each zone processes transactions, keeps state and executes

consensus separately. Within a zone Monoxide uses PoW to agree on the order of transactions, hence making

the consensus probabilistic. To mitigate adversaries centralizing their mining power to one zone to take over a

zone, Monoxide [27] introduces a novel proof-of-work scheme known as Chu-ko-nu mining. This scheme allows

a miner to create a block in any zone by solving a PoW puzzle, which evenly distributes the mining power across

all zones, preventing it from being gathered to a single zone. Cross zone transactions are processed in an asyn-

chronous and lock-free manner that allows the zones to concurrently process transactions. However, the number

of zones in Monoxide is not adjustable at runtime to the best of our knowledge.

The next major release of Ethereum known as Ethereum 2.0 is said to contain a probabilistic sharding mech-

anism consisting of a fixed set of 64 shard chains and a single beacon chain [13]. Nodes require to escrow a

deposit to Eth2.0 before assigning them to shardchains probabilistically using a random beacon. Eth2.0 requires

a minimum of 111 nodes to be in a shard [28] to lower the probability of having 2/3 adversarial nodes in a shard

to 2−40. Each shard runs a series of 64 Casper FFG consensus instances per epoch, after which a new block

containing the shard states is appended to the beacon chain.

4.3 Probabilistic transaction sharding

Probabilistic transaction sharding creates shards probabilistically and inherits all characteristics of probabilistic

sharding except it only shards transactions. In other words it assigns transactions to a subset of nodes (i.e., shards).

The state, chain and blocks are not sharded.

Elastico [19] is a permissionless byzantine fault tolerant blockchain that partitions the network into shards

that only process a subset of the entire set of transactions. Elastico assumes partial synchrony and achieves linear

scalability. Since Elastico is permissionless, Sybil resistance is achieved by establishing identities using a PoW

puzzle, public key and IP addresses. An adversary’s capability to create multiple identities is limited since they

require to solve a PoW puzzle. Elastico consists of a final committee and multiple committees each running

its own BFT consensus. Based on the generated node identities and a random beacon generated by the final

committee, nodes are assigned to shard committees per epoch. The final committee receives all agreed values

from each committee at the end of an epoch and reaches consensus using a BFT consensus. Note that epochs in

Elastico are based on an adjustable value N such that N is the number of blocks. To tolerate adaptive adversaries,

Elastico rotates entire committees after an epoch, in contrast to the gradual or constant number of nodes rotated

in other probabilistic approaches [13, 32]. As a result, Elastico nodes, despite being assigned to shards, require to

store the entire state of all shards.

Zilliqa [25] exploits PoW and a random beacon to select nodes into a “DS committee”, which is Zilliqa’s

mainchain. Every newly elected node in the DS committee churns out the oldest node making sure that at all
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times the most recently elected n nodes are in the DS committee. Nodes wanting to join shards use PoW and a

random beacon generated by the DS committee to solve a puzzle and derive a nonce which is submitted to the DS

committee. By reaching consensus on nonces, the DS committee assigns nodes to shards probabilistically where

each shard processes a subset of transactions.

4.4 Probabilistic state sharding

Probabilistic state sharding creates shards probabilistically by only sharding states. It inherits all other character-

istics of probabilistic sharding.

Al-Bassam et al. [3] presents ChainSpace that assigns smart contract objects to a set of nodes randomly based

on Ψ(o) = id(o) mod K where K represents the constant number of shards and id(o) is the SHA256 hash

of the object. Since smart contract objects are assigned to separate shards, each shard keeps a separate state

corresponding to the smart contract objects. ChainSpace assumes asynchronous communications and uses BFT-

Smart for consensus.

In the NEAR protocol1, the set of nodes that have the highest stake in an epoch are randomly assigned to

shards probabilistically. Each shard keeps a separate state. A node can be a member of one or many shards. When

a node is a member of multiple shards it keeps the state of all those shards.

5 Transparent dynamic sharding

As recent sharding techniques offer blockchain users the ability to control the locations of their data or to select

the shard in which they execute their contract, it has become crucial for sharding to be transparent.

5.1 Dynamic blockchain sharding

Dynamic blockchain sharding (DBS) [1] is a blockchain sharding protocol made transparent by exploiting the

blockchain transparency itself. It shares commonalities with traditional sharding from the database literature [22,

24, 2, 23] that offer elasticity: new shards can be created and existing shards can be closed at runtime, hence

adjusting potentially the provisioning of resources based on the demand. It differs from traditional sharding

from the database literature by tolerating byzantine participants. It runs the Democratic Byzantine Fault Tolerant

consensus protocol [9] so that any shard adjustment is decided by all correct nodes unanimously, despite partial

synchrony and the presence of up to f < n/4 byzantine nodes, and it rotates shards probabilistically to cope with

slowly-adaptive adversaries, similar to probabilistic sharding approaches [14, 19, 32, 13].

5.2 Transparency

To achieve transparency, DBS differs from other techniques by exploiting the smart contract logic to adjust the

sharding state. Initially, when the blockchain starts, it is equiped with a built-in smart contract that exposes to

client users the functions to create a new shard by spawning potentially more computational resources, to close

an existing shard by decommissioning computational resources, and to adjust the size of the existing shards at

runtime.

As each function invocation to adjust the shards consists of a blockchain transaction request that gets securely

stored in the distributed ledger (like any other blockchain transactions), a node simply needs to consult the current

state of the mainchain to derive the most current sharding state. This state indicates the amount of shards that

exist, the number of nodes in each shard, the locations (e.g., static IP addresses, domain names) of these nodes.

Note that if the client needs to retrieve the state of the shard (e.g., its DApps, past transactions), then the client

would need to download the corresponding shardchain as well.

1https://near.org/papers/economics-in-sharded-blockchain/
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When a client wants to download the mainchain, it first contacts the nodes running the mainchain. Note that

it is reasonable to assume that a client can retrieve the nodes of the mainchain, otherwise this client would not

be able to use the service (classic blockchains like Bitcoin [20] and Ethereum [29] use hard-coded DNS seed

for clients to retrieve blockchain nodes). The client then asks a copy of the blockchains to the mainchain nodes.

Upon confirmation of the current state of the mainchain by f + 1 distinct mainchain nodes, then it knows that

this mainchain state is correct. This is because f is the maximum number of byzantine nodes in the system by

assumption, so there cannot be f + 1 malicious nodes responding to the client with a fake state. Note that we

could hardcode directly the domain names of the nodes hosting the shards but every adjustment to the shard would

require a lengthy DNS reconfiguration.

5.3 Mainchain and shardchains

DBS lets existing users of the initial blockchain, called the mainchain, become a user of a shard, called a shard-

chain, by depositing assets into the mainchain while invoking the shard creation function. These deposited assets

remains frozen in the mainnet but can be used to transact in the shardchain for the lifetime of the shardchain.

When the shardchain is closed, the balances are reconciled and the remaining deposits are returned to their users.

DBS was shown instrumental to accelerate the performance of the blockchain almost linearly with the number of

shards in good executions. In case of unexpected network delays, DBS may not succeed in adjusting the sharding

during the first attempt, then it retries after allocating more time for the second attempt and so forth. As the

network is partially synchronous, there is a point in the execution where DBS has allocated a sufficient amount of

time for the sharding adjustment to succeed.

Once the client has successfully downloaded the mainchain, as explained in Section 5.2, then it is easy to

reconstruct the current sharding state. The client can inspect the history of transactions stored in the mainchain

and retrieves one by one the smart contract function invocations that created, closed and altered the shards. By

replaying these transactions, the client can derive the current sharding state, by retrieving exactly the resources

(computational nodes involved in running the shards) and the users (the users that deposited assets to access each

shardchain).

6 Related work

There exist several surveys on blockchain sharding [26, 31, 30]. In this section, we discuss similarities and

disparities of these surveys with our blockchain sharding survery.

In [26], the authors provide a systemic and comprehensive review of blockchain sharding methods. First,

they introduce the basic concepts of blockchain sharding such as identity establishment, randomness generation

for shard creation, intra-shard consensus, cross-shard transactions, epochs, and shard committee reconfiguration.

Then they discuss the key characteristics of state-of-the art sharding methods and they summarized in a table based

on shard creation method, network model, intra-shard consensus, inter-shard consensus, safety and performance.

Our survey in contrast classifies database sharding and then blockchain sharding methods based on common

characteristics.

Yu et al. [31] present a systemic survey of blockchain sharding techniques for permissionless blockchains.

However they do not cover sharding blockchain works such as Red Belly Blockchain [10], NEAR 2 and Zilliqa [25].

This survey, similar to Sok [26] summarizes the surveyed blockchain sharding techniques according to their key

characteristics but in contrast does not discuss database sharding approaches and its lead up to blockchain shard-

ing.

Xi et al. [30] perform a comprehensive survey on blockchain sharding that includes Monoxide [27], Elas-

tico [19], OmniLedger [14], RapidChain [32], ChainSpace [4], Ethereum2.0 [13] and TEEEChain [17]. They

identify the following characteristics of each sharded blockchain: the network model (e.g. synchronous, partially-

synchronous), node allocation method into shards (e.g. PoW, random beacon, deterministic, etc), transaction

2https://near.org/papers/economics-in-sharded-blockchain/
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model (e.g. UTXO, account-based), intra-shard consensus algorithm, threat model, cross-shard transaction pro-

cessing techniques and performance. Similar to our work, Xi et al. [30] classify blockchain sharding into three

categories. Namely, network sharding, transaction sharding and state sharding. However, they do not explicitly

assign sharded blockchains to these three categories.

In [18], the authors offer a systematic analysis of existing sharded blockchain systems. They decompose

the blockchains that benefit from sharding into functional components, classify these systems, and analyze their

components. They present a layered decomposition similar to the layers 0, 1, 2 of Xi et al. [30] but called them

network, consensus and application layers. In their context, sharding consists of splitting the work so that each

shard generates its own independent chains completely disconnected from other chains. As a result, they consider

solutions that partially order transactions. This is a distinction with some of the sharding techniques we consider,

like verification sharding, that totally order all transactions [10].

Interestingly, the large body of work on blockchain sharding explains how shards can be created or modified

despite the presence of malicious participants, however, they do not explain how one can retrieve the current

sharding state in a secure way. By contrast, we consider transparency as an important property to allow users to

retrieve the current state of the blockchain sharding despite the presence of malicious participants.

7 Conclusion

In this chapter, we surveyed sharding techniques both in the database context and in the blockchain context. Al-

though the blockchain sharding techniques are inspired by the database context, they raise an interesting challenge

related to the openness of the network in which they execute. In this novel context, an interesting problem is the

one of transparency where the users can retrieve the correct sharding state despite the presence of malicious coali-

tions. We presented a recent solution to this problem that lets users adjust the shards dynamically and consult the

current sharding state securely through transparency.
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