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Abstract In this paper, we consider the problem of

cross-chain payment whereby customers of different es-

crows – implemented by a bank or a blockchain smart

contract – successfully transfer digital assets without

trusting each other. Prior to this work, cross-chain pay-

ment problems did not require this success, or any form

of progress. We introduce a new specification formal-

ism called Asynchronous Networks of Timed Automata

(ANTA) to formalise such protocols. We present the

first cross-chain payment protocol that ensures termi-

nation in a bounded amount of time and works correctly

in the presence of clock drift. We then demonstrate that

it is impossible to solve this problem without assuming

synchrony, in the sense that each message is guaran-

teed to arrive within a known amount of time. Yet, we

solve an eventually terminating weaker variant of this
problem, where success is conditional on the patience

of the participants, without assuming synchrony, and

in the presence of Byzantine failures. We also discuss

the relation with the recently defined cross-chain deals.
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1 Introduction

With the advent of various payment protocols comes

the problem of interoperability between them. A sim-

ple way for users of different protocols to interact is to

do a cross-chain payment whereby intermediaries can

help customer Alice transfer digital assets to Bob even

though Alice and Bob own accounts in different banks

or blockchains.

A payment between two customers of the same bank

is simple. Alice just informs the bank that she wants to

transfer a certain amount from her account to the ac-

count of the receiving party Bob; and then the bank

carries out this request. Alice and Bob do not need

to trust each other but need to trust the bank to not

withdraw the money from Alice’s account and never

deposit it on Bob’s. As Bob trusts the bank, he can is-

sue a signed certificate assuring Alice that if the bank

says that he has been paid, then Alice is off the hook,

and any further disputes about possible non-payment to

Bob are between Bob and the bank. To prevent litiga-

tion against her, Alice simply needs this statement from

Bob as well as a statement that Bob has been paid. As

Alice does not trust Bob, this second statement must

come from the bank.

To generalise this protocol to payments between cus-

tomers of different banks, it helps if the two banks have

ways to transfer assets to each other, and moreover

trust each other. A sound protocol is:

(i) Bob provides Alice with a signed statement that

all he requires for her to have satisfied her payment
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obligation, is a statement from his own bank saying

that he has been paid.

(ii) Alice’s bank promises Alice that if she transfers

money to Bob, she will get a statement from Bob’s

bank that the transfer has been carried out.

1. Alice orders her bank to initiate the transfer to Bob.

2. Alice’s bank withdraws the money from her ac-

count, and sends it to Bob’s bank.

3a. Bob’s bank places the money in Bob’s account

3b. and notifies Alice’s bank of this.

4. Alice’s bank forwards to Alice the statement by

Bob’s bank saying that Bob has been paid.

This is roughly how payments between customers of dif-

ferent banks happen in the world of banking. Step (ii)

is part of general banking agreements, not specific to

Alice and Bob. Step (i) is typically left implicit in ne-

gotiations between Alice and Bob. All that Alice needs

is the combination of steps (i), (ii) and 4 above. Once

step (i) and (ii) have been made, she confidently takes

step 1, knowing that this will be followed by Step 4.

Alice’s bank is willing to take step (ii) because it trusts

Bob’s bank, in the sense that step 2 will be followed by

Step 3b. In fact, when the two banks trust each other,

and have ways to transfer assets to each other, they can

abstractly be seen as one bigger bank, and the problem

becomes similar to the problem of payments between

customers of the same bank.

The problem becomes more interesting when the

banks cannot transfer assets to each other and the only

trust is the one of customers to their own bank. Typ-

ical solutions consist of considering banks as escrows

and having intermediaries, like Chloe, that play the role

of connectors between these escrows. Figure 1 depicts

Alice

Escrow 0

Chloe

Escrow 1

Bob

Fig. 1: Trust relations

the relations of trust between three customers and two

escrows, and where the flow of money is from left to

right. Thomas & Schwartz [24] propose two cross-chain

payment protocols: (i) the universal protocol requires

synchrony [7] in that every message between partici-

pants is received within a known upper bound and the

clock drift between participants is bounded;1 (ii) the

atomic protocol merely requires partial synchrony [7],

1 In [24] proper clock drift is not considered; instead clocks
may drift up to a bounded amount of time.

meaning these upperbounds exist but are not known, or

that it is known that after a finite but unknown amount

of time these upperbounds will come into effect; it co-

ordinates transfers using an ad-hoc group of notaries,

selected by the participants, and relies on more than

two-third of the notaries to be reliable. Herlihy, Liskov

& Shrira [14] represent a cross-chain payment as a deal

matrix M where Mi,j characterises a transfer of some

asset from participant i to participant j. They offer a

timelock2 protocol that requires synchrony, and a certi-

fied blockchain protocol that requires partial synchrony

and a certified blockchain. However, the synchronous

solutions of [24] and [14] do not consider clock drift,

and for their partially synchronous solutions no success

guarantees are established.

Here we introduce a new specification formalism

for cross-chain payment protocols, called Asynchronous

Networks of Timed Automata (ANTA). ANTA simplify

the representation of cross-chain payment to a fam-

ily of customer automata and a family of escrow au-

tomata that describe states from which outgoing tran-

sitions are immediately enabled and states from which

they are conditionally enabled. These automata allow

us to reason formally about the liveness and safety of

cross-chain payment protocols. ANTA differ from Alur

& Dill’s timed automata [1], their networks [4] and I/O

automata [18] in subtle ways, tuned to the problem at

hand. We illustrate ANTA by specifying the universal

protocol from [24] and proving that it solves the time-

bounded variant of the cross-chain payment problem.

Moreover, we fine-tune the protocol to work correctly

even in the presence of clock drift.

We also show that there exists no algorithm that can

solve the cross-chain payment problem without assum-

ing synchrony, even if we relax the problem statement

by merely requiring eventual (instead of time-bounded)

termination, and even if all participants either behave

correctly or simply crash (rather then displaying Byzan-

tine behaviour). This impossibility result relies on clas-

sic indistinguishability arguments from the distributed

computing literature and highlights an interesting rela-

tion between the cross-chain payment problem and the

well-known transaction commit problem [10,12,11]. In-

spired by this earlier work on the transaction commit,

we define a weaker variant of the cross-chain payment

problem that relaxes the liveness guarantees to be solv-

able with partial synchrony. This new problem differs

from the transaction commit problem and its variants

like the non-blocking weak atomic commit problem [11]

by tolerating Byzantine failures. It is also different from

the problems solved in [24] and [14] in a partially syn-

chronous setting, by requiring some liveness. In partic-

2 https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts.

https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
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ular, a protocol where all participants always abort is

not permitted by our problem specification. We pro-

pose an algorithm that solves this variant only assum-

ing partial synchrony, and in the presence of Byzantine

failures, using the ANTA formalism.

Interestingly, the classical notion of atomicity, mean-

ing that the entire transaction goes through, or is rolled

back completely, is not appropriate for this kind of pro-

tocols. In the words of [14], “This notion of atomicity

cannot be guaranteed when parties are potentially ma-

licious: the best one can do is to ensure that honest

parties cannot be cheated.”

2 Model and definitions

2.1 Participants and money

We assume n banks or escrows e0, . . . , en−1 and n+1

customers c0, . . . , cn. These 2n+1 processes are called

participants. An escrow is a specific type of process that

can handle values for other parties in a predefined man-

ner. Customer c0 is Alice and cn is Bob. The customers

c1, . . . , cn−1 are intermediaries in the interaction be-

tween Alice and Bob; we call them connectors, named

Chloei. Customers ci−1 and ci have accounts at escrow

ei−1, and trust this escrow (i = 1, . . . , n). We do not

assume any other relations of trust.

c0

e0

c1

e1

. . . cn−1

en−1

cn

Fig. 2: Customers and escrows.

We expect that in most applications n=2, meaning that

we have a single connector Chloe. It could for instance

be that the two escrows e1 and e1 are the Bitcoin and

Etherium networks. Alice want to pay Bob in Bitcoins,

but Bob wants to receive Ethers. Chloe is in the busi-

ness of facilitating such transactions; she is a customer

of both Bitcoin and Etherium. We also treat the case of

multiple connectors, as this can be done without much

additional complications.

Topology. Not every customer can send value to any

other. Here we assume that value can be transferred

directly only between customers of the same escrow.

Moreover, any transfer between two customers of an

escrow can be modelled as two transfers: one from the

originating customer to the escrow, and one from the

escrow to the receiving customer. Thus, the connections

from Figure 2 describe both the relations of trust and

the possible transfers of value. The case n = 2 was

depicted in Figure 1.

Note that the total space of customers and escrows

can be an arbitrary bipartite graph. We need to con-

sider, however, only those escrows and connectors that

lay on the path from Alice to Bob that is chosen for a

particular transfer.

Placing value in escrow. Customers can send a specific

type of message to ask their escrow to put money aside

for them. In particular, two customers may make a deal

with an escrow to place value originating from the first

customer “in escrow”, and, after a predefined period,

depending on which conditions are met, either complete

the transfer to the second customer, or return the value

to the first one. This predefined period is relative to the

escrow’s local time. The clocks of the 2n+ 1 processes

are not necessarily synchronised (see 2.3).

Abstracting the transfer of value. There are many ways

of transferring value from one party to another: one

could give someone a physical object, such as cash or

gold. One could also send a transaction to transfer cryp-

tocurrency or tokens on a distributed ledger, or send a

specific message on some banking application. We do

not care of how this process is implemented, and we

suppose that the participants have already agreed upon

the value they expect to be transferred. We use there-

fore a unified notation: s(p, $) to say “send a message

to trigger the transfer of some previously agreed-upon

value to participant p”.

Chloe’s fee. As Chloe helps out transferring value from

Alice to Bob, it is only reasonable that she is paid a

small commission. Hence the value transferred from Al-

ice to Chloe might be larger than the value transferred

from Chloe to Bob. Additionally, these values may be

expressed in different currencies, with possibly fluctu-

ating exchange rates, or they may be objects such as

bags of flour that have a quality-dependent value. De-

ciding which values to transfer may thus be an interest-

ing problem. However, it is entirely orthogonal to the

matter discussed in this paper, and hence we shall not

consider it any further.

2.2 Communication and computation model

The following model holds for the rest of the paper.

When necessary, we will mention explicitly if we have

to add some assumptions, such as synchrony of com-

munication.
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Communication. We assume that the network does not

lose, duplicate, modify or create messages. However,

messages can be delayed arbitrarily long: by default we

assume asynchronous communication.

The assumption that messages are not duplicated

does not restrict generality, for the sender could always

equip messages with a unique sequence number, with

the understanding that the receiver drops all messages

that by inspection of this sequence number can be seen

to be duplicates of an already received message.

Likewise, message loss can be mitigated by a re-

transmit and acknowledgement protocol in which the

sender retransmits each outgoing message periodically

until it either receives an acknowledgement or interferes

from context that the message must have been received.

The recipient is then asked to reply to each receipt of a

message with an acknowledgement, to stop the retans-

missions. The only way this protocol can fail to deliver

a message is when the network fails in perpetuity. Our

assumption of no message loss thus merely says that

the latter will not happen.

Finally, the possibility that the network modifies

a message can be reduced to the case that it drops

the message by using appropriate encryption, so that

a modified message will not decrypt and be discarded.

Authentication. We assume that each customer can sign

a message with his unique identifier, thanks to an ide-

alised public key infrastructure. No other process can

forge its signature, and any process (including escrows)

can verify it.

Certificates. As a consequence, any customer can is-

sue a certificate by signing an appropriate message. For

example, Bob can issue a receipt certificate to Alice

by signing a received message. By combining several

signatures, one can define threshold certificates, for in-

stance requiring the signature of a commit message by

strictly more than some number of customers. A cor-

rect implementation of certificates should take care of

preventing replay attacks.

Faults. We do not make any assumption on the be-

haviour of the processes a priori. Later we will define

a protocol, and processes will either follow the protocol

or deviate from it.

2.3 Synchronous versus asynchronous communication

In the literature five levels of synchrony in communi-

cation can be distinguished. As indicated in the table

below, terminology is not uniform between the concur-

rency and the distributed systems communities.

concurrency distributed systems

synchronous

communication
rendezvous

I/O automata

synchronous communication

asynchronous

communication

partially synchronous

communication

asynchronous communication

In the concurrency community, communication is called

synchronous if sending and receiving occur simultane-

ously, and the sender cannot proceed before receipt of

the message is complete. This is the typical paradigm

in process algebras such as CCS [20]. Communication

is called asynchronous if sending occurs strictly before

receipt, and the sender can proceed after sending re-

gardless of the state of the recipient(s). An intermedi-

ate form is modelled by I/O automata [18]; here sending

and receipt is assumed to occur simultaneously, yet the

sender proceeds after sending regardless of the state of

possible receivers.

In the distributed systems community all commu-

nication is by default assumed to be asynchronous in

the sense above; synchronous communication as defined

above is sometimes called a rendezvous. Following [7],

communication is called synchronous when there is a

known upperbound on the time messages can be in

transit, and moreover there is a known upperbound on

the relative clock drift between parallel processes. It

is partially synchronous when these upperbounds exist

but are not known, or when it is known that after a

finite but unknown amount of time these upperbounds

will come into effect. If these conditions are not met,

communication is deemed asynchronous.
The present paper follows the latter terminology; we

speak of fully synchronous communication when refer-

ring to synchronous communication from concurrency

theory.

2.4 The syntax and semantics of ANTA

Although strongly inspired by the timed automata of

Alur & Dill [1] and their networks [4], our Asynchronous

Networks of Timed Automata (ANTA) differ from those

models in subtle ways, tuned to the problem at hand.

The first A refers to asynchronous communication in

the concurrency-theoretic sense, and contrasts with the

fully synchronous (rendezvous-style) communication

assumed in NTA [4]. A crucial difference between

ANTA and Communicating Timed Automata [16],

which also employ asynchronous communication, is that

in the latter “all automata move synchronously; time

passes at the same pace for all of them” [16].
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The formal syntax and semantics of ANTA is given

in Appendix A. However, the explanations below suffice

for understanding our protocols.

In Figure 3 our time-bounded cross-chain protocol—

essentially the universal protocol from [24]—is depicted

as an ANTA. There is one automaton for each par-

ticipant in the protocol, that is, for each escrow ei
(i = 0, . . . , n−1) and each customer ci (i = 0, . . . , n).

Each automaton is equipped with a unique identifier, in

this case ei and ci. Each automaton has a finite number

of states, depicted as circles, one of which is marked as

the initial state, indicated by a short incoming arrow.

The states are partitioned into termination states, in-

dicated by a double circle, input states, coloured white,

and output states, coloured grey or black. Furthermore

there are finitely many transitions, indicated as arrows

between states. The transitions are partitioned into in-

put transitions, labelled r(id,m), output transitions, la-

belled s(id,m), and time-out transitions, labelled by

arithmetical formulas ψ featuring the variable now .

Here id must be the identifier of another automaton

in the network, and m a message, taken from a set

MSG of allowed messages. Whereas each input and time-

out transition has a unique label r(id,m) and ψ, re-

spectively, an output transition may have multiple la-

bels s(id,m). All transitions may have additional labels

u := now for some variable u. A termination state has

no outgoing transitions, and an output state exactly

one, which must be an output transition. An input state

may have any number of outgoing input and time-out

transitions, and no outgoing output transitions.

Each automaton keeps an internal clock, whose value,

a real number, is stored in the variable now . The value

of now increases monotonically as time goes on. All

variables maintained by an automaton are local to that

automaton, and not accessible by other automata in the

network. Each transition is assumed to occur instanta-

neously, at a particular point in time. In case a transi-

tion occurs that is labelled by an assignment u := now ,

the variable u will remember the point in time when

the transition took place. Such a variable may be used

later in time-out formulas. When (or shortly before, see

below) an output transition with label s(id,m) occurs,

the automaton sends the message m to the automaton

with identifier id. A time-out transition labelled ψ is

enabled at a time now when the formula ψ evaluates to

true. An input transition labelled r(id,m) is enabled

only at a time when the automaton receives the mes-

sage m from the automaton id in the network. Whereas

an output transition may be scheduled to occur by the

automaton at any time, an input or time-out transition

can occur only when enabled.

When an automaton is not performing a transition,

it must be in exactly one of its states. It starts at the

initial state, where its clock is initialised with an arbi-

trary value. When the automaton is in an input state,

it stays there (possibly forever) until one of its out-

going transitions becomes enabled; in that case that

transition will be taken immediately. In case multiple

transitions become enabled simultaneously, the choice

is non-deterministic. When the automaton reaches a

termination state, it halts.

In general, an output state is labelled with a pos-

itive time-out value to ∈ R ∪ {∞}. It constitutes a

strict upperbound on the time the automaton will stay

in that state. In case the automaton enters an output

state at time now , it will take its outgoing transition be-

tween times now and now + to. If its output transition

has multiple labels s(id,m), the corresponding trans-

missions need not occur simultaneously; they can occur

in any order between now and now + to. The output

transition is considered to be taken when the last of

these actions occurs. In this paper time-out values are

indicated by colouring: for the grey states it is the con-

stant ε from Section 3.1, and for the black state it is∞.

2.5 Cross-chain payment protocol

A cross-chain payment protocol prescribes a behaviour

for each of the participants in the protocol, the escrows

and the customers. Let χ be a certificate signed by Bob

saying that Alice’s obligation to pay him has been met.

Definition 1 (Time-bounded cross-chain

payment protocol) A cross-chain payment protocol

is a time-bounded cross-chain payment protocol if it sat-

isfies the following properties:

C Consistency. For each participant in the protocol

it is possible to abide by the protocol.

T Time-bounded termination.Each customer that

abides by the protocol, and either makes a payment

or issues a certificate, terminates within an a priori

known period, provided her escrows abide by the

protocol.

ES Escrow security. Each escrow that abides by the

protocol does not lose money.

CS Customer security.

CS1 Upon termination, if Alice and her escrow abide

by the protocol, Alice has either got her money

back or received the statement χ.

CS2 Upon termination, provided Bob and his escrow

abide by the protocol, Bob has either received

the money or not issued certificate χ.

CS3 Upon termination, each connector that abides

by the protocol has got her money back, pro-

vided her escrows abide by the protocol.
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L Strong liveness. If all parties abide by the proto-

col, Bob is paid eventually.

Requirement C (consistency of the protocol) is es-

sential. In the absence of this requirement, any protocol

that prescribes an impossible task for each participant

would be a correct cross-chain payment protocol (since

it trivially meets T, ES, CS and L).

Requirements ES and CS (the safety properties) say

that if a participant abides by the protocol, nothing

really bad can happen to her. These requirements do

not assume that any other participant abides by the

protocol, and should hold no matter how malicious the

other participants turn out to be. The only exception

is that the safety properties for a customer (CS) are

guaranteed only when the escrow(s) of this customer

abide by the protocol.

Property L, saying that the protocol serves its in-

tended purpose, is the only one that is contingent on

all parties abiding by the protocol.

3 A time-bounded protocol

3.1 Assumptions

Synchrony. The assumption of synchrony considered

by [7], and called bounded synchrony by [24], says ‘that

there is a fixed upper bound ∆ on the time for mes-

sages to be delivered (communication is synchronous)

and a fixed upper bound Φ on the rate at which one

processor’s clock can run faster than another’s (pro-

cessors are synchronous), and that these bounds are

known a priori and can be “built into” the protocol.’ [7]

A consequence of this assumption is that if participant

p1 sends at its local time t0 a message to participant

p2, and participant p2 takes t units of its local time to

send an answer back to p2, then p1 can count on arrival

of that reply no later than time t0 + Φ · t+ 2 ·∆.

Bounded reaction speed. When a participant in the pro-

tocol receives a message, it will take some time to cal-

culate the right response and then to transmit that re-

sponse. Here it will be essential that that amount of

time is bounded. So we assume a reaction time ε>0

such that any message can be answered within time ε.

3.2 A cross-chain payment protocol formalised as an

ANTA

In this section we formally model the universal protocol

from [24] as an ANTA. Moreover, we replace the timing

constants employed in [24] by parameters, and calculate

the optimal value of these parameters to ensure correct-

ness of the protocol in the presence of clock drift.

To interpret Figure 3, all that is left to do is spec-

ify the messages that are exchanged between escrows

and their customers. We consider 4 kinds of messages.

One is the certificate χ, signed by Bob, saying that Al-

ice’s obligation to pay him has been met. Another is

the value $ that is transmitted from one participant to

another. The remaining messages are promises made by

escrow ei to its customers ci and ci+1, respectively:

G(d) := “I guarantee that if I receive $ from you at my

local time w, then I will send you either $ or

χ by my local time w + d.”

P (a) := “I promise that if I receive χ from you at my

local time v, with v < now + a, then I will

send you $ by my local time v + ε.”

The automata of Figure 3 can be informally de-

scribed as follows: An escrow ei first sends promise

G(di) to its (upstream) customer ci. Here “upstream”

refers to the flow of money. The precise values of di will

be determined later; here they are simply parameters in

the design of the protocol. Then it awaits receipt of the

money/value from customer ci. If the money does ar-

rive, the escrow issues promise P (ai) to its downstream

customer ci+1 as soon as it can. It remembers the time

this promise was issued as u. Then it awaits receipt of

the certificate χ from customer ci+1. If the certificate

does not arrive by time u + ai, a time-out occurs, and

the escrow refunds the money to customer ci. If the

certificate does arrive in time, the escrow reacts by for-

warding it to customer ci, and the money to customer

ci+1.

A connector Chloei starts by awaiting promisesG(di)

from her downstream escrow ei, and P (ai−1) from her

upstream escrow ei−1. Then she proceeds by sending
the money to escrow ei. After sending the money, Chloei
waits for escrow ei to send her either the certificate χ or

the money back. In the latter case, her work is done; in

the former, she forwards the certificate to escrow ei−1
and awaits for the money to be sent by escrow ei−1.

The automata for Alice and Bob are both simplifica-

tions of the one for Chloei. Alice awaits promise G(d0)

from her escrow, and then sends the escrow the money.

The protocol allows her to wait arbitrarily long be-

fore taking that step. Subsequently, she patiently awaits

either the return of her money, or certificate χ. Bob

awaits promise P (an−1) from his escrow, and then is-

sues certificate χ and sends it to his escrow. He then

awaits the money.

3.3 Running the protocol

The protocol consists of two parts. The set-up involves

the sending and receiving of the promises G(di). As
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ei: Escrow i (i = 0, . . . , n−1)

s(ci, G(di)) r(ci, $) s(ci+1, P (ai))
u := now

now ≥ u+ ai

r(ci+1, χ) s(ci, χ)
s(ci+1, $)

s(ci, $)

ci: Customer i (i = 1, . . . , n−1); Chloei

s(ei, $) r(ei, $)

r(ei, χ)

s(ei−1, χ) r(ei−1, $)

r(ei-1, P (ai-1))r(ei, G(di))

c0: Customer 0; Alice

r(e0, G(d0)) s(e0, $) r(e0, $)

r(e0, χ)

cn: Customer n; Bob

r(en-1, P (an-1)) s(en−1, χ) r(en−1, $)

Fig. 3: Automata representing escrows and customers

these promises are not time-sensitive, they can be ex-

changed months before the active part of the protocol

is ran, consisting of all other actions. Here an action is

an entity act@p, with act a transition label, and p the

identifier of the participant taking that transition. The

active part has essentially only one successful run, i.e.,

when never taking a time-out transition, consisting of

the following actions, executed in the following order.

Actions separated by commas are executed in either

order.

s(e0, $)@c0 r(c0, $)@e0 s(c1, P (a0))@e0 r(e0, P (a0))@c1
s(e1, $)@c1 r(c1, $)@e1 s(c2, P (a1))@e1 r(e1, P (a1))@c2
. . .
s(ek, $)@ck r(ck, $)@ek s(cn, P (ak))@ek r(ek,P (ak))@cn
s(ek, χ)@cn r(cn, χ)@ek s(cn, $), s(ck, χ)@ek

r(ek, $)@cn , r(ek, χ)@ck
. . .
s(e1, χ)@c2 r(c2, χ)@e1 s(c2, $), s(c1, χ)@e1

r(e1, $)@c2 , r(e1, χ)@c1
s(e0, χ)@c1 r(c1, χ)@e0 s(c1, $), s(c0, χ)@e0

r(e0, $)@c1 , r(e0, χ)@c0

Here k := n−1.

An essential feature of this protocol is that the valu-
able certificate χ passes through the hands of the inter-

mediaries Chloei on the way from Bob to Alice. When

Chloei sends money to her downstream Escrow i (on

the way to Bob), she needs a guarantee that she will

not lose this money. This guarantee is delivered through

a case distinction.

– Her downstream bank promises to either refund her

money, or provide the certificate χ in time.

– Her upstream bank promises to pay out if she sup-

plies the certificate χ in time.

Together, this provides a fail-safe guarantee for Chloei,

provided her banks can be trusted.

3.4 Initialisation

There is a scenario where Chloei will never send money

to escrow i, namely when she receives promise P (ai−1)

from escrow ei−1 before she receives promise G(di) from

escrow ei. In that case the receipt of P (ai−1) does not
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trigger a transition, and Chloei will remain stuck in

her second state. We now modify the protocol in such a

way that this cannot occur. This can be done in several

ways; it does not matter which of the three modifica-

tions we take.

1. One solution is to make Alice wait before starting

the active part of the protocol (by leaving the black

state) until a point in time when she is sure that all

parties Chloei already have received promise G(di).

If we assume that all parties start at the same time,

using the reasoning of Section 3.1, Alice has to wait

at most Φ ·ε+∆ before this point has been reached.

The only drawback of this solution is that it may

be hard to realise that all parties start at the same

time.

2. Another approach is to assume that the set-up phase

occurred long before Alice actually wants to send

money to Bob. It may be part of a general bank-

ing agreement. Possibly each escrow always offers

promises G(d) for different values of d, and when

sending money to escrow i, Chloei simply tags it

as taking advantage of promise G(di). In this ap-

proach, the protocol lacks the transitions labelled

s(ci, G(di)) and r(ei, G(di)), with the initial states

shifted accordingly. Still, the promise G(di) counts

as having been made to customer ci by escrow ei.

3. An alternative is to introduce a message “We are

ready”, sent by Chloen−1 to escrow en−2, and for-

warded, via Chloei and escrow ei−1 all the way to

Alice. Each Chloei forwards the “We are ready”

message only after receiving promise G(di) from es-

crow ei, so when Alice receives the “We are ready”

message she can safely initiate the transfer.

Note that this problem cannot be solved through a di-

amond shaped automaton for Customer i, in which the

messages G(di) and P (ai−1) can be received in either

order. Namely, when Escrow i−1 sends the message

P (ai−1), a time-out u is set. As soon as a period of

time ai−1 elapses after this event, and no money has

been received from customer ci, the transaction is can-

celled. The constant ai will be chosen in such a way

that Chloei has just enough time, after receiving mes-

sage P (ai−1), to send the money. In a diamond-shaped

graph, Chloei must await message G(di) before sending

the money, and a priori no upperbound on its arrival

can be given. So there is no constant ai that is large

enough to give Chloei enough time to reply.

3.5 Correctness of the protocol

Now we show that the protocol from Figure 3 (tak-

ing into account the modifications from Section 3.4)

is correct, in the sense that it satisfies the properties

of Definition 1, when making the assumptions of Sec-

tion 3.1. In doing so, we also calculate the values of the

parameters di and ai.

Consistency. To check that the protocol is consistent,

in the sense that each participant can abide by it, we

first of all invoke the assumption of bounded reaction

speed, described in Section 3.1, and use that the con-

stant ε assumed to exist in Section 3.1 is in fact the

time-out value associated to most output states. This

ensures that it is always possible to send messages in

a timely manner. In particular, the protocol prescribes

that when an automaton enters a grey state, it will leave

this state, by sending one or two messages, within time

ε. The assumption Bounded Reaction Speed makes sure

that this time is sufficient for sending these messages.

The only remaining potential failure of consistency

is when the protocol prescribes the transmission of a re-

source that it is not available. Assuming that the send-

ing of promises and money is not an obstacle (Chloe has

been selected, in part, for having this kind of money

available), the only issue could be the sending of the

certificate signed by Bob. For anyone but Bob this can

only be done after receiving it first. However, a simple

inspection of the automata of the escrows, Chloei and

Alice shows that any transition sending the certificate

is preceded by a transition receiving it. This establishes

requirement C.

Escrow security. That escrows cannot lose money (re-

quirement ES) follows immediately from the observa-

tion that an escrow spends the money only after re-

ceiving it. This follows from the order of the transitions

in the automaton for the escrows.

Honesty. Although not part of Definition 1, we show

that an escrow that issues a promise always keeps that

promise, when abiding by the protocol. This property

(H) will be be used below to establish CS.

To show H, suppose the escrow ei issues promise

P (ai), and subsequently receives the certificate χ from

customer ci+i at a time v < u+ai, where u refers to the

time promise P (ai, ε) was issued. Then it is too soon

for the time-out transition, so the transition labelled

r(ci+1, χ) in the automaton of ei will be taken, at time

v. The automaton shows that s(ci+1, χ) will occur by

time v + ε, thus fulfilling the promise.

To show that an escrow that issues promiseG always

keeps it, when abiding by the protocol, suppose the

escrow ei receives the money at a time w. Then the

transition labelled r(ci, $) in the automaton of ei will

be taken, at time w. The automaton shows that either
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s(ci, $) will occur by time w+ ε+ai + ε, or s(ci, χ) will

occur by time w + ε + ai + ε. Thus, to guarantee that

promise G is met, we need to choose di and ai in such

a way that

di ≥ ai + 2ε (1)

for i = 0, . . . n−1. In fact, making the promise as strong

as possible yields di := ai + 2ε. When this condition is

met, we have established requirement H.

Customer security and time-bounded termination. We

will check time-bounded termination (T) together with

customer security (CS). To check requirement CS1, sup-

pose that Alice will make the payment s(e0, $), at time

t. Then earlier she has received promise G(d0) from es-

crow e0. This promise ensures Alice that escrow e0 will

send her either $ or χ by its local time w+d0, where w

is the time Alice’s payment is received. Consequently,

by the reasoning of Section 3.1, using the assumption of

bounded synchrony, Alice will receive either certificate

χ or her money back by time t+ Φ · d0 + 2 ·∆.

To check requirement CS2, suppose that Bob issues

certificate χ, at time x. Then earlier, at time t, he has

received promise P (an−1) from escrow en−1. Moreover,

x < t+ ε. For the promise to be meaningful, his certifi-

cate needs to arrive at en−1 before time u+an−1, where

u refers to the local time at en−1 when the promise was

issued. By the reasoning of Section 3.1, using the as-

sumption of bounded synchrony, Bob’s certificate will

arrive at escrow en−1 before time u+Φ ·ε+2 ·∆. Hence,

we need to choose an−1 in such a way that

an−1 ≥ Φ · ε+ 2 ·∆ . (2)

When this requirement is met, the promise ensures Bob

that escrow en−1 will send him the money by its local

time v + ε, where v is the time Bob’s certificate is re-

ceived by en−1. Consequently, Bob will receive payment

by time x+ Φ · ε+ 2 ·∆.

To check requirement CS3, suppose that Chloei will

make the payment s(ei, $), at time t0. Then earlier, she

has received promise G(di) from escrow ei and promise

P (ai−1) from escrow ei−1, the latter at time t. More-

over, t0 < t + ε. Promise G(di) ensures Chloei that

escrow ei will send her either $ or χ by its local time

w+di, where w is the time Chloei’s payment is received.

Consequently, ci will receive either certificate χ or her

money back by time t0 + Φ · di + 2 ·∆.

Continuing with the case that she receives χ rather

then her money back, she will forward χ to escrow ei−1
by time t0+Φ·di+2·∆+ε, which is before t+ε+Φ·di+
2 ·∆+ε. Hence it arrives at ei−1 by its local time u+2 ·
Φ ·ε+Φ ·di +4 ·∆, where u is the time promise P (ai−1)

was issued. Here we use that ∆ is a valid upperbound on

ei−1

Escrow i−1

ci

Chloei

ei

Escrow i

P (ai−1)

$

$
or χ

χ

$

}< ε

}< ε

}< ε

}
≤ di



≤ 2 · Φ · ε+ Φ · di + 4 ·∆

u

t

t0

w

v

transition times by anyone’s clock, and that there is no

need to square Φ in Φ·di, as also the clock skew between

escrows ei and ei−1 is bounded by Φ. This calculation

is illustrated by the message sequence diagram above.

Since χ needs to arrive at ei−1 before time u+ ai−1 in

order for promise P (ai−1) to be meaningful, we need to

pick

ai−1 ≥ 2 · Φ · ε+ Φ · di + 4 ·∆ (3)

for i = 1, . . . , n−1. When (3) holds, promise P (ai−1)

ensures Chloei that escrow ei−1 will send her the money

by its local time v+ε, where v is the time the certificate

is received by ei−1. Consequently, ci will receive $ by

time t0 +Φ · di + 4 ·∆+ ε+Φ · ε. Hence, assuming (3),

CS3 is guaranteed.

Choosing = for ≥ in (1)–(3), we ensure requirement

CS by solving these equations. In particular, for i =

0, . . . , n−1,

ai := Φn−1−i ·(Φ ·ε+2 ·∆)+

n−1∑
j=i+1

4 ·Φj−i−1 ·(Φ ·ε+∆) .

For i = n−1 this follows by (2). Assume we have it for

i+1. Then

ai+1 = Φn−2−i ·(Φ·ε+2·∆)+

n−1∑
j=i+2

4·Φj−i−2 ·(Φ·ε+∆) .

Now, applying (1) and (3), multiply by Φ and add 4 ·
Φ · ε+ 4 ·∆.

When Φ > 1, our solution for ai can be simplified

by applying the formula for a geometric progression:

n−1∑
j=i+1

Φj−i−1 =

n−i−2∑
k=0

Φk =
Φn−i−1 − 1

Φ− 1
.
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Liveness. It remains to check property L. Suppose that

all parties abide by the protocol. By the reasoning in

Section 3.4 we may assume that the action s(e0, $)@co
(using the terminology of Section 3.3) of Alice sending

money to her escrow will not take place until all ac-

tions s(ci, G(di))@ei and r(ei, G(di))@ci have occurred.

In terms of Section 3.3 we show that in the remain-

ing active phase of the protocol at least the prefix of

the displayed sequence of actions until and including

s(cn, $)@en−1 will take place, in that order, and not in-

terleaved with any other actions. When this happens,

Bob must be in his third state, and the required action

r(en−1, $)@cn will follow surely.

Towards a contradiction, let the initial behaviour

of the active part of the protocol be a strict prefix of

this sequence, where a is the first action in the sequence

that does not occur as scheduled. A simple case analysis

shows that when a is scheduled, in fact no action other

than a is possible.

The action a cannot be of the form s(ei, $)@ci, be-

cause when this action is due, customer ci is in a state

where this action must be taken within time ε. An ex-

ception is the case n = 0, but also here the action must

be taken in within a finite amount of time (or there is

nothing to verify).

The action a cannot be r(ci, $)@ei either, because

each message sent must arrive eventually, and the re-

ceiving party ei is in its second state, and thus able to

perform the receive action.

Similarly, a cannot be s(ci+1, P (ai))@ei, as here the

sender ei must be in its third state.

Since all actions r(ei, G(di))@ci have already oc-

curred, a cannot be of the form r(ei−1, P (ai−1))@ci.

The case a = s(en−1, χ)@cn can be excluded, as

here Bob must be in his second state.

If a = r(cn, χ)@en−1, then the recipient en−1 must

be in its fourth state and, due to the careful choice of

an1
(see (2)), the time-out transition cannot intervene.

So that choice of a is excluded too.

The argument against a = s(cn, $)@en−1 is trivial.

4 Impossibility under partial synchrony of

communications

When communications can experience arbitrarily long

delays, it is not possible to expect from a protocol to

terminate in an a priori known amount of time. If we

want to perform cross-chain payments in a partially

synchronous setting, it is therefore necessary to define

a different class of cross-chain payment protocols. The

obvious idea is to remove any time bound in the defi-

nition. But as we will show, this is not enough to make

the problem solvable.

Definition 2 (Eventually term. cross-chain pay-

ment protocol with strong liveness guarantees)

A cross-chain payment protocol is an eventually ter-

minating cross-chain payment protocol with strong live-

ness guarantees if it satisfies all the properties of Defi-

nition 1 except Property T, which is replaced by:

T′ Eventual termination. Each customer that abides

by the protocol, and either makes a payment or is-

sues a certificate, terminates eventually, provided

her escrows abide by the protocol.

Theorem 1 If communications are partially synchro-

nous, then there is no eventually terminating cross-

chain payment protocol with strong liveness guarantees.

This even holds if we only allow the participants to ei-

ther follow the protocol or crash.

Proof Assume an eventually terminating cross-chain

payment protocol with strong liveness guarantees.

Consider a run r in which all participants abide by

the protocol. It exists by property C. By property L

Bob will be paid in this run, and by property T′ all

customers terminate. Since by properties ES and CS no

participant makes a loss, Alice will not get her money

back. Hence by property CS1 Alice will end up with the

certificate χ. Let ci be the last customer that holds the

certificate before it reaches Alice. This must be either

Bob or one of the connectors. Let s be the state in which

ci is about to send on χ.

The protocol may not prescribe that ci has already

received the money in state s. For then customer ci
could decide to keep the money as well as the certifi-

cate, while all other participants keep abiding by the

protocol, which would violate properties T′, ES or CS.

Now consider the following two runs of the system,

that are the same until state s. In run r1 customer

ci never lets go of the certificate, nor sends out any

other message past state s, while all other participants

abide by the protocol; in run r2 all participants abide by

the protocol, but ci’s message with the certificate, and

all subsequent messages from ci, experience an extreme

delay.

First assume that ci is in fact Bob. By property T′

run r1 reaches a state s′ in which all customers other

than Bob are terminated. Using properties ES and CS,

in this state Alice ends up without the certificate, and

thus with the money, and all customers Chloej play

even. It follows that Bob never receives his money. Yet

for all participants other than Bob, runs r1 and r2 are

indistinguishable, so r2 will reach a similar state. This

violates property CS2.

Now assume customer ci is not Bob. So Bob has

already issued the certificate. By property T′ run r1



Cross-Chain Payment Protocols with Success Guarantees 11

reaches a state s′ in which all customers other than ci
are terminated. Using properties ES and CS, in this

state Alice as well as Bob end up with the money, and

all customers Chloej with j 6= i play even. It follows

that Chloei loses her money. Yet for all participants

other than Chloei, runs r1 and r2 are indistinguishable,

and the delayed certificate sent by Chloei may arrive

only after the system has reached state s′. This violates

property CS3. ut

5 Solution to a variant under partial synchrony

5.1 Eventually terminating cross-chain payment

protocol with weak liveness guarantees

Weak liveness guarantees. As it is impossible to design

an eventually terminating cross-chain payment proto-

col with strong liveness guarantees under partial syn-

chrony, we define a variant with weak liveness guaran-

tees, and show it implementable.

In view of the impossibility proof given above, the

strong liveness condition (L) is too strong. We replace it

by a (realistic and still desirable) property called weak

liveness such that the problem becomes solvable. A sim-

ilar situation exists in the atomic commit problem liter-

ature, for instance weak non-triviality defined by Guer-

raoui [11] or condition AC4 for atomic commit defined

by Hadzilacos in [12]:

If all existing failures are repaired and no new

failures occur for a sufficiently long period of

time, then all processes will reach a decision.

Abort certificate. In the synchronous solution, we used

timelocks to ensure that the money will not get stuck

forever in escrow. This solution is no longer pertinent

under partial synchrony. We need to replace them by a

safe way to unlock the funds stored in an escrow.

We therefore modify the definition of the certificate

χ. Instead of having a single certificate simply signed

by Bob, we have two more general certificates called

commit certificate χc and abort certificate χa, that can

never exist simultaneously.

New definition of the problem. When we take into ac-

count the two previous tweaks, we reach the following

definition. We highlight in italics the difference with

our previous definitions of cross-chain payment proto-

cols. In particular, we replace “Bob will not issue χ”

by “Bob will receive χa”, and “Alice will receive χ” by

“Alice will receive χc”.

Definition 3 (Eventually term. cross-chain pay-

ment protocol with weak liveness guarantees)

A cross-chain payment protocol is an eventually termi-

nating cross-chain payment protocol with weak liveness

guarantees if it satisfies the following properties:

C Consistency. For each participant it is possible to

abide by the protocol.

CC Certificate consistency. An abort and a commit

certificate cannot be issued both.

T′ Eventual termination. Each customer that

abides by the protocol terminates eventually,

provided her escrows abide by the protocol.

ES Escrow security. Each escrow that abides by the

protocol does not lose money.

CS′ Customer security.

CS1′ Upon termination, if Alice and her escrow abide

by the protocol, Alice has either got her money

back or received the commit certificate χc.

CS2′ Upon termination, if Bob and his escrow abide

by the protocol, Bob has either received the

money or the abort certificate χa.

CS3′ Upon termination, each connector that abides

by the protocol has got her money back, pro-

vided her escrows abide by the protocol.

L′ Weak liveness. If all parties abide by the pro-

tocol, and if the customers wait sufficiently long

before and after sending money, then Bob is even-

tually paid.

5.2 Transaction manager abstraction

The previous impossibility result shows that when there

is no synchrony, it is hard for processes to agree on a

uniform commitment decision (abort or commit). We

are going to leverage the existing solutions to the clas-

sical consensus problem, and embed them in an abstrac-

tion called “transaction manager”, defined as follows:

Definition 4 (Transaction manager) A transaction

manager, called TM, is a process that can receive binary

values from the set {commit,abort} from a customer,

and that can send certificates drawn from {χc, χa} to

customers. It must satisfy:

– TM-Consistency. TM does not issue two different

certificates.

– TM-Termination. If a customer proposes to abort

or if Bob proposes to commit, then TM sends even-

tually a certificate χc or χa to every customer.

If a customer proposes abort or commit after TM

has issued a certificate, TM will send a copy of that

certificate to that customer.
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– TM-Commit-Validity. TM can issue χc only if

Bob proposed commit.

– TM-Abort-Validity. TM can issue χa only if some

customer proposed abort.

There are several ways of implementing a transaction

manager.

– Centralised transaction manager. The transac-

tion manager can be a centralised actor trusted by

every customer.

– Distributed transaction manager. The transac-

tion manager could be a collection of k parties (“val-

idators”) appointed by the participants in the pro-

tocol. These validators could run the consensus al-

gorithm for partial synchrony from Dwork, Lynch

& Stockmeyer [7], or any equivalent algorithm. This

works when less than one third of these validators

are unreliable. In this case, “sending a message to

the TM” means sending it to each of these validators,

and “the TM sending a decision” means strictly more

than one third of the validators sending the jointly

taken decision.

– External decentralised transaction manager.

The transaction manager can be a decentralised data

structure. For example, a smart contract running on

a permissionless blockchain shared by every customer

can be programmed to be a transaction manager.

In the following, we assume that we have such a

transaction manager. Even if it is run by the customers,

we do not specify the messages exchanged to run it: the

transaction manager is a black-box embedding a con-

sensus algorithm that is running off-protocol. Section

5.5 provides an example implementation.

5.3 A protocol responding to the problem

Description of the protocol. In the version of the pro-

tocol depicted in Figures 4–7, Chloei awaits the two

promises of her escrows, just like in the protocol of Fig-

ure 3, and then sends the money to her downstream

escrow. Subsequently she awaits an abort or commit

certificate from the transaction manager. If she gets a

commit certificate, she cashes it in at her upstream es-

crow to obtain the money. If she gets an abort certificate

instead, she cashes it in at her downstream escrow for

a refund of the money she paid earlier. In case she loses

patience before she gets the second promise, which hap-

pens at a time Ti specific for Chloei, she simply quits.

In case she loses patience after she has invested the

money but before she gets any certificate, the time-out

transition occurs, and she sends an abort proposal to

the transaction manager. The latter replies on this with

either an abort or a commit certificate, and she cashes

those in as above.

So the tags G and P can be understood as promises

that say:

G: “I guarantee that if I receive $ from you, then if you

send me χa I will send you $”.

P : “I promise that if you send me χc I will send $ to

you”.

The automaton for Alice is just a simplified version

of the one for Chloe, and the one for the escrows is

trivial. For Bob, the important modification is that he

alerts the TM with a commit message when the pro-

tocol is ready for this. Moreover, in case Bob loses pa-

tience before receiving any promise, he sends an abort

message to the TM, so that he receives the abort cer-

tificate in response.

5.4 Proof of correctness

Let us call P the protocol defined by the above ANTA.

Section 3.4 (Initialisation) applies to P as well, and we

assume that the appropriate modifications are made.

Theorem 2 Protocol P is an eventually terminating

cross-chain payment protocol with weak liveness guar-

antees.

Proof The properties to prove are close to the time-

bounded cross-chain payment protocol, and the proof

is similar. We split the proof in the following lemmas:

Lemma 1, 2, 3, 4, 5 and 6. ut

Lemma 1 (Consistency) For each participant in P

it is possible to abide by P .

Proof We have to ensure that each participant will be

able to follow the transitions after a grey or black state.

The only way this would not be possible would be when

the protocol asks to transmit a resource that is not

available. It is always possible to send tags and money,

but we need to verify that any sending of a certificate

is preceded by the receipt of this certificate—except for

the issuer of the certificate. Such a property is clear

after inspection of the automata of escrows and cus-

tomers. ut

Lemma 2 (Certificate consistency) An abort and

a commit certificate can never be issued both.

Proof This is an immediate consequence of Property

TM-Consistency of Definition 4. ut

Lemma 3 (Eventual termination) Each customer

that abides by P will terminate eventually, provided her

escrows abide by the protocol.



Cross-Chain Payment Protocols with Success Guarantees 13

1 2 3 4 5

6

7

8

s(ci, G) r(ci, $) s(ci+1, P ) r(ci+1, χc)

r(ci, χa)

s(ci+1, $)

s(ci, $)

Fig. 4: Automaton for escrow ei
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Fig. 5: Automaton for customer ci, i ∈ {1..n−1}
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Fig. 6: Automaton for customer c0 (Alice)
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Fig. 7: Automaton for customer cn (Bob)
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Proof Thanks to Lemma 1, in order to show that a

terminating state will be reached, it is sufficient to prove

that every input state will be left eventually. We thus

establish Lemma 3 by showing that Chloei and Alice

cannot get stuck in states 1, 2, 5, 9, 10 and 12, and Bob

cannot get stuck in states 1, 4, 5 and 10.

Since her downstream escrow will surely leave state

1, and thus send the message G, it follows that Chloei,

and Alice, will receive this message, and thereby leave

state 1.

Chloei will leave state 2 at time Ti at the latest, or

immediately when reaching this state after time Ti. By

the same reasoning, Bob will not get stuck in state 1.

Chloei and Alice will leave state 5 at time Ti at the

latest, or immediately when reaching this state after

time Ti. She will send an abort message to TM to

reach state 9, and by the property TM-Termination

of Definition 4, TM will eventually reply to her with

χa or χa. Hence she will leave state 9. By the same

reasoning, Bob will not get stuck in state 5.

To reach state 4, Bob sends an abort message to

TM. By the properties TM-Termination and TM-

Commit-Validity of Definition 4, TM will eventually

reply to him with χa. Hence he will leave state 4.

Now assume Customer ci+1 (Chloe or Bob) reaches

state 10. Then Customer ci+1 has already received the

promise P from Escrow i, and thus Escrow i must have

send this promise, thereby reaching state 4. To reach

state 10, Customer ci+1 sends certificate χc to Escrow

i. By Lemma 2, the TM never issues certificate χa, so

Customer ci cannot send it to Escrow i. It follows that

Escrow i will reach state 5, and send the money to

Customer ci+1. Hence Customer ci+1 will leave state

10 and reach the terminating state 11.

Finally assume Customer ci (Alice or Chloe) reaches

state 12. Then Customer ci has already received promise

G from Escrow i, and thus Escrow i must have send

this promise, thereby reaching state 2. After receiving

promise G, Customer ci has send the money to Escrow

i, so Escrow i will have reached state 3, and hence also

state 4. To reach state 12, Customer ci sends certificate

χa to Escrow i. By Lemma 2, the TM never issues cer-

tificate χc, so Customer ci+1 cannot send it to Escrow i.

It follows that Escrow i will reach state 6, and send the

money to Customer ci. Hence Customer ci will leave

state 12 and reach the terminating state 13. ut

Lemma 4 (Escrow-security) Any escrow that abides

by P will not lose money.

Proof The result is immediate: any transition where an

escrow sends money has been preceded by a transition

where it receives the money. An escrow’s balance cannot

become negative if it follows the protocol. ut

Lemma 5 (Customer-security)

1. Upon termination, if Alice and her escrow abide by

P , Alice has either got her money back or received

the commit certificate χc.

2. Upon termination, if Bob and his escrow abide by

P , Bob has either received the money or the abort

certificate χa.

3. Upon termination, each connector that abides by

P has got her money back, provided her escrows

abide by P .

Proof

1. If Alice terminates in state 13, she has got her

money back in the last transition. If she terminates

in state 6, she has got the certificate χc in the last

transition.

2. The result is similar for Bob: if he terminates in

state 7, he has received χa. Otherwise, he termi-

nates in state 11 and has been paid correctly.

3. To reach termination, Chloei, i ∈ {1..n−1} has

either never spend the money (termination state

3), or received $ either from ei−1 (termination state

11) or from ei (termination state 13). In both these

cases, she has got her money back. ut

Lemma 6 (Weak liveness) If all participants abide

by P , and if the customers wait sufficiently long before

and after sending money, then Bob will be paid.

Proof Let us suppose that all the participants abide by

P . Suppose that for all i ∈ [0, n−1], Ti is large enough

for Alice, Bob and every connector to never take any

time-out transition. Instead, Bob will be the first cus-

tomer to call the transaction manager in his transition

from state 3 to 5.

Using the notation of Section 3.3, the active part of

the protocol—after the exchange of the tags G—must

start with the following sequence of actions, executed

in this order:

s(e0, $)@c0 r(c0, $)@e0 s(c1, P )@e0 r(e0, P )@c1
s(e1, $)@c1 r(c1, $)@e1 s(c2, P )@e1 r(e1, P )@c2
. . .

s(ek, $)@ck r(ck, $)@ek s(cn, P )@ek r(ek, P )@cn
s(TM,com.)@cn

By the TM-Abort-Validity property of Definition 4,

since the only proposal was commit, TM will issue the

certificate χc. In particular, Bob will give it to en−1 and

receive the payment in exchange. ut

Interestingly, nothing in the proof depends in any

way on the assumption of partially synchronous com-

munication. The only place where this is needed is for
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the implementation of the transaction manager TM—

see Section 5.5. In case one is content with a centralised

transaction manager as described in Section 5.2, our

protocol works correctly also when assuming communi-

cation to be asynchronous.

5.5 Implementation of a decentralised transaction

manager

As an example, in this section we provide an explicit im-

plementation of a transaction manager. It is a wrapper,

expressed in pseudo-code, around a binary Byzantine

consensus algorithm, such as the one from [7], which is

treated as a black box.

Suppose that we have m validators, which are agents

running a consensus algorithm. The validators commu-

nicate which each other by exchanging messages. We

suppose that a certain number f of validators can be

faulty, in the sense that we allow arbitrary (Byzantine)

behaviour. All other validators are assumed to abide by

the protocol defining a consensus algorithm.

Definition 5 (Binary Byzantine Consensus) A bi-

nary Byzantine consensus (BBC) algorithm is an algo-

rithm in which every validator can propose a binary

value (i.e. in {0, 1}) and decide a binary value. Assum-

ing that every non-faulty validator proposes a binary

value, the following properties must be ensured:

– BBC-Termination. Each non-faulty process even-

tually decides on a binary value.

– BBC-Agreement. No two non-faulty processes de-

cide on different binary values.

– BBC-Validity. If all non-faulty processes propose

the same value, no other value can be decided by a

non-faulty process.

Theorem 3 ([7]) Assuming partially synchronous com-

munication, a binary Byzantine consensus algorithm

exists when f < m/3.

Using such an algorithm as a black box, we now im-

plement a TM. Our validators can either be customers,

like Alice, Chloe and Bob, or external parties. If the set

of validators is included in or equal to the set of cus-

tomers, we can talk of an internal decentralised trans-

action manager. Our TM implementation is only valid

when assuming partially synchronous communication,

and f < m/3. Each customer can communicate with

every validator.

Reliable broadcast call. To call the transaction man-

ager, a customer reliably broadcasts a message to all

validators. Here a reliable broadcast is a protocol de-

scribed by Bracha in [5]. It is guaranteed to terminate,

even in a setting with asynchronous communication,

provided less than one-third of all the broadcast re-

cipients is faulty—the rest abiding by the protocol. It

guarantees that if the sender abides by the protocol, all

recipients will receive the message sent. Moreover, even

if the sender is faulty, either all correct recipients agree

on the same value sent, or none of them accepts any

value as having been sent [5].

If a faulty customer sends a call with different val-

ues to different validators, or sends something to some

validators and nothing to others, the reliable broadcast

primitive will filter these messages out. In particular, if

a validator receives a call from a customer then even-

tually every validator will receive this call from this

customer.

Certificate implementation. With σk(v) we denote the

value v ∈ {0, 1} cryptographically signed by validator

k. Such a signed message models the decision abort (if

v = 0) or commit (v = 1) taken by validator k. Since

up to f validators may be unreliable, a valid certificate

is a message that contains (for instance as attachments)

more than f copies of the same decision, taken by dif-

ferent validators k. We model such certificates as sets.

Hence:

– χc is any set of at least f+1 messages σk(1) signed

by at least f+1 different validators k.

– χa is any set of at least f+1 messages σk(0) signed

by at least f+1 different validators k.

Such a certificate is verifiable non-interactively by a

third party such as any customer or escrow. Asking

for f+1 signatures ensures that at least one correct

validator has issued this certificate, and in particular

will guarantee property CC (certificate consistency). Of

course a real implementation will not rely on simple

signatures of the string ”0” or ”1” because of the pos-

sibility of replay attacks.

TM implementation. When our protocol prescribes the

action s(TM,ab.), resp. s(TM,com.), this is imple-

mented as reliably broadcasting abort, resp. commit,

to all validators. The transition r(TM, χ) denotes the

receipt of certificate χ from one of the validators. The

behaviour of TM is described as Algorithm 1.

Theorem 4 (BFT-TM correctness) The BFT-TM

algorithm implements a TM as defined in Definition 4.
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Algorithm 1 BFT-TM algorithm for validator vk, k ∈
[1..m].

1: When validator k has not proposed, nor decided, a value
so far:

2: when receive abort from a customer ci, i ∈ [0..n]:
3: propose(0) to BBC
4: when receive commit from cn:
5: propose(1) to BBC

6: When validator k decides value v (by running BBC):
7: broadcast(σi(v)) to all validators
8: await receipt of σj(v) for all j in a certain J ⊆ [1..m]

such that |J | > f
9: χ := {σj(v), j ∈ J}

10: broadcast(χ) to all customers

11: When validator k has decided a value v:
12: when receive abort or commit from cust. ci, i∈[0..n]:
13: send χ to customer ci.

Proof The correctness properties of a transaction man-

ager derive almost immediately from the correctness

properties of a binary Byzantine consensus algorithm.

1. TM-Termination. Let us suppose that a customer

sends an abort proposal to TM, i.e. to each and

every validator, or that Bob proposes to commit.

Then every correct validator starts participating in

BBC with the initially proposed binary value 0 or

1, respectively. By BBC-Termination, every cor-

rect validator eventually passes line 6 of the BFT-

TM algorithm. By assumption on the number of cor-

rect validators, every validator eventually receives at

least f+1 signatures on this value, thereby forming

a certificate that is sent to every customer.

If a customer proposes abort or commit after TM

has issued a certificate, each correct validator will

send a copy of that certificate to that customer by

lines 11–13 of the algorithm.

2. TM-Consistency. By contradiction, let us suppose

that two customers receive different certificates. As a

certificate contains at least f+1 signatures, a correct

validator has broadcast σi(0) and another correct

validator has broadcast σj(1). Line 6 of BFT-TM

shows that the value signed and broadcast has been

decided by BBC. This is a contradiction with BBC-

Agreement.

3. TM-Commit-Validity. TM-Commit-Validity says

that if Bob does not propose commit, then TM can-

not issue χc. If Bob does not propose commit, then

no correct validator will ever propose 1 because of

lines 1−5 of BFT-TM. Now BBC-Validity implies

that no correct validator can decide 1, and conse-

quently the commit certificate cannot be issued by

TM.

4. TM-Abort-Validity. TM-Abort-Validity says that

if no customer proposes to abort, then TM cannot

issue χa. If no customer proposes to abort, then no

correct validator will ever propose 0 because of lines

1 − 5 of BFT-TM. The final argument is the same

as above. ut

6 Related work

6.1 The interledger protocols.

In [24] two protocols are presented for payments across

payment systems. Here a payment system is thought

of as an independent bank, where people can have ac-

counts. The intended application is in digital payment

systems, such as Bitcoin [21]. In [24] the payment sys-

tems, or rather the offered functionality, are loosely re-

ferred to as ledgers, and payments between customers

of different ledgers as interledger payments. Following

popular terminology, we here speak of escrows and

cross-chain payments.

The protocols from [24] generalise to the situation

of a longer zigzag than the one presented in Figure 1,

involving n escrows and n−1 intermediaries Chloei. As

mentioned, the correctness proof in [24] for the uni-

versal protocol requires the assumption of synchrony

from Dwork et al. [7]. Here we point out that this as-

sumption is necessary. To make such a statement, we

need to define when we consider a cross-chain payment

protocol correct. The correctness proof by Thomas &

Schwartz [24] consists of reasonable properties that are

shown to hold for the chosen protocol. These proper-

ties are stated in terms of that specific protocol, and

the reader can infer that they sum up to a correctness

argument. But no formal statement occurs of what it

means for a general cross-chain payment protocol to be

correct, and this is what we need to make any negative

statement about it.

6.2 Cross-chain swaps

A cross-chain swap is a deal where a transaction from

Alice to Bob in one blockchain is matched by a trans-

action from Bob to Alice in another. Herlihy proposes

atomic cross-chain swaps in a synchronous environment

[13]. Zakhary, Agerwal & El Abbadi [26] adapt this to

work even with asynchronous communication. Ron van

der Meyden [19] verifies a cross-chain swap protocol

by modelling a timelock predicate as a Boolean vari-

able indicating whether the asset is transferred. This

approach also requires synchrony. In XClaim [28] Za-

myatin et al. propose a solution to swap blockchain-
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backed assets. Their protocol assumes that adversaries

are behaving rationally, and requires synchrony. Atomic

swaps cannot be used to solve the cross-chain payment

problem—compare Section 6.5.

6.3 Other cross-chain technologies.

In the lightning network, Poon & Dryja [22] can relay

payments outside the blockchain or “offchain” through

connected intermediaries, but they require synchrony

and do not consider clock drift. Avarikioti et al. [3] pro-

pose an off-chain payment protocol that is safe under

asynchrony, between two parties only. Gazi, Kiayias &

Zindros [8,15] propose a rigorous formalisation of ledger

and cross-chain transfers, and focus on proof-of-stake

and proof-of-work blockchains. However, their results

are not extensible to partial synchrony and do not con-

sider clock drift.

Zamyatin et al. [27] define a similar cross-chain com-

munication problem, involving the execution of two

well-formed transactions on distinct ledgers before re-

spective time bounds t and t′. They show that the prob-

lem is unsolvable in the asynchronous setting without a

trusted third party, by reduction from the fair exchange

impossibility result, itself derived from the impossibil-

ity of consensus in an asynchronous setting with one

crash failure. Our result directly implies that also this

type of cross-chain communication is unsolvable in the

asynchronous setting. The difference is that we show

that it is not even possible when partial synchrony is

assumed.

Lind et al. [17] relax the synchrony assumption but

require a trusted execution environment (TEE). Such

a solution cannot be used to solve our problem as it

would require trusting a third-party, often represented

as the manufacturer of this TEE.

Other approaches [25,23,14] rely on a separate block-

chain that plays the same role as our transaction man-

ager (cf. Section 5.2). However, [25] and [23] do not aim

at ensuring liveness, and [14] aims at ensuring liveness

only in periods where communication proceeds syn-

chronously. Wood [25] proposes a multi-chain solution

that aims at combining heterogeneous blockchains to-

gether without trust. As far as we know, it has not been

proved that the protocol terminates. Ranchal-Pedrosa

& Gramoli [23] relax the synchrony assumption using

an alternative ‘child’ blockchain to the so-called ‘par-

ent’ blockchain in order to execute a series of transfers

outside the parent blockchain. This protocol does not

guarantee that the intermediary transfers on the child

blockchain eventually take effect. Herlihy, Liskov &

Shrira [14] model cross-chain deals as a matrix M where

Mi,j characterises a transfer between participants i and

j, and offer a timelock-based solution under the syn-

chrony assumption, without clock drift, and a certified

blockchain protocol that requires partial synchrony. As

remarked in [14], a strong liveness guarantee is not fea-

sible when merely assuming partial synchrony. In this

context the targeted cross-chain deal problem admits

solutions where all correct processes simply abort. Our

corresponding problem differs by requiring a weaker

liveness guarantee in that it formulates conditions un-

der which a successful transfer is ensured. We present

a more detailed comparison between our work and that

of [14] in Section 6.5.

6.4 Crash fault tolerant solutions

The transaction commit problem is a classical problem

from the database literature, tackled for instance by

Gray & Lamport [10], Guerraoui [11] and Hadzilacos

[12]. It consists of ensuring that either all the processes

commit a given transaction or all the processes abort

this transaction.

The Non-Blocking Atomic Commitment problem has

been formally defined by Guerraoui, for asynchronous

systems with unreliable failure detectors (encapsulat-

ing partial synchrony) in a crash (fail-stop) model [11]

but not in a Byzantine model. Guerraoui proved an im-

possibility result when the problem requires that “If all

participants vote yes, and there is no failure, then ev-

ery correct participant eventually decides commit”. He

then proposes a weaker variant of the problem where

the above requirement is replaced by “If all participants

vote yes, and no participant is ever suspected, then ev-

ery correct participant eventually decides commit”. The

two problems we consider in this paper present a simi-

lar distinction; however, our problems target Byzantine

fault tolerance, not crash fault tolerance.

Anta, Georgiou & Nicolaou [2] propose a general

and rigorous definition of a ledger in which they con-

sider the atomic append problem in an asynchronous

model. Similarly, their model considers only crash fail-

ures but was later generalised to the Byzantine fault

tolerant setting [6] by limiting the number of Byzan-

tine clients to dn/3e − 1.

6.5 Cross-chain deals versus cross-chain payments

In Herlihy, Liskov & Shrira [14], a cross-chain deal is

given by a matrix M where Mi,j is listing an asset to

be transferred from party i to party j. It can also be

represented as a directed graph, where each vertex rep-

resents a party, and each arc a transfer; there is an arc

from i to j labelled v iff Mi,j = v and v 6= 0.
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They present two protocols for implementing such

a deal, while aiming to ensure:

– Safety. In each protocol execution, every compliant

party ends up with an acceptable payoff.

– Termination.3 No asset belonging to a compliant

party is escrowed forever.

– Strong liveness. If all parties are compliant and

willing to accept their proposed payoffs, then all

transfers happen.

Here a payoff is acceptable to a party i in the deal if

party i either receives all assets Mj,i while giving all

assets Mi,j , or if party i loses nothing at all; moreover,

any outcome where she loses less and/or gains more

than an acceptable outcome is also acceptable.

Each entry Mi,j contains a type of asset and a mag-

nitude—for instance “5 bitcoins”. For each type of asset

a separate blockchain is assumed to act as an escrow.

The programming of these blockchains is assumed to

be open source, so that all parties can convince them-

selves that all escrows abide by the protocol. With this

in mind, their Termination requirement corresponds

with our Eventual termination of Definition 3, while

Safety is the counterpart of our Customer security.

Our requirement of Escrow security is left implicit

in [14]; since blockchains do not possess any assets to

start with, they surely cannot lose them. Finally, their

Strong liveness property is the counterpart of ours.

Herlihy, Liskov & Shrira [14] offer a timelock commit

protocol that requires synchrony, and assures all three

of the above correctness properties. They also offer a

certified blockchain protocol that requires partial syn-

chrony and a certified blockchain, and ensures Safety

and Termination; in a partially synchronous environ-

ment no protocol can offer Strong liveness. For both

protocols the correctness is proven for so-called well-

formed cross-chain deals: those whose associated di-

rected graph is strongly connected.

The cross-chain payment cannot be seen as a special

kind of cross-chain deal. In first approximation, a cross-

chain payment looks like a non-well-formed deal of the

form

0 $

0 $ (0)

0
. . .

. . . $

(0) 0 $

0


∼= c0

$−→ c1
$−→ . . .

$−→ cn .

3 In [14], this property is called “weak liveness”. We re-
name it here, to avoid confusion with our own weak liveness
property, which is of a very different nature.

However, this representation abstracts from the certifi-

cate χ that plays an essential role in the statement of

the time-bounded cross-chain payment problem. Fac-

toring in χ, an alternative representation would be

0 $

0 $ (0)

0
. . .

. . . $

(0) 0 $

χ 0


or 

0 $

χ 0 $ (0)

χ 0
. . .

. . . $

(0) χ 0 $

χ 0


.

However, these solutions presume a shared blockchain

between Alice and Bob for the transfer of the certificate;

this runs counter to the problem description of cross-

chain payments.

Conversely, neither is there a reduction from the

cross-chain deal problem to the cross-chain payment

problem. A deal presented by a cyclic graph can be

represented as a cross-chain payment where Alice and

Bob are identified. For instance, an atomic swap be-

tween two customers A and C can be expressed as a

cross-chain payment with three customers:[
0 a

b 0

]
∼= A

a−→ C
b−→ B = A .

However, this idea does not generalise to well-formed

cross-chain deals in general. Since every strongly con-

nected graph can be represented as a single cycle with

repeated elements, there is an obvious candidate reduc-

tion of such deals to cross-chain payments, simply by

identifying suitable intermediaries Chloei and Chloej .

However, this reduction does not preserve the safety

property of cross-chain deals; for when the deal goes

through for Chloej but is aborted for Chloei, the re-

sulting outcome is not (necessarily) acceptable for the

unified participant Chloe{i.j}.

7 Conclusion

We formalised the problem of cross-chain payment with

success guarantees. We show that there is no solution to

the existing variant of this problem without assuming

synchrony, and offer a synchronous solution—one that
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works even in the presence of clock drift. We then relax

the liveness guarantee of this problem in order to pro-

pose a solution that works in a partially synchronous

setting. This new problem differs from existing ones

in that it prevents all participants from always abort-

ing, hence guaranteeing success when possible. Besides

the new problem statements and our impossibility re-

sult, an interesting aspect of our work is to relate re-

cent blockchain problems, like interledger payments, to

the classic problem of transaction commit, and to offer

Byzantine fault tolerant solutions to these.
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A The syntax and semantics of ANTA

Let U be a fixed finite set of clock variables. An arithmetical
expression is a term build from clock variables u ∈ U and the
constants 0 and 1 by means of the binary operators addition,
subtraction, multiplication and division. A time-out expres-
sion has the form now≥ϕ, with ϕ an arithmetical expression.

Let D be a finite set of automaton identifiers, and MSG a
fixed set of messages. The messages are not defined here; they
are a parameter of the ANTA formalism, to be chosen for each
application. An input expression has the form r(id,m), with
id ∈ D and m ∈ MSG. It models the receipt of message m from
automaton id. Likewise, an output expression has the form
s(id,m). It models the sending of m to id. Let EU , EI and
EO be the sets of time-out, input and output expressions.

A D-automaton is a tuple (I,O, F, i, TU , TI , TO,V) with

– I, O and F disjoint sets of input, output and final states,
– i ∈ S := I ∪O ∪ F , the initial state,
– TU ⊆ I × EU ×P(U)× S, the time-out transitions,
– TI ⊆ I × EI ×P(U)× S, the input transitions,

– TO :O → R
∞×P+

fin(EO)×P(U)×S, the output transitions,
– and V ⊆ U a set of customer-initialised clock variables.

The sets I, O, F , TU and TI are required to be finite. States
are depicted as circles. Final (or termination) states are dou-
ble circles, and output states are shaded. The initial state
is marked by a short incoming arrow. A time-out or input
transition (s, e, U, s′) is depicted as an arrow from s ∈ I to
s′ ∈ S, labelled with the expression e ∈ EU ∪EI and with the
assignments u := now for u ∈ U ⊆ U . An output transition
(s, (to, E, U, s′)) is depicted as an arrow from s ∈ O to s′ ∈ S,
labelled with the finite nonempty set of output expressions
E ∈P+

fin(EO) and with the assignments u := now for u ∈ U ;
moreover, the output state s is labelled with the time-out
value to ∈ R∞ := R ∪ {∞}.

An Asynchronous Networks of Timed Automata (ANTA)
is a function A from a finite set D of automaton identifiers
to the class of D-automata. For each d ∈ D, let A(d) be the
tuple (Id, Od, Fd, id, Td

U , T
d
I , T

d
O,Vd).

Semantics of individual D-automata

A valuation ξ : U ⇀ R is a partial function that associates
real numbers to some of the clock variables. If U ⊆ U is a set of
clock variables that are set at time now , then ξ[U ]now denotes
the valuation with dom(ξ[U ]now ) = dom(ξ) ∪ U , defined by
ξ[U ]now (u) = now for u ∈ U , and ξ[U ]now (u) = ξ(u) for
u ∈ dom(ξ)\U .

The evaluation 〚ϕ〛(ξ) ∈ R∞ of an arithmetical expression
ϕ under a valuation ξ is the real number obtained by apply-
ing the arithmetical operators of ϕ after filling in the values
ξ(u) ∈ R for the clock variables u ∈ U occurring in ϕ. In case
ϕ contains clock variables that are not in the domain of ξ, or
in case of division by 0, 〚ϕ〛(ξ) :=∞.

A configuration of a D-automaton A(d) fully describes
the state of A(d) at some point. It is a tuple (ξ,now , s, pt, dl)
with ξ : U ⇀ R a valuation, now ∈ R the local time at
A(d) in this configuration, s ∈ S the current state of A(d),

pt ∈P+
fin(EO) a set of pending transmissions, and dl ∈ R∞ a

deadline by which the automaton must have left that state.
Given a triple (ξ,now , s), we define a corresponding set

of pending transmissions pt := Pt(ξ,now , s) as follows. If
s ∈ I ∪ F then Pt(ξ,now , s) := ∅, and if s ∈ O with TO(s) =

(to, E, U, s′) then Pt(ξ,now , s) := E ∈P+
fin(EO).

Given a triple (ξ,now , s), we define a corresponding dead-
line dl := Dl(ξ,now , s) as follows. In case s ∈ F we take
Dl(ξ,now , s) :=∞. This says that once an automaton enters
a final state, it may (and will) stay there forever. In case s ∈ O
and TO(s) = (to, E, U, s′) then Dl(ξ,now , s) := now + to.
This says that when an automaton enters an output state, it
will stay there less than the value to that labels this state. Fi-
nally, if s ∈ I then Dl(ξ,now , s) is defined as the minimum of
all values 〚ϕ〛(ξ), for time-out transitions (s,now ≥ ϕ,U, s′)
leaving state s. Here the minimum of the empty set is ∞.
This says that an automaton will not linger in an input state
when one of its time-out transitions is enabled. Here time-out
transitions with undefined parts are not enabled.

The behaviour ofA(d) is described by defining its possible
initial configurations as well as a transition relation between
configurations, which tells how this automaton can evolve.

A configuration (ξ,now , s, pt, dl) of a D-automaton A(d)
= (I,O, F, i, TU , TI , TO,V) is initial iff dom(ξ) = V, that is, ξ
associates values only to customer-initialised clock variables,
s = i, pt = Pt(ξ,now , s) and dl = Dl(ξ,now , s). An initial
state, that is, the initial values now and ξ(v) for v ∈ V,
is meant to be chosen by the party that is represented by
the automaton. In the case of the automaton of Figure 5 for
instance, we have V = {Ti}, and the value Ti (relative to
now) is chosen by Chloei. In case V = ∅, as in Figure 3, the
initial value of now is irrelevant, so one could just as well take
now := 0.

The transition relation between configuration is defined
in Figure 8. Transitions are labelled either with a positive
real number z ∈ R+, to indicate passage of time, or with the
special symbol •, to indicate an (instantaneous) time-out-
transition, or with an input or output expression, indicating
the receipt or transmission of a message. The latter two tran-
sitions are also instantaneous, in the sense that only the end
of a durational receipt or transmission activity is modelled.
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s ∈ I ∧ now < now ′ ≤ dl ∧ z = now ′−now

(ξ,now , s, pt, dl) z−→ (ξ,now ′, s, pt, dl)

s ∈ O ∪ F ∧ now < now ′ < dl ∧ z = now ′−now

(ξ,now , s, pt, dl) z−→ (ξ,now ′, s, pt, dl)

s ∈ I ∧ (s,now ≥ ϕ,U, s′) ∈ TU ∧ now ≥ 〚ϕ〛(ξ)

(ξ,now , s, pt, dl) •−→ (ξ[U ]now ,now , s′, pt′, dl′)

s ∈ I ∧ (s, r(id,m), U, s′) ∈ TI

(ξ,now , s, pt, dl) r(id,m)−−−−−→ (ξ[U ]now ,now , s′, pt′, dl′)

(s, r(id,m), U, s′) /∈ TI for all U and s′

(ξ,now , s, pt, dl) r(id,m)−−−−−→ (ξ,now , s, pt, dl)

s ∈ O ∧ s(id,m) ∈ pt ∧ pt− := pt\{s(id,m)} 6= ∅

(ξ,now , s, pt, dl) s(id,m)−−−−−→ (ξ,now , s, pt−, dl)

s ∈ O ∧ pt = {s(id,m)}

(ξ,now , s, pt, dl) s(id,m)−−−−−→ (ξ[U ]now ,now , s′, pt′, dl′)

Here pt′ := Pt(ξ[U ]now ,now , s′), dl′ :=Dl(ξ[U ]now ,now , s′).

Fig. 8: Transitions between automaton configurations

The first two rules state that an automaton can idle in a
state as long as the deadline pertaining to that state is not
reached. For output state this deadline is strict (hence “<”),
whereas for input states it is not. The fourth and fifth rules
say that a message m from automaton id can arrive at any
time; this is not under the control of the receiving automaton.
However, the receiving automaton will perform a transition
in response to this incoming message only if it is in a state s
with an input transition labelled r(id,m). In all other cases
the incoming message is ignored.

Asynchronous semantics of ANTA

Given an ANTA A with domain D, let Cd for d ∈ D denote
the set of configurations of the automaton A(d), and let C :=∏

d∈D Cd. A configuration of A is a pair ( ~C, P ) of a D-tuple
~C ∈ C of configurations of the automata in the network, and
a set P of pending messages. Here a pending message is a
tuple (~t, sd, id,m) ∈ RD × D × D × MSG, with m ∈ MSG the
content of the message, sd and id its sender and destination,
and ~t = (td)d∈D the time the message was sent, seen as vector
of reals according to the local clock of each automaton d ∈ D.

Given a configuration ( ~C, P ), one has ~C = (Cd)d∈D,
where Cd =(ξd,nowd, sd, ptd, dld) is a configuration of d∈D;

let now( ~C) ∈ RD denote the D-tuple (nowd)d∈D .
The behaviour of an ANTA A is described by its initial

configurations and a transition relation between configura-
tions. A configuration ( ~C, P ) is initial if P = ∅ and Cd is
initial for each d ∈ D. Figure 9 defines the transition rela-
tion for the asynchronous semantics of ANTA, as employed
in Section 5.3. The first rule says that the network may evolve
simply by time passing in each automaton. The amounts of
time td according to the local clocks of each automaton d ∈ D
need not be related in any way. The remaining rules allow the
network to evolve by one automaton performing a time-out,

Cd
td−→ C′d for each d ∈ D

( ~C, P ) −→ ( ~C′, P )

Cid
•−→ C′id ∧ Cd = C′d for each d ∈ D\id

( ~C, P ) •@id−−−→ ( ~C′, P )

Cid
r(sd,m)−−−−−→ C′id ∧ Cd = C′d for each d ∈ D\id

∧ P = P ′ ] {(~t, sd , id ,m)}

( ~C, P ) r(sd,m)@id−−−−−−−−→ ( ~C′, P ′)

Csd
s(id,m)−−−−−→ C′sd ∧ Cd = C′d for each d ∈ D\sd

∧ P ′ = P ] {(now( ~C), sd , id ,m)}

( ~C, P ) s(id,m)@sd−−−−−−−−→ ( ~C′, P ′)

Fig. 9: Transitions between ANTA configurations

receive or send transition, which takes no time at all, and
the others remaining unchanged. In the case of receive or
send transitions, the corresponding message is taken from or
added to the set of pending messages. Note that the field ~t
of a pending message is not used at all, and could just as
well have been omitted. It is there merely to enable a syn-
chronous semantics of ANTA, obtained from the one above
by eliminating certain ANTA configurations and transitions.

Synchronous semantics of ANTA

To make ANTA compatible with the assumption of asyn-
chrony from Dwork et al. [7] we need to exclude configurations
in which a message is pending longer than the upperbound ∆
of Section 3.1, as measured by the clock of any automaton in
the network, and ensure a fixed upper bound Ψ on the rate at
which one automaton’s clock can run faster than another’s.

Definition 6 A configuration ( ~C, P ) is valid if P contains
no pending message (~t, sd, id,m) such that nowd > td + ∆
for some d ∈ D.

A vector ~z ∈ (R+)D of durations is compatible if
zd

ze
≤ Ψ

for all d, e ∈ D.

The the synchronous semantics of ANTA, based on given con-
stants ∆ and Ψ , differs from the asynchronous semantics only
in the first rule of Fig. 9, which obtains the extra requirements
that ( ~C′, P ) is valid and ~z compatible. This is the semantics
employed in Section 3.
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