
Leveraging Democracy
to Optimize Distributed Random Beacons

Alejandro Ranchal-Pedrosa
†

Protocol Labs and University of Sydney

Sydney, Australia

alejandro.ranchalpedrosa@sydney.edu.au

Vincent Gramoli

University of Sydney and Redbelly Network

Sydney, Australia

vincent.gramoli@sydney.edu.au

ABSTRACT
Random beacons, protocols that produce a reliable source of ran-

domness, are crucial in a variety of applications. However, solving

the random beacon problem has recently been shown to be at least

as hard as solving consensus. In this work, we propose Kleroterion,

a random beacon protocol that builds on top of recent works in

order to ensure a trustless setup that is not costly, and that toler-

ates up to less than a third of Byzantine processes under partial

synchrony. Kleroterion executes 𝑛 instances of Pinakion, our novel

Publicly-Verifiable Secret Sharing (PVSS) protocol, in order to share

one input per process. Then, Kleroterion runs a consensus protocol

that selects and aggregates a third of these shared inputs.

Compared to previous works that are also quadratic in the com-

munication complexity, Kleroterion allows for inputs to be shared

without having to be routed through a specific node, a so-called

leader. We refer thus to Kleroterion as a democratic protocol. We

show that democratizing protocols improves both communication

and computation performance, in that shared bits and computation

are scattered across all channels and processes, thus removing the

bottleneck at the leader. This is shown in that Kleroterion has linear

computation complexity and a number of bits sent per channel of

the network independent of the number of processes, except for

the reconstruction phase and for one message per leader during

agreement. Contrary to leader-less protocols, Kleroterion has a

leader of the embedded consensus protocol that proposes a bitmask

referencing one bit per shared input. This bitmask can thus refer-

ence more information shared by processes, enabling batching with

other information. An example of this is a blockchain application

in which the output of the random beacon can be used for a secure

committee sortition protocol, and the bitmask references both a set

of proposed blocks of transactions and of shared inputs.

† The author was with the University of Sydney, Sydney, Australia. He is now with

Protocol Labs.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ConsensusDay ’22, November 7, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9879-4/22/11. . . $15.00

https://doi.org/10.1145/3560829.3563558

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; • Se-
curity and privacy→Distributed systems security; • Theory
of computation→ Cryptographic protocols.

KEYWORDS
Blockchain, consensus, random beacon, secret sharing, leaderless

1 INTRODUCTION
A reliable public source of randomness, also known as a random

beacon, plays an important role in a variety of applications. Some

applications like traditional auctions and lotteries [29] or electronic

voting allow for a centralized process to compute the random output.

However, these applications are vulnerable to a centralized point

of failure. Furthermore, many other applications such as solving

consensus under asynchrony [48], committee sortition [2, 4, 28, 36],

sharding [30, 45], or anonymous communications, cannot fulfil

their purposes by relying on a centralized source of randomness,

and require the implementations of distributed random beacons.

To implement a distributed random beacon, a set of processes of

size 𝑛, the committee, execute a protocol that produces the random

beacon. These protocolsmust satisfy the properties of availability, in

that they must produce an output; public verifiability, in that every

process must be able to verify the output; bias-resistance, in that

the output must not be biased by an adversary; and unpredictability,

in that the adversary must not be able to predict any non-trivial

information about the output of the beacon, or any future output.

The goal of distributed random beacons is thus to generate

random outputs in the presence of an adversary. On the one

hand, some works rely on synchronous random beacon proto-

cols [1, 3, 8, 11, 13, 20, 23, 39, 42, 44, 49, 56, 57, 63], which are known

to be vulnerable to network delays, which has already resulted in

the loss of funds from honest processes in some applications of

these works [41, 53, 67]. On the other hand, asynchronous protocols

do not deterministically satisfy availability.

We therefore rely on partial synchrony, a weak form of syn-

chrony that provides deterministic guarantees, in which messages

can be delayed by up to a bound that is unknown. The state of

the art already provides random beacons under partial synchrony

that tolerate the resilient-optimal bound of 𝑓 < 𝑛/3 Byzantine

faults [27, 44, 61]. This is because it has recently been shown that

if a protocol solves the random beacon problem, then it solves the

consensus problem [44].

Our result. Inspired from this recent result that relates random

beacons with consensus protocols, we propose Kleroterion, the first

1

https://doi.org/10.1145/3560829.3563558

democratic protocol that solves the random beacon problem. We

refer to a consensus protocol being democratic in that inputs are

distributed, i.e. scattered around the pairwise network channels,

instead of routed through a specific process, typically known as

the leader. Kleroterion extends SPURT’s [27] random beacon by

making it democratic. The SPURT random beacon protocol relies on

a leader to aggregate inputs and propose a digest of these inputs in

order to reduce its bit complexity. Contrary to SPURT, Kleroterion

asks each process to locally generate 𝑛 inputs, and aggregate their

own inputs locally, to then broadcast them. This allows Kleroterion

to relieve SPURT’s strong dependency on the leader computation

and communication, as seen in Table 1, resulting in as little as a

number of bits exchanged per each pair of processes per decision

that is independent of the number of processes running the protocol,

except for one message sent by the leader and for the reconstruction

phase.

Table 1: Comparison of bits sent per each pairwise channel
of the network and computation performed by each process,
per decision, in SPURT [27] and Kleroterion.

Phase Computation Bits per channel

Leader Non-leader Leader non-leaders

S
P
U
R
T Commitment O(𝑛) O(𝑛) O(𝜆𝑛) O(𝜆)

Aggregation O(𝑛2) - - -

Agreement O(𝑛) O(𝑛) O(𝜆𝑛) O(𝜆)

K
l
e
r
o
t
e
r
i
o
n
-

Commitment O(𝑛) O(𝑛) O(𝜆) O(𝜆)
Aggregation O(𝑛) O(𝑛) O(𝜆) O(𝜆)
Agreement O(𝑛) O(𝑛) O(𝑛) O(𝜆)

Kleroterion also presents interesting observations compared to

more recent leader-less protocols [26, 27, 59, 60, 62, 65]. The ma-

jority of leader-less protocols that we know of, like Kleroterion,

start by having processes exchange their inputs through an all-to-

all broadcast. However, unlike Kleroterion, these protocols then

execute one binary consensus instance per input, resulting in a bit

complexity of at least Ω(𝑛) for the combined execution of all binary

consensus instances (since there are Ω(𝑛) binary executions, each

exchanging at least Ω(1) bits). By contrast, Kleroterion proceeds

instead by executing a leader-based consensus to simply propose a

digest of a bitmask, providing a proposal of size O(𝜆) bits, where
𝜆 ≤ 𝑛 is the security parameter. Although we believe that it is pos-

sible to create implementations of leader-less protocols that benefit

from a similar optimization, Kleroterion emphasises the importance

of democratizing protocols, and not necessarily removing its leader

altogether.

In order to present Kleroterion, we first present our publicly-

verifiable secret sharing (PVSS) scheme, Pinakion
1
. Kleroterion then

consists of the integration of 𝑛 parallel executions of the Pinakion

1
The names Kleroterion and Pinakion are inspired from the first known democracy in

history, that of the Athenian polis. This democracy consisted on a yearly randomized

dictatorship. Kleroterion was the randomization device on to which each citizen would

place a token with their name, known as a Pinakion.

protocol, in order to share encrypted secrets, followed by a con-

sensus protocol, which decides on encrypted secret shares. After

deciding on at least 𝑛/3 proposed secretly shared inputs, processes

reconstruct each of them with the reconstruction procedure of the

Pinakion protocol, in order to aggregate them into the random

output.

To the best of our knowledge, our Kleroterion protocol competes

with recent works that solve the random beacon problem under

partial synchrony by offering a quadratic bit complexity per de-

cision. However, thanks to the democratization of the consensus

protocol, Kleroterion offers two advantages. First, whereas previous

works that are not democratic saturate network channels to the

leader by sending O(𝜆𝑛) bits through them (where 𝜆 is the security

parameter), our democratic implementation exploits all channels

of the network, sending only O(𝜆) through each pairwise channel.

This distribution of information scattered around processes also

distributes its computation and verification, which removes the

bottleneck caused by overusing the leader. This has been shown to

be a significant performance improvement [26, 27, 59, 60, 62, 65].

Second, since we decouple the dissemination of secrets from

the consensus proposal, but instead the consensus proposal is a

bitmask referencing the previously shared secrets, the consensus

leader allows for the consensus proposal to reference not just the

secret shared by a process, but any other additional information

shared by the same process, which enables batching. This is particu-

larly meaningful in applications like blockchains, where consensus

is typically used to decide on blocks of transactions. Hence, the

cost of adding a random beacon (e.g. for committee sortition) in a

blockchain application that uses our proposed protocol is only the

cost of disseminating the secrets shared from our Pinakion PVSS

scheme.

The rest of this paper is structured as follows: in Section 1.1 we

detail the related work, Section 2 sets the background and model,

we present our Pinakion PVSS scheme in Section 3, we use Pinakion

to present our Kleroterion random beacon protocol in Section 4, to

then illustrate optimizations and observations that justify designing

democratic protocols and using Kleroterion intead of other works

in Section 5, and we finally conclude in Section 6.

1.1 Related work
PVSS. Kokoris Kogias et al. [43] present a high-threshold asyn-

chronous verifiable secret sharing scheme with a dual (𝑓 , 2𝑓 + 1)-
threshold where the reconstruction threshold is some 𝑘 for 𝑡 + 1 <

𝑘 ≤ 2𝑡 + 1, with 𝑡 = ⌈𝑛/3⌉ − 1. This way, the secret can only be

reconstructed if 𝑘 processes participate in the reconstruction, while

allowing honest processes that did not participate in the sharing

phase to recover their share with the help of 𝑡 + 1 other processes.
Alhaddad et al. [7] propose an asynchronous verifiable secret shar-

ing (AVSS) protocol with optimal communication complexity in

the same model. Tomescu et al. [9] propose the first PVSS with

share recovery solution with an optimistic constant number of

cryptographic operations per process, while Trek et al. [66] offer a

resilient optimal asynchronous complete secret sharing protocol of

quasi-linear computation and communication complexity. Boyle et

al [13] present a synchronous VSS protocol that tolerates 𝑓 < 𝑛/3
2

Byzantine faults, while Schindler et al [57] present a PVSS protocol

under the same model and fault-tolerance.

Random Beacons. Syta et al. [61] propose a random beacon toler-

ant to 𝑡 Byzantine faults in asynchrony relying on a setup based

on distributed key generation (DKG). Contrary to random beacons

with a setup based on common reference string (CRS) like Klero-

terion, those relying on DKG require executing the setup phase

after every change in the committee. Das et al. [27] propose a PVSS

protocol based on a (𝑡 + 1, 𝑛)-threshold secret sharing scheme, with

a communication complexity of O(𝜆𝑛2) per beacon output. Algo-

rand [36], Ouroboros Praos [28], Elrond [33], or Polkadot [2, 4]

implement random beacons based on verifiable random functions

(VRFs) that tolerate up to 𝑡 Byzantine faults. Algorand [36] relies on

a weak synchrony assumption for safety, and a strong synchrony

assumption for liveness. While strong synchrony refers to the clas-

sical synchronous definition where there is a known bound for the

communication delay, weak synchrony states the need for synchro-

nous periods of length 𝑠 (e.g. hours) for every non-synchronous

periods of length 𝑏 (e.g. a day). Aleph et al. [37] use DKG in order

to implement an asynchronous randomness beacon while tolerat-

ing 𝑓 ≤ 𝑡 Byzantine faults, removing the requirement of a trusted

dealer setup present in the HoneyBadger’s common coin [48]. Gao

et al. [35] propose a common coin with O(𝜆𝑛3) bits and constant

asynchronous rounds in order to solve asynchronous Byzantine

agreement. RandSolomon [31] propose a random beacon tolerating

𝑡 Byzantine faults with linear message complexity.

Synchronous random beacon protocols [1, 3, 11, 13, 20, 23, 39, 42,

44, 49, 56, 57, 63] also range from a variety of primitives and setup

assumptions, but all of them are tolerant to at most 𝑛/2 Byzantine
faults. Protocols based on Proof-of-Delay rely on strong and new

assumptions about verifiable time-lock puzzles or verifiable delay

functions [10, 21, 56].

Some works implement random beacons, or varieties of the ran-

dom beacon problem, under a myriad of denominations, such as

randomness beacons [37], global coins [6, 19], common coins [35,

43, 48], random number generators [31, 44], or coin tossing proto-

cols [13, 20].

We highlight state-of-the-art random beacons and compare them

with Kleroterion in Table 2, where we show that Kleroterion. We

will detail in Section 4 our Kleroterion protocol.

2 BACKGROUND & MODEL
Let G0, G1 and G𝑇 be cyclic groups of prime order 𝑞 and Z𝑞

the group of integer modulo 𝑞, and let 𝜆 be the security parameter

𝜆 = log
2
(𝑞).We assume that at the start of the protocol, all processes

agree on public parameters 𝑔0, ℎ0 ∈ G0 and 𝑔1, ℎ1 ∈ G1, which

are randomly and independently chosen generators of each cyclic

group [27]. This is known as a common reference string (CRS) setup.

We denote an element 𝑥 sampled uniformly at random from a finite

setM by 𝑥
$←− M. We denote vectors using bold face lowercase

letters such as y.
We consider a partially synchronous communication network, in

which there is a known bound Δ on the communication delay that

will hold after an unknown Global Stabilization Time (GST) [32].

Processes communicate via secure and authenticated pairwise com-

munication channels, meaning that messages cannot be modified,

lost or duplicated. We iteratively execute our random beacon pro-

tocol, Kleroterion, with a static committee 𝑁 of size |𝑁 | = 𝑛. We

assume a standard public-key infrastructure (PKI) that associates

processes’ identities with their public keys, and that is common to

all processes, only for the setup.

Adversary. We denote 𝑡 = ⌈𝑛/3⌉ − 1 as the maximum num-

ber of tolerated Byzantine faults. The adversary A thus controls

𝑓 ≤ 𝑡 Byzantine processes. We model processes as probabilistic

polynomial-time interactive Turing machines (ITMs) [16, 17, 46].

A process that is not Byzantine is honest.

Bilinear Pairings. Similarly to previous work [27], we rely on

the decisional bilinear Diffie-Hellman assumption [12] (DBDH), for

which we assume the reader is familiar with the standard definition

of computationally indistinguishable distribution ensembles [38,

64]:

Definition 2.1 (Bilinear Pairing). Let G0, G1 and G𝑇 be three

cyclic groups of prime order 𝑞 where 𝑔0 ∈ G0 and 𝑔1 ∈ G1 are

generators. A pairing is an efficiently computable function 𝑒 : G0 ×
G1 → G𝑇 satisfying the following properties:

(1) bilinearity: For all 𝑢, 𝑢 ′ ∈ G0 and 𝑣, 𝑣
′ ∈ G1 we have:

𝑒 (𝑢 · 𝑢 ′, 𝑣) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢 ′, 𝑣), and (1)

𝑒 (𝑢, 𝑣 · 𝑣 ′) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢, 𝑣 ′) (2)

(2) non-degeneracy: 𝑔𝑇 = 𝑒 (𝑔0, 𝑔1) is a generator ofG𝑇 .

We refer toG0 andG1 as the pairing groups or source groups, and

refer to G𝑇 as the target group.

Definition 2.2 (Decisional bilinear Diffie-Hellman). Given pairing

groups𝐺0, 𝐺1, target group𝐺𝑇 , each of size 𝑞, let 𝑒 : 𝐺0×𝐺1 → 𝐺𝑇
be an efficient bilinear pairingmap. For generators𝑔0 ∈ 𝐺0, 𝑔1 ∈ 𝐺1,

random values 𝛼, 𝛽,𝛾, 𝛿
$←− 𝑍𝑞 and 𝑎0 ←− 𝑔𝛼

0
, 𝑎1 ←− 𝑔𝛼

1
, 𝑏0 ←−

𝑔
𝛽

0
, 𝑏1 ←− 𝑔

𝛾

1
, the following distributions 𝐷0 and 𝐷1 are compu-

tationally indistinguishable:

𝐷0 = (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑒 (𝑔0, 𝑔1)𝛼𝛽𝛾),

𝐷1 = (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑒 (𝑔0, 𝑔1)𝛿).

In order to implement the Kleroterion protocol, we will use a

variant of Shamir’s threshold secret sharing [58] to implement a

variant of the publicly-verifiable secret sharing (PVSS) Π𝐷𝐵𝐷𝐻

protocol [27]. We define threshold secret sharing here below, and

our PVSS, Pinakion, in Section 2.3.

Zero Knowledge Proof of Knowledge. Our Kleroterion protocol

uses zero-knowledge proofs about equality of discrete logarithms

in order to satisfy knowledge soundness, in that processes know

the secret that they each are sharing. This guarantees to honest

processes that their shared secrets are independent of any other

shared secret.

In particular, given a CRS setup as mentioned above, 𝑥 ∈ G0, 𝑦 ∈
G1, each process 𝑝𝑖 wants to prove that there exists a witness 𝛼

such that 𝑥 = 𝑔𝛼
0
and 𝑦 = 𝑔𝛼

1
, and that 𝑝𝑖 knows 𝛼 .

3

N
e
t
w
o
r
k

f
a
u
l
t

t
o
l
e
r
a
n
c
e

A
d
a
p
t
i
v
e

a
d
v
e
r
s
a
r
y

L
i
v
e
n
e
s
s

U
n
p
r
e
d
i
c
t
a
b
i
l
i
t
y

B
i
a
s
-
r
e
s
i
s
t
a
n
c
e

B
i
t
c
o
m
p
l
e
x
i
t
y

C
o
m
p
u
t
a
t
i
o
n
a
l

c
o
m
p
l
e
x
i
t
y

P
u
b
l
i
c
-

v
e
r
i
fi
a
b
i
l
i
t
y

c
o
m
p
l
e
x
i
t
y

C
r
y
p
t
o
g
r
a
p
h
i
c

p
r
i
m
i
t
i
v
e
s

S
e
t
u
p

Cachin et al. [17] A. 1/3 ✗ ✓ ✓ ✓ O(𝜆𝑛2) O(𝑛) O(1) Uniq. th-sig. DKG

RandHerd [61] P. 1/3
† ✗ ✓ ✓ ✓ O(𝜆𝑐2 log𝑛)† O(𝜆𝑐2 log𝑛) O(1) PVSS+CoSi DKG

Dfinity [18] S. 1/3 ✗ ✓ ✓ ✓ O(𝜆𝑛2) O(𝑛) O(1) Uniq. th-sig. DKG

Drand [3] S. 1/2 ✗ ✓ ✓ ✓ O(𝜆𝑛2) O(𝑛) O(1) Uniq. th-sig. DKG

HERB [23] P. 1/3 ✗ ✓ ✓ ✓ O(𝜆𝑛4)‡ O(𝑛) O(𝑛) Partial HE DKG

Algorand [36] P. 1/3
† ✗ ✓ ≈∗ ✗∗∗ O(𝜆𝑐𝑛)† O(𝑐) O(1) VRF CRS

Bitcoin [49] S. 1/2 ✗ ✓ ≈∗ ✗∗∗ O(𝜆𝑛) very high O(1) Hash func. CRS

Ouroboros [42] S. 1/2 ✗ ✓ ✓ ✓ O(𝜆𝑛4)‡ O(𝑛3) O(𝑛3) PVSS CRS

Scrape [20] S. 1/2 ✗ ✓ ✓ ✓ O(𝜆𝑛4)‡ O(𝑛2) O(𝑛2) PVSS+Broadcast CRS

Hydrand [57] S. 1/3 ✗ ✓ ≈∗ ✓ O(𝜆𝑛2 log𝑛) O(𝑛) O(𝑛) PVSS CRS

RandRunner [56] S. 1/2 ✓ ✓ ≈∗ ✓ O(𝜆𝑛2) VDF O(1) VDF CRS

GRandPiper [11] S. 1/2 ✗ ✓ ≈∗ ✓ O(𝜆𝑛2) O(𝑛2) O(𝑛2) PVSS q-SDH

BRandPiper [11] S. 1/2 ✓ ✓ ✓ ✓ O(𝜆𝑛3) O(𝑛2) O(𝑛2) VSS q-SDH

Nguyen et al.[50] S. 1 ✗ ✗ ✓ ✓ O(𝑛) O(1) O(1) FHE+VRF –

ProofOfDelay[15] S. 1/2 ✗ ✓ ✓ ✓ O(𝑛)§ high O(1) VDF –

No-dealer[44] S. 1/2 ✗ ✓ ✓ ✓ O(𝑛2) O(𝑛2) O(1) Shamir+HE –

SPURT[27] P. 1/3 ✗ ✓ ✓ ✓ O(𝜆𝑛2) O(𝑛2) O(𝑛) PVSS+Pairing CRS

Kleroterion P. 1/3 ✗ ✓ ✓ ✓ O(𝜆𝑛2) O(𝑛) O(𝑛) PVSS+Pairing CRS

† Algorand and Randherd use a randomly sampled committee of size 𝑐 . This improves scalability at the cost of slightly reducing fault tolerance [27].

‡ The complexity counting that of their broadcast channel (blockchain) [27].

§ O(𝑛)+ Ethereum [31].

∗ The adversary can withhold inputs and try to compute output which can break unpredictability [27, 52].

∗∗ The adversary can discard undesirable beacon outputs [27].

Table 2: Comparison of distributed random beacons [27, 31].

Thus, in addition to bilinear pairings, we use the non-interactive

version of the Chaum-Pedersen Σ-protocol [22, 34, 51] in the ran-

dom oracle model. The knowledge soundness of this protocol im-

plies that if 𝑝𝑖 convinces an honest process 𝑝 𝑗 with non-negligible

probability, there exists an efficient (polynomial time) extractor that

can extract 𝛼 from 𝑝𝑖 with non-negligible probability. Let us denote

by dleq the call to a non-interactive version of the Chaum-Pedersen

protocol, such that dleq.Prove(𝛼, 𝑔0, 𝑥, 𝑔1, 𝑦) generates the proof
𝜋 and dleq.Verify(𝜋, 𝑔0, 𝑥, 𝑔1, 𝑦) verifies the proof [27].

Threshold secret sharing. A (𝑡, 𝑛)-threshold secret sharing scheme

allows a process, known as the dealer, to share a secret 𝑠 ∈ Z𝑞 with

𝑛 other processes, such that any 𝑡 + 1 of them can reconstruct the

message, but no 𝑡 of them can. Analogously to SPURT [27], we

also base off Shamir’s secret sharing [58] scheme, in which a secret

𝑠 ∈ Z𝑞 is embedded in a polynomial 𝑝 (·) of degree 𝑡 such that

𝑝 (0) = 𝑎0 = 𝑠 . The remaining 𝑡 coefficients {𝑎𝑖 }𝑡𝑖=1 are chosen

uniformly at random being thus 𝑝 (𝑥) = ∑𝑡
𝑖=0 𝑎𝑖𝑥

𝑖
.

The dealer then shares with process 𝑝𝑖 the evaluation of 𝑝 (𝑖).
One can efficiently reconstruct the polynomial using Lagrange

interpolation upon obtaining 𝑡 + 1 evaluations of 𝑝 (𝑥). Moreover,

an adversary cannot learn the secret with any 𝑡 or less evaluations

of 𝑝 (𝑥), except with the same probability of randomly guessing the

secret.

2.1 Random Beacon Problem
We restate the random beacon (RB) problem [11, 27, 31]:

Definition 2.3 (Random beacon problem). Let 𝜆 be a security

parameter. Let a committee𝑁 of |𝑁 | = 𝑛 processes execute an epoch
based protocol 𝜎 which outputs an output 𝑍 ∈ 𝑍𝑞 per iteration.

Then 𝜎 is an RB protocol if it satisfies all of the following properties

with probability at least 1 − 𝜖 (𝜆):
• Agreement:All honest processes agree on the same random

output 𝑍 .

• Availability: Every honest process eventually outputs one

value 𝑍 .

• Verifiability: If an honest process decides 𝑍 , then every

honest process can verify it.

• Unpredictability: Before at least 𝑡 + 1 processes output 𝑍 ,
no process can predict the value of𝑍 with probability greater

than 1/𝑞 + 𝜖 (𝜆) (i.e. randomly guessing the secret).

• Bias-resistance: No process can fix some 𝑐 bits of 𝑍 for any

epoch with probability better than 𝜖 (𝑐) + 𝜖 (𝜆).

The first two properties, namely agreement and availability, are

common to the consensus problem, although typically referred to

as agreement and termination. Verifiability states that all honest

processes can verify the validity of the output, which extends the

simpler property of validity in the consensus problem. In fact, the

fault-tolerance bounds known for consensus [32] are proven to

4

also apply to the random beacon problem [44]. The properties of

unpredictability and bias-resistance guarantee the randomness of

the output with respect to all processes.

2.2 Set Byzantine Consensus
Since solving the RB problem is at least as hard as solving the

consensus problem [44], and given that we are interested in scat-

tering the distribution of inputs without having a leader broadcast

them, we will solve a variant of consensus known as Set Byzantine
Consensus [25, 26] (SBC).

Definition 2.4 (Set Byzantine Consensus). A protocol solves the

Set Byzantine Consensus problem if it satisfies the following prop-

erties:

• SBC-Termination. every honest process eventually decides
a set of values;

• SBC-Agreement: no two honest processes decide on differ-

ent sets of values;

• SBC-Validity: the decided set of values is a subset of the

union of the proposed values;

• SBC-Nontriviality: if all processes are honest and propose

the same value 𝑣 , then the decided set is {𝑣}.
SBC-Termination and SBC-Agreement are analogous to the prop-

erties of the same name of the classical consensus problem, while

SBC-Validity states that the decided set must contain proposed val-

ues, and SBC-Nontriviality is necessary to prevent trivial algorithms

that decide a pre-determined value from solving the problem.

2.3 PVSS problem
Many RB implementations, like the one we present in this work,

execute 𝑛 instances of a publicly-verifiable secret-sharing (PVSS)

protocol, one per process, after which some of the secrets shared

by processes are selected to be aggregated into one final random

output. A PVSS protocol has four phases [27]:

(1) Setup: The dealer 𝑝𝑑 generates and publishes the parameters

of the scheme. Every process 𝑝𝑖 publishes a public key 𝑝𝑘𝑖
and withholds the corresponding secret key 𝑠𝑘𝑖 .

(2) Distribution: The dealer creates the secret shares c𝑑 = {𝑐𝑖,𝑑 }
for each process 𝑝𝑖 , along with a proof v𝑑 that these are

indeed valid encrypted shares of some secret.

(3) Verification: Each process (or an external verifier) verify that

the secret shares c𝑑 are indeed valid shares of some secret.

(4) Reconstruction: In this phase, each process 𝑝𝑖 decrypts their

respective share 𝑐𝑖,𝑑 with their secret key 𝑠𝑘𝑖 , obtaining their

decrypted share 𝑠𝑖,𝑑 = 𝑝𝑘
𝑐𝑖,𝑑
𝑖

, and shares 𝑠𝑖,𝑑 along with a

(non-interactive) zero-knowledge proof that 𝑠𝑖,𝑑 is a cor-

rect decryption of 𝑐𝑖,𝑑 . Each process (or an external verifier)

verifies the decrypted shares, and applies a reconstruction

procedure to recover the original secret 𝑠𝑑 shared by the

dealer 𝑝𝑑 .

Let 𝑛 be the number of processes. We define the APVSS problem

here below.

Definition 2.5 (Publicly-verifiable secret-sharing). Let 𝜆 be a se-

curity parameter, and let a dealer 𝑝𝑑 share a secret 𝑠 with 𝑛 − 1

additional processes following a protocol 𝜎 . Then, 𝜎 is a PVSS

protocol if it satisfies the following properties:

• Verifiability: If the check in the verification step returns

1, i.e. succeeds, then with probability at least 1 − 𝜖 (𝜆) the
encryptions c are valid shares of some secret. Furthermore,

if the check in the Reconstruction phase passes then the

communicated values c are indeed the shares of a secret

distributed by the dealer.

• Correctness: if 𝑝𝑑 is honest, then with probability at least

1 − 𝜖 (𝜆) the checks in the verification and reconstruction

steps succeed, and honest processes can reconstruct 𝑠 .

• Secrecy: If 𝑝𝑑 is honest, then the probability of A learning

any information about 𝑝𝑑 ’s secret 𝑠 prior to the reconstruc-

tion phase is at most 𝜖 (𝜆).

The property of secrecy [11] has been formally described as

indistinguishability of secrets (IND1-Secrecy) [20, 40, 55].

3 THE PINAKION PROTOCOL
In this section, we illustrate our Pinakion protocol that solves PVSS.

In order to solve PVSS, we modify the SPURT’s PVSS protocol,

Π𝐷𝐵𝐷𝐻 [27], adding one major difference, in that instead of relying

on the dealer to share the same value to all processes, we require

all processes to reliably broadcast their inputs. This modification

allows the random beacon that we propose in Section 4 to use one

bit to reference this secret, while ensuring all honest processes store

locally the same value without the need for a leader broadcasting a

digest of the secret.

The setup phase is the same to that ofΠ𝐷𝐵𝐷𝐻 :PVSS.Setup(1𝜆) →
(𝑔0, ℎ0, 𝑔1, ℎ1, (𝑠𝑘𝑖 , 𝑝𝑘𝑖)) : The setup algorithm chooses uniformly

random and independent generators 𝑔0, ℎ0 ∈ G0 and 𝑔1, ℎ1 ∈ G1

and publishes them in a trusted PKI (which is only used in this step).

Each process 𝑝𝑖 also generates a secret key 𝑠𝑘𝑖 ∈ Z𝑞 and public

key 𝑝𝑘𝑖 = ℎ
𝑠𝑘𝑖
0

, and publishes 𝑝𝑘𝑖 in the public ledger.

Algorithm 1 illustrates the rest of the Pinakion protocol. After the

setup phase, the dealer 𝑝𝑑 selects a secret 𝑠 to share. For this purpose,

processes select a polynomial 𝑝 (𝑥) of degree 𝑡 whose coefficients

have been chosen uniformly at random fromZ𝑞 , such that 𝑝 (0) = 𝑠
(line 9). Then, 𝑝𝑑 computes the secret shares 𝑝 (𝑗) ∀𝑗 ∈ [𝑛]\{𝑖}
which it encrypts with the public key of the recipient 𝑐 𝑗,𝑑 = 𝑝𝑘

𝑝 (𝑗)
𝑗

,

obtaining the vector c𝑑 (line 11). Additionally, 𝑝𝑑 also computes a

non-interactive zero-knowledge proof vector vd such that 𝑣 𝑗,𝑑 =

𝑔
𝑝 (𝑗)
1

that serves as a commitment to the secret shares and to verify

the validity of the encrypted shares cd (lines 12-14).

Following, in line 15 process 𝑝𝑑 calls RBV-broadcast with the

commitments and encrypted shares (vd, cd). The RBV-broadcast
protocol is almost identical to the reliable broadcast protocol out-

lined by recent works [14]. The only modification we add is for hon-

est processes to only deliver a message containing c𝑑 and v𝑑 from 𝑝𝑖
if the verification of Pinakion checks in the calls to Pinakion.verify.
We call this variant reliable broadcast with verification (RBV). We

show in Algorithm 2 the RBV-broadcast protocol, which consists

of an accountable reliable broadcast that covers the distribution

and verification steps of the Pinakion protocol. If process 𝑝𝑖 ter-

minates an execution of the RBV-broadcast protocol returning a

value 𝑣 , then we say the 𝑝𝑖 RBV-delivers 𝑣 . In this case, 𝑝𝑑 RBV-

broadcasts the list of shares c𝑑 and zero-knowledge proofs v𝑑 . Our
5

Algorithm 1 Pinakion protocol with dealer 𝑝𝑑

1: State:
2: 𝑔0, ℎ0 ∈ G0; 𝑔1, ℎ1 ∈ G1 , uniformly random and independent generators.

3: 𝑠𝑘𝑖 ∈ Z𝑞 secret key of 𝑝𝑖

4: 𝑝𝑘 𝑗 = ℎ
𝑠𝑘𝑗

0
public key of 𝑝 𝑗 , for 𝑗 ∈ [𝑛]

5: 𝑆 = 𝑒 (ℎ𝑠
0
, ℎ1) , secret that process 𝑝𝑑 shares, with 𝑠

$←− Z𝑞

6: Pinakion.Share: � executed by 𝑝𝑑
7: for 𝑗 ∈ [1, 𝑡] do
8: 𝑎𝑘

$←− Z𝑞

9: 𝑝 (𝑥) ← 𝑠 + 𝑎1𝑥 + ... + 𝑎𝑡𝑥𝑡
10: for 𝑗 ∈ [0, 𝑛 − 1] do
11: 𝑐 𝑗,𝑑 ← 𝑝𝑘

𝑝 (𝑗)
𝑗

� encrypt with 𝑝 𝑗 ’s public key

12: 𝑣𝑗,𝑑 ← 𝑔
𝑝 (𝑗)
1

13: vd ← {𝑣0,𝑑 , 𝑣1,𝑑 , ..., 𝑣𝑛−1,𝑑 }
14: cd ← {𝑐0,𝑑 , 𝑐1,𝑑 , ..., 𝑐𝑛−1,𝑑 }
15: RBV-broadcast({vd, cd }) � Distribution & Verification

16: Pinakion.Reconstruction: � executed by each 𝑝𝑖
17: shares← {}
18: when (𝑝𝑖 RBV-delivers {vd, cd }) do
19: 𝑠𝑖,𝑑 ← 𝑐

1/𝑠𝑘𝑖
𝑖,𝑑

� decrypt secret share

20: broadcast(𝑠𝑖,𝑑) � broadcast secret share

21: when (𝑠 𝑗,𝑑 is delivered) do
22: if (Pinakion.check(ℎ0, 𝑣𝑗,𝑑 , 𝑠 𝑗,𝑑 , 𝑔1)) then
23: shares [𝑗] ← 𝑠 𝑗,𝑑
24: if (size(shares) > 𝑡) then
25: ℎ𝑠

0
← Pinakion.interpolate(ℎ0, ℎ1, shares) � reconstruct

26: return(𝑒 (ℎ𝑠
0
, ℎ1))

27: Pinakion.check(𝑎,𝑏, 𝑐,𝑑) :
28: return 𝑒 (𝑎,𝑏) = 𝑒 (𝑐,𝑑)

RBV-broadcast satisfies that honest processes only RBV-deliver val-

ues that pass the verification, along with the already properties of

reliable broadcast [24, 25]:

• RBV-Validity: If an honest process RBV-delivers a message

𝑚 from an honest process 𝑝𝑖 , then 𝑝𝑖 RBV-broadcast𝑚.

• RBV-Unicity: an honest process RBV-delivers at most one

message from 𝑝𝑖 .

• RBV-Termination-1: If 𝑝𝑖 is honest and RBV-broadcasts a

message𝑚, then honest processes eventually RBV-deliver𝑚

from 𝑝𝑖 .

• RBV-Termination-2: If an honest process RBV-delivers a mes-

sage𝑚 from 𝑝𝑖 (possibly faulty) then honest process eventu-

ally RBV-deliver the same message𝑚 from 𝑝𝑖 .

Notice that processes verify all messages as soon as they are re-

ceived and discard all messages that do not pass the verification.

This is because we outline in Algorithm 2 the main idea of the

algorithm, but there are simple optimizations, such as not verifying

messages that were already verified, or only sharing the hash of

the message in all broadcast except for the INITIAL message. We

refer to previous work for more details on these optimizations [25].

The verification shown in Pinakion.verify reuses properties of
error-correcting code already used in SPURT [27]. We however re-

state the properties of the verification step, particularly that sharing

a secret 𝑠 using a degree 𝑡 polynomial among 𝑛 processes is equiva-

lent to encoding the message (𝑥, 𝑎1, 𝑎2, ..., 𝑎𝑡) using a [𝑛, 𝑡 +1, 𝑛− 𝑡]
Reed-Solomon code𝐶 [47, 54], where a [𝑛, 𝑘, 𝑑] linear error correct-
ing code over 𝑍𝑞 of length 𝑛, minimum distance 𝑑 and dimension 𝑘 .

Also, we define𝐶⊥ as the dual code of𝐶 i.e.,𝐶⊥ consists of vectors

𝑥⊥ ∈ Z𝑛
𝑞 such that for all 𝑥 ∈ 𝐶 , 𝑥 · 𝑥⊥ = 0 where · is the inner

product operation. The call to Pinakion.verify uses the result of

Lemma 3.1 on linear error correcting code, proved by Cascudo et

al. [20].

Lemma 3.1. If 𝑥 ∈ 𝑍𝑛𝑞 \𝐶 , and 𝑦⊥ is chosen uniformly at random

from 𝐶⊥, then the probability that 𝑥 · 𝑦⊥ = 1 is exactly 1/𝑞.

Finally, once process 𝑝 𝑗 RBV-delivers the values (vd, cd), it de-
crypts its share of the secret and broadcasts it in line 20. Then,

it waits until it delivers at least another 𝑡 valid decrypted se-

cret shares to reconstruct the secret using Lagrange interpola-

tion in line 25, finalizing the reconstruction of the secret. All re-

ceived decrypted shares have to first pass a simpler check than

the verification at the RBV-broadcast, represented in the call to

Pinakion.check(ℎ0, 𝑣 𝑗,𝑑 , 𝑠 𝑗,𝑑 , 𝑔1) in line 22, which consists of check-

ing whether 𝑒 (𝑎, 𝑏) = 𝑒 (𝑐, 𝑑). honest processes construct ℎ𝑠
0
in the

call to Pinakion.interpolate using Lagrange interpolation:∏
𝑘∈𝑇
(𝑠𝑘,𝑑)𝜇𝑘 =

∏
𝑘∈𝑇

ℎ
𝜇𝑘 ·𝑝 (𝑘)
0

= ℎ𝑝 (0) , (3)

where 𝑇 is the set of processes from which 𝑝𝑖 received valid de-

crypted shares, |𝑇 | > 𝑡 , and 𝜇𝑘 =
∏
𝑗≠𝑘

𝑗

𝑗−𝑘 are the Lagrange coeffi-

cients [27].

4 THE (NAIVE) KLEROTERION PROTOCOL

Algorithm 2 RBV-broadcast

1: State:
2: 𝑔0, ℎ0 ∈ G0; 𝑔1, ℎ1 ∈ G1 , uniformly random and independent generators.

3: 𝑠𝑘𝑖 ∈ Z𝑞 secret key of 𝑝𝑖

4: 𝑝𝑘 𝑗 = ℎ
𝑠𝑘𝑗

0
public key of 𝑝 𝑗 , for 𝑗 ∈ [𝑛]

5: RBV-broadcast({vd, cd }) : � executed by 𝑝𝑑
6: if (Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {vd, cd })) then � Verification

7: broadcast(INITIAL), {vd, cd }) � Broadcast to all

8: upon receiving a message (INITIAL, {vd, cd }) from 𝑝 𝑗 do
9: if (Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {vd, cd })) then � Verification

10: broadcast(ECHO, {vd, cd }, j) � Echo to all

11: upon receiving 𝑛 − 𝑡 distinct (ECHO, {vd, cd }, j) and not having sent any

READY do
12: if (Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {vd, cd })) then � Verification

13: broadcast(READY, {vd, cd }, j) � Send READY to all

14: upon receiving 𝑡 + 1 distinct (READY, {vd, cd }, j) and not having sent any

READY do
15: if (Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {vd, cd })) then � Verification

16: broadcast(READY, {vd, cd }, j) � Send READY to all

17: upon receiving 𝑛 − 𝑡 distinct (READY, {vd, cd }, j) and not having RBV-

delivered any message do
18: if (Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {vd, cd })) then � Verification

19: return({vd, cd }) � Deliver and send READY to all

20: Pinakion.verify(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {v, c}) :

21: x⊥
$←− C⊥

22: if (Π 𝑗∈[𝑛]𝑣
𝑥⊥
𝑗

𝑗
≠ 1G

1
) then return False

23: for 𝑗 ∈ [𝑛] do
24: if (not Pinakion.check(𝑝𝑘 𝑗 , 𝑣𝑗 , 𝑐 𝑗 , 𝑔1)) then return False
25: return True

6

In this section, we detail in depth the Kleroterion protocol shown

in Algorithm 4. We first illustrate a naive implementation, that does

not look at possible optimizations, to then explain the optimizations

in Section 5.

The Kleroterion protocol generates a random output by running

𝑛 executions of the Pinakion protocol, one per process. However,

instead of having each Pinakion execution terminate independently,

we execute an instance of consensus in order to have processes

decide on 𝑡 + 1 inputs before reconstructing them, that is, before

processes know the exact value associated with that execution of

Pinakion. After deciding on exactly 𝑡 + 1 secrets, honest processes
reconstruct and then aggregate these 𝑡 + 1 secrets to generate the

random output.

For the consensus protocol, we use the variant of HotStuff pro-

posed by SPURT [5, 27], for nearly-simultaneous decision, i.e. all

processes learn the decision within two message delays. This pro-

tocol proceeds in epochs, with a rotating leader per epoch that

proposes a value to decide, as we show in Algorithm 3. Thus, this

variant differs from HotStuff only in that processes broadcast their

signed PREPARE, PRECOMMIT and COMMIT messages, instead

of sending them to the leader. As a result, this variant preserves

the safety and liveness properties of HotStuff, as well as its respon-

siveness property [5] (i.e. outputs are generated at the real network

latency and not at Δ at best).

However, contrary to SPURT, we do not require the leader of

an epoch to propose to the rest a digest of his proposed secrets.

Instead, leaders propose to decide on a bitmask of 𝑛 bits, in which

the 𝑖-th bit is associated with the secret shared by process 𝑝𝑖 in a

call of Pinakion.share. The bits that are set to 1 are secrets that will
be used for the aggregation, while those set to 0 are not to be used

for the aggregation. Honest processes only contribute to consensus

in epochs whose proposed bitmask contains exactly 𝑡 + 1 bits set to
1, so that exactly 𝑡 + 1 shared secrets are aggregated into the final

output. We refer to the number of bits set to 1 of a bitmask as its

Hamming weight. We illustrate an example execution with 𝑛 = 4

processes in Figure 1.

As such, the leader for this round starts participating in an epoch

of the consensus protocol only if it first RBV-delivers 𝑡 + 1 values
from the 𝑛 previous RBV-broadcast executed. Then, it proposes a

bitmask in which all associated bits to these 𝑡 + 1 values are set

to 1, and the rest to 0. The rest of the processes execute then an

exact copy of the SPURT variant of HotStuff, in which they only

contribute if the Hamming weight of the proposed bitmask is 𝑡 + 1
and they RBV-delivered the 𝑡 + 1 associated secrets.

Once an honest process decides on a bitmask, it decrypts

its share of each of the 𝑡 + 1 decided secrets (line 20) and in-

vokes Kleroterion.Reconstruct(decided_secrets, decrypted_shares)
with its decrypted shares and the decided vectors in order to re-

construct each of the secrets and aggregate them into one final

random output. We illustrate the decision of the secrets with which

to compute the random output in Algorithm 4, which integrates

thus the share and verification steps of the Pinakion protocol into

Kleroterion.

Setup. The Kleroterion protocol’s setup phase thus consists of

both consensus’ and Pinakion’s setup phases. That is, the setup

phase of Kleroterion takes part with the creation of the keys of each

Algorithm 3 SPURT’s [27] Steady state of a modified HotStuff [5]

protocol that does not use threshold signatures and has a bit com-

plexity O(|𝑀 |𝑛2) per decision.
Let 𝑟 be the current epoch and L be its leader. Also, let ℎ𝑡 − 1 be

the latest finalized iteration of the protocol.

• Propose. 𝐿 proposes a value𝑀 to be finalized at heightℎ𝑡 by

sending ⟨𝑃𝑅𝑂𝑃𝑂𝑆𝐸,𝑀, 𝑟, ℎ𝑡, 𝑋 ⟩ message to all the processes.

𝑋 is the view change certificate (if any) that validates that

the proposal is safe.

• Prepare. Each process 𝑝 𝑗 , upon receiving the proposal,

checks whether the proposal is consistent with HotStuff

specifications using 𝑋 , and 𝑃 (𝑀) is true for an exter-

nal predicate 𝑃 (). If both checks pass, process 𝑝 𝑗 sends

⟨PREPARE, 𝑀, 𝑟, ℎ𝑡⟩ to all processes.

• Pre-Commit. Upon receiving 2𝑡 + 1 PREPAREmessages for

the proposal 𝑀 at height ℎ𝑡 and epoch 𝑟 , process 𝑝 𝑗 sends

⟨PRECOMMIT, 𝑀, 𝑟, ℎ𝑡⟩ message to every process.

• Commit. Upon receiving 2𝑡 + 1 PRECOMMITmessages for

the proposal 𝑀 at height ℎ𝑡 and epoch 𝑟 , process 𝑝 𝑗 sends

⟨COMMIT, 𝑀, 𝑟, ℎ𝑡⟩ message to every process.

• Each process outputs 𝑀 upon receiving 2𝑡 + 1 COMMIT
messages corresponding to𝑀 .

process at the beginning of the Kleroterion protocol, stored in a PKI

(which is not used later), along with the aforementioned CRS setup.

These keys and the rest of values can be reused in all iterations of

the random beacon, with the exception of the randomly chosen

polynomial coefficients, which must vary in each execution [27].

Share and decide. The call to Pinakion.Share in line 6 creates a

random input per instance of Pinakion, and RBV-broadcasts the se-

cret shares and commitments of the random input. However, in this

case each process also computes and shares their dleq proofs 𝜋𝑖, 𝑗 =

dleq.Prove(𝑔1, 𝑣𝑖, 𝑗 , 𝑝𝑘 𝑗 , 𝑐𝑖, 𝑗 , 𝑝𝑖 (𝑗)) in the call to Pinakion.Share,
where 𝑝𝑖 (𝑗) is the share of 𝑝𝑖 ’s secret for process 𝑝 𝑗 . Process 𝑝𝑖 then
RBV-broadcasts {vi, ci, 𝝅 i}, and each process 𝑝 𝑗 verifies the dleq
proof by calling dleq.Verify(𝜋𝑖, 𝑗 , 𝑝𝑘 𝑗 , 𝑐𝑖, 𝑗 , 𝑔1, 𝑣𝑖, 𝑗) when delivering

messages from 𝑝𝑖 , instead of calling Pinakion.check, as this call
becomes redundant with dleq.Verify [27]. This guarantees that the

secrets of honest processes are independent of all other secrets by

the knowledge soundness property.

Once process 𝑝𝑖 RBV-delivers 𝑡 + 1 proposals (line 30), and if 𝑝𝑖
is the leader of this epoch, then 𝑝𝑖 starts the respective consensus

with the intention to decide 1 on such proposals (line 16), selecting

the secrets with which to compute the final random output. If a

process 𝑝𝑖 is not the leader of this epoch but 𝑝𝑖 receives a bitmask

proposed from the leader in this epoch, then 𝑝𝑖 checks whether 𝑝𝑖
RBV-delivered all the proposed secrets associated to the bitmask

(line 17). If it does, then it contributes to consensus in this epoch.

Otherwise, it does not respond in this epoch.

Once consensus terminates deciding a bitmask, process 𝑝𝑖 waits

until it RBV-delivers the proposals associated with each bit set

to 1 in line 24. This can happen if consensus terminated with-

out the participation of 𝑝𝑖 . Following, 𝑝𝑖 decrypts its correspond-

ing secret share of each decided secret in line 27. Finally, 𝑝𝑖 calls

Kleroterion.Reconstruct (line 28) with its decrypted shares and list

7

𝑝0 : 𝑣0 RBV0 : 𝑣0

𝑝1 : 𝑣1 RBV1 : 𝑣1

𝑝2 : 𝑣2 RBV2 : 𝑣2

𝑝3 : 𝑣3 RBV3 : 𝑣3

𝑛 executions of Pinakion.Sharep

consensus

epoch leader proposes bitmask

epoch leader 𝑝0, 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 : 1101 return Kleroterion.aggregate(v0, v1, v3)

agree on bitmask aggregate inputs whose bit decided to 1

Kleroterion

Figure 1: Kleroterion execution example with 𝑛 = 4 processes. First, each process 𝑝𝑖 selects their input value 𝑣𝑖 (we omit
secret shares and reconstruction for simplicity), which they share with everyone executing their respective instance of RBV-
broadcast as part of their respective call to Pinakion.Share. Then, processes execute one leader-based consensus protocol that
proceeds in epoch (HotStuff), in which the leader proposes a bitmask of 𝑛 bits, with Hamming weight 𝑡 + 1. Upon deciding on
a bitmask, processes reconstruct and aggregate the 𝑡 + 1 input secrets whose associated bit of the bitmask decided to 1.

of decided proposals, and returns the random output resulted from

the call to Kleroterion.Aggregate (line 29) which aggregates the

decided reconstructed secrets. honest processes can then return

the computed final random output of this iteration of the random

beacon, and move on to the next iteration of the random output.

Algorithm 4 Kleroterion.Decide for process 𝑝𝑖
1: State:
2: 𝑔0, ℎ0 ∈ G0; 𝑔1, ℎ1 ∈ G1 , uniformly random and independent generators.

3: 𝑠𝑘𝑖 ∈ Z𝑞 secret key of 𝑝𝑖

4: 𝑝𝑘 𝑗 = ℎ
𝑠𝑘𝑗

0
public key of 𝑝 𝑗 , for 𝑗 ∈ [𝑛]

5: 𝑠
$←− Z𝑞

6: Pinakion.Share(s) � create and RBV-broadcast secret
7: repeat:
8: if (consensus.epoch_leader() = 𝑝𝑖) then
9: if (|proposals𝑖 | ≥ 𝑡 + 1) then
10: bitmask ← {}
11: 𝑘 = 0

12: while |bitmask | < 𝑛 do
13: if (𝑘 ∈ proposals𝑖 .keys() and hamming_weight(𝑏𝑖𝑡𝑚𝑎𝑠𝑘) < 𝑡 +

1) then
14: bitmask [𝑘] ← 1

15: 𝑘 ← 𝑘 + 1
16: ⟨PROPOSE, bitmask, consensus.epoch, ℎ𝑡,𝑋 ⟩
17: else if (received ⟨PROPOSE, bitmask, 𝑟 , ℎ𝑡,𝑋 ⟩ and consensus.epoch =

𝑟) then
18: if (𝑗 ∈ proposals𝑖 .keys()∀𝑗 s.t. 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 [𝑗] = 1 and

∑
𝑗 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 [𝑗] =

𝑡 + 1) then
19: contribute to consensus in epoch 𝑟

20: until consensus.finished() � 𝑡 + 1 secrets chosen
21: decrypted_shares← {}
22: decided_secrets← {}
23: for each 𝑗 s.t. consensus.decision[𝑗] = 1 do � for each decided secret
24: wait_until(proposalsi [j] ≠ ⊥)
25: cj ← proposalsi [j]
26: decided_secrets [j] ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖 [𝑗]
27: decrypted_shares [j] ← 𝑐

1/𝑠𝑘𝑖
𝑖,𝑗

� decrypt 𝑝𝑖 ’s share

28: decisions← Kleroterion.Reconstruct(decided_secrets, decrypted_shares)
29: return Kleroterion.Aggregate(decisions) � aggregate into random output

30: when 𝑝𝑖 RBV-delivers {vj, cj, 𝜋j } do:
31: proposalsi [j] ← cj

Reconstruct and aggregate. After terminating consensus, the

reconstruction phase starts to reconstruct the corresponding

𝑡 + 1 decided secrets. We show in algorithm 5 the call to

Kleroterion.Reconstruct. First, 𝑝𝑖 broadcasts its decrypted shares

of the decided secrets in line 7. Upon receiving a list of decided

secrets and decrypted shares from 𝑝 𝑗 , 𝑝𝑖 verifies them in the

call to Kleroterion.Verify (line 11). Kleroterion.Verify checks first

that the local and delivered list of decided secrets is the same

(line 17) and that each decrypted shares passes the Pinakion.check
(line 20) previously described. If the received message verifies,

then its decrypted shares are added to the list of decrypted shares

(line 12), which is used to reconstruct all the decided secrets with

the call to Kleroterion.MultipleRecon (line 14) once the list con-

tains at least 𝑡 + 1 decrypted shares for each secret. The call to

Kleroterion.MultipleRecon gathers all the decrypted shares (line 27)
for each secret and reconstructs them calling Pinakion.interpolate
in line 28.

4.1 Proofs of correctness
The Pinakion protocol shown in Section 3 is an instantiation of

SPURT’s Π𝐷𝐵𝐷𝐻 in which the broadcast primitive is replaced by

our RBV-broadcast. Similarly, our RBV-Broadcast is almost identical

to the implementation by Bracha et al. [14], with the only modifica-

tion that processes only deliver a value if it passes the verification

step from Π𝐷𝐵𝐷𝐻 . The proofs of Pinakion solving PVSS and of RBV-

broadcast solving reliable broadcast are thus analogous to those of

these two previous works. Liveness of both reliable broadcast and

PVSS are subject to the dealer (or source) being honest, meaning

that replacing the broadcast primitive by our RBV-broadcast pre-

serves liveness. On the safety side, RBV-broadcast further enhances

safety thanks to the rest of the properties of reliable broadcast

compared with a general broadcast primitive.

The same occurs with Kleroterion. The only additional difference

between the above-shown unoptimized Kleroterion and SPURT is

that while in SPURT the leader of the epoch shares a digest of the

𝑡 +1 selected shares, in Kleroterion the leader shares a bitmask with

Hamming weight 𝑡 + 1, that associates each bit to a particular secret

RBV-broadcast by each process. We thus need to prove only that if

an honest process decides a bitmask in an epoch 𝑟 , then all honest

processes eventually reconstruct and output the same final random

output from that epoch. We show this in Lemma 4.2. We show first

however that Kleroterion solves SBC.

8

Algorithm 5 Kleroterion.Reconstruct for process 𝑝𝑖
1: State:
2: 𝑔0, ℎ0 ∈ G0; 𝑔1, ℎ1 ∈ G1 , uniformly random and independent generators.

3: 𝑠𝑘𝑖 ∈ Z𝑞 secret key of 𝑝𝑖

4: 𝑝𝑘 𝑗 = ℎ
𝑠𝑘𝑗

0
public key of 𝑝 𝑗 , for 𝑗 ∈ [𝑛]

5: decided_secrets𝑖 , list of decided encrypted secret shares of 𝑝𝑖
6: decrypted_shares𝑖 , list of decided decrypted shares of 𝑝𝑖

7: broadcast(decrypted_shares)
8: list_decrypted_shares← {}
9: random_outputs← ⊥
10: Upon receiving {decided_secrets 𝑗 , decrypted_sharesj } from 𝑝 𝑗 :
11: if (Kleroterion.verify(decided_secrets 𝑗 , decrypted_shares 𝑗 , ℎ0, 𝑔1) and

random_outputs = ⊥) then � check decryption
12: list_decrypted_shares [j] ← decrypted_sharesj
13: if (size(list_decrypted_shares) > 𝑡) then � enough to reconstruct
14: random_outputs← Kleroterion.MultipleRecon(ℎ1, ℎ0, list_decrypted_shares)
15: if (𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ≠ ⊥) then return random_outputs

16: Kleroterion.verify(decided_secrets 𝑗 , decrypted_shares 𝑗 , ℎ0, 𝑔1) :
17: if (decided_secretsj ≠ decided_secrets𝑖) then return False � different secrets

18: for each 𝑠 𝑗,𝑘 in decrypted_shares 𝑗 do
19: 𝑣𝑗,𝑘 ← decided_secrets [j] .vj [k]
20: if (not Pinakion.check(ℎ0, 𝑣𝑗,𝑘 , 𝑠 𝑗,𝑘 , 𝑔1)) then return False
21: return True

22: Kleroterion.MultipleRecon(ℎ1, ℎ0, list_decrypted_shares, decided_secrets) :
23: random_outputs← {}
24: for 𝑘 in decided_secrets.keys() do
25: 𝑎𝑢𝑥 ← {}
26: for j in list_decrypted_shares.keys() do � for each secret
27: 𝑎𝑢𝑥 [𝑗] ← 𝑙𝑖𝑠𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑠ℎ𝑎𝑟𝑒𝑠 [𝑗] [𝑘] � gather all decrypted shares

28: random_outputs [𝑘] ← Pinakion.interpolate(ℎ0, ℎ1, 𝑎𝑢𝑥) � and reconstruct

29: return random_outputs

Theorem 4.1. Kleroterion solves SBC.

Proof. SBC-Agreement derives from RBV-Unicity, RBV-

Termination-2 and the agreement property of the HotStuff protocol.

That is, by the agreement property of HotStuff all processes

agree on the bitmask. By RBV-Unicity and RBV-Termination-2 all

processes agree on the values that the bits set to 1 of the bitmask

refer to.

SBC-Termination derives from RBV-Termination-1 and the ter-

mination property of HotStuff. By RBV-Termination-1 all processes

eventually deliver at least the 2𝑡 + 1 values shared by honest pro-

cesses. If honest processes keep trying different bitmasks when they

are the leader of an epoch, eventually there is an epoch after GST

whose leader is honest, and proposes RBV-delivered values that

have been RBV-delivered by all other honest processes. Processes

can terminate in that epoch.

SBC-Validity and SBC-Nontriviality are trivial as the decision is

a bitmask of proposals. □

Lemma 4.2. Suppose an honest process decides a bitmask bitmask
in epoch 𝑟 , let 𝐼 be the set of decrypted polynomials references by

the bits of bitmask set to 1, and let 𝑝 be the aggregated polynomial

𝑝 () =
∑
𝑖∈𝐼 𝑝𝑖 (·). Then, every honest process outputs 𝑒 (ℎ𝑎

0
, ℎ1)

where 𝑎 ∈ Z𝑞 , for 𝑎 = 𝑝 (0).

Proof. For an honest process to terminate in epoch 𝑟 , at least

𝑡 + 1 honest processes participated in the consensus protocol in

𝑟 . By construction, honest processes only participate in an epoch

of the consensus protocol if they have first RBV-delivered all the

values referenced by the bitmask, and if the Hamming weight of

the bitmask is exactly 𝑡 + 1. Also by construction, an honest process

only RBV-delivers a share of secrets if it passes the verification step.

By Theorem 4.1, all honest processes will eventually decide on

the same bitmask and all honest processes will eventually RBV-

deliver all the values associated with each bit set to 1 of the bitmask.

As a result, except with negligible probability, the degree of 𝑝 (·)
is at most 𝑡 . This is because any polynomial of degree greater than 𝑡

passes the verification step of RBV-broadcast with probability only

1/𝑞; hence, the probability that it passes the check at 𝑡 + 1 honest
nodes is

(
2𝑡+1
𝑡+1

)
1

𝑞𝑡+1
≤ 1

𝑞 , which is negligible [27].

Every honest process 𝑗 that participated in consensus holds the

witness ℎ
𝑠𝑘 𝑗 ·𝑝 (𝑗)
0

if the dleq.Verify check passed [27]. Thus, at least

𝑡 + 1 honest processes will broadcast their decrypted shares during

the reconstruction such that anyone can verify them.

Finally, after performing Lagrange interpolation over the expo-

nent with these 𝑡 + 1 decrypted shares (which pass the equality

check [27]), all honest processes can recover the beacon output

𝑒 (ℎ𝑝 (0)
0

, ℎ1). □

Lemma 4.2 is our analogous proof of SPURT’s Lemma 2 [27].

We refer to SPURT for the rest of the proofs of correctness, as

they are identical. We analyze in Section 4.2 the complexities of an

unoptimized Kleroterion, and provide optimizations that reduce the

complexity of Kleroterion toO(𝑛2) per decision, with the advantage
of scattering the shared bits throughout all pairwise channels of

the network (instead of channels to and from the leader, as is the

case for leader-based protocols).

4.2 Complexities of naive Kleroterion
Table 3 shows the time, computational, message and bit complexi-

ties of Kleroterion, Pinakion, and RBV-broadcast. RBV-broadcast

requires each 𝑛 processes to broadcast to all 𝑛 processes the 𝑛 en-

crypted secret shares, meaning a message of size O(𝜆 · 𝑛), which
needs to be verified for each of its elements. Pinakion provides

the same complexities, as the bottleneck of Pinakion is the RBV-

broadcast. The Kleroterion protocol runs 𝑛 concurrent executions

of Pinakion, increasing message and bit complexities by a linear

factor compared to Pinakion’s complexities. The HotStuff proto-

col’s message complexity is O(𝑛2). However, SPURT’s variant re-
quires all processes to broadcast messages in order to satisfy nearly-

simultaneous decision, instead of sending messages to the leader

for aggregation. As a result, this variant has message complexity

O(𝑛3), and since the proposal is a bitmask of 𝑛 bits, the resulting

communication complexity of the naive approach is O(𝑛4). The
bottleneck of a naive Kleroterion implementation is thus the 𝑛 in-

stances of Pinakion, resulting in a message complexity of O(𝑛3)
and a bit complexity of O(𝜆𝑛4).

9

Complexities

Protocol Time Message Bit

Naive RBV-broadcast O(1) O(𝑛2) O(𝜆𝑛3)
Naive Pinakion O(1) O(𝑛2) O(𝜆𝑛3)
Naive Consensus O(𝑡) O(𝑛3) O(𝑛4)
Naive Kleroterion O(𝑡) O(𝑛3) O(𝜆𝑛4)

Table 3: time, computation, message and bit complexities of
naive RBV-broadcast, Pinakion and Kleroterion.

5 OPTIMIZATIONS AND OBSERVATIONS
The straw man implementation we showed in Section 4, while cor-

rect, does not provide the bit complexity of O(𝜆𝑛2) per decision
that we claim in Table 2. We detail here the optimizations that de-

crease the bit complexity of Kleroterion from O(𝜆𝑛4) to O(𝜆𝑛2) per
decision. Furthermore, we observe in this section that Kleroterion

is in fact better-suited to be implement in Wide Area Networks

(WANs), e.g. the Internet, than other PVSS-based random beacons

with the same bit complexity, as the number of bits processes send

per each channel per decision is independent of the number of

participants. In contrast, SPURT saturates channels to the leader

sending O(𝜆𝑛) bits through them. We also observe the advantages

of decoupling the consensus proposal from the actual shared values

by proposing a bitmask, in that the associated bit enables batching.

5.1 From quartic to quadratic bit complexity
In this section, we show how to reduce Kleroterion’s bit complex-

ity from quartic to quadratic. For this purpose, we present three

optimizations.

Bitmask digest. The first optimization refers to the HotStuff con-

sensus protocol. In order to reduce the bit complexity, instead of

having processes decide on a bitmask of size O(𝑛) bits, the leader
broadcasts the bitmask initially and then proposes a digest of the

bitmask, of size O(𝜆) bits. This results in a bit complexity of O(𝜆𝑛3)
for the consensus protocol, since processes do not need to broad-

cast a message of size O(𝑛) but instead only the digest of size O(𝜆).
Honest processes can still satisfy correctness of the protocol by

contributing to consensus only if they received the bitmask that

corresponds to the proposed digest. This is an advantage of having

a leader propose the decision to decide during consensus.

Aggregated inputs. In Algorithm 1, each dealer 𝑝𝑑 shares a list

of secrets 𝑐𝑐𝑐𝑑 and commitments 𝑣𝑣𝑣𝑑 , with the addition of the vector

of dleq proofs 𝜋𝜋𝜋𝑑 for Kleroterion. SPURT required all processes

to send these vectors to a leader so that the leader aggregates

them, but this saturates the number of bits sent through the chan-

nels to the leader. However, Kleroterion cannot aggregate com-

mitments and secrets from different processes, since it does not

have a leader that can receive all these vectors from all processes.

As such, instead, Kleroterion requests processes to generate 𝑛 se-

crets per process, and aggregate them locally before sharing them,

such that process 𝑝𝑖 generates 𝑛 secrets {𝑠𝑖,𝑘 }𝑘∈[𝑛] and then gener-

ates his shares {𝑐𝑖, 𝑗,𝑘 }𝑘∈[𝑛], 𝑗 ∈[𝑛] , commitments {𝑣𝑖, 𝑗,𝑘 }𝑘∈[𝑛], 𝑗 ∈[𝑛] ,
and dleq proofs {𝜋𝑖, 𝑗,𝑘 }𝑘∈[𝑛], 𝑗 ∈[𝑛] . Then, 𝑝𝑖 aggregates the shares

Algorithm 6 Optimized RBV-broadcast

1: State:
2: 𝑔0, ℎ0 ∈ G0; 𝑔1, ℎ1 ∈ G1 , uniformly random and independent generators

3: 𝑠𝑘𝑖 ∈ Z𝑞 secret key of 𝑝𝑖

4: 𝑝𝑘 𝑗 = ℎ
𝑠𝑘𝑗

0
public key of 𝑝 𝑗 , for 𝑗 ∈ [𝑛]

5: RBV-broadcast({{𝑐𝑑,𝑗,𝑘 }, {𝑣𝑑,𝑗,𝑘 }, {𝜋𝑑,𝑗,𝑘 }}) : � executed by 𝑝𝑑
6: for 𝑗 ∈ [𝑛] do
7: 𝑐𝑑,𝑗 ←

∏
𝑘∈[𝑛] 𝑐𝑑,𝑗,𝑘

8: 𝑣𝑑,𝑗 ←
∏

𝑘∈[𝑛] 𝑣𝑑,𝑗,𝑘
9: for 𝑗 ∈ [𝑛] do
10: if (Pinakion.verify(𝑔1, {𝑝𝑘𝑘 }, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 })) then � Verification
11: send(INITIAL, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑗 , 𝑣𝑣𝑣𝑑,𝑗 , 𝜋𝜋𝜋𝑑,𝑗 }) � Broadcast to all

12: upon receiving a message (INITIAL, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑗 , 𝑣𝑣𝑣𝑑,𝑗 , 𝜋𝜋𝜋𝑑,𝑗 }) from 𝑝 𝑗 do
13: if (Pinakion.verify-opt(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑗 , 𝑣𝑣𝑣𝑑,𝑗 , 𝜋𝜋𝜋𝑑,𝑗 })) then
14: broadcast(ECHO, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 }, 𝑗) � Echo to all

15: upon receiving 𝑛 − 𝑡ℓ distinct (ECHO, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 }, 𝑗) and not having sent any

READY do
16: broadcast(READY, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 }, 𝑗) � Send READY to all

17: Pinakion.verify-opt(𝑔1, {𝑝𝑘 }𝑛𝑗=1, {𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑖 , 𝑣𝑣𝑣𝑑,𝑖 , 𝜋𝜋𝜋𝑑,𝑖 }) :

18: x⊥
$←− C⊥

19: if (Π 𝑗∈[𝑛]𝑣
𝑥⊥
𝑗

𝑑,𝑗
≠ 1G

1
) then return False

20: for 𝑗 ∈ [𝑛] do
21: if (not dleq.Verify(𝜋𝑑,𝑖,𝑗 , 𝑝𝑘𝑖 , 𝑐𝑑,𝑖,𝑗 , 𝑔1, 𝑣𝑑,𝑖,𝑗)) then return False
22: if (𝑣𝑑,𝑖 ≠

∏
𝑗∈[𝑛] 𝑣𝑑,𝑖,𝑗 or 𝑐𝑑,𝑖 ≠

∏
𝑗∈[𝑛] 𝑐𝑑,𝑖,𝑗) then return False

23: return True

and commitments by multiplying the shares and commitments en-

crypted with the public key of the same recipient, for example for

process 𝑝0 the aggregation of the shares results in 𝑐𝑖,0 =
∏𝑛−1

𝑘=0
𝑐𝑖,0,𝑘 ,

and those of the commitment results in 𝑣𝑖,0 =
∏𝑛−1

𝑘=0
𝑣𝑖,0,𝑘 . Fol-

lowing previous terminology [27], we use 𝑐𝑐𝑐𝑖, 𝑗 to refer to all the

shares encrypted by process 𝑝𝑖 with the public key of process 𝑝 𝑗 ,

i.e. 𝑐𝑐𝑐𝑖, 𝑗 = {𝑐𝑖, 𝑗,𝑘 }𝑛−1𝑘=0
, and the same for 𝑣𝑣𝑣𝑖, 𝑗 and 𝜋𝜋𝜋𝑖, 𝑗 . We show the

updated RBV-broadcast protocol with this optimization in Algo-

rithm 6. Figure 2 shows this optimization for process 𝑝𝑑 ’s secret

shares 𝑐𝑑,𝑖,𝑘 (the same occurs for the commitments 𝑣𝑑,𝑖,𝑘). Each

column contains the secret shares of a different new input secret

(i.e. 𝑠𝑑,𝑖 , shown at the top of the matrix). Each row contains the

secret share from each different secret encrypted with the public

key of the same recipient. We use 𝑐𝑑,𝑖 to refer then to the secret

shares from each secret with the same recipient 𝑝𝑖 (i.e. the i-th row

of the matrix). Then, 𝑐𝑑,𝑖 is the result of multiplying each value in

the i-th row (i.e. aggregated secret shares by recipient). Finally, ĉd
is the list of all the aggregated secret shares by recipients.

In Figure 3 we illustrate the beginning of Algorithm 6, to show-

case what 𝑝𝑑 sends in the initial message to each process. Note

that 𝑝𝑑 sends to each process a message of size O(𝑛) bits which
contains Ω(𝑛) secret inputs, thanks to the aggregation performed

in Figure 2.

One can note that it is possible that Byzantine processes broad-

cast shares that only pass the local verification of up to 𝑡 + 1 honest
processes. Nevertheless, this is not a problem because either the

consensus protocol terminates with a decided bitmask that contains

some secrets shared by Byzantine processes, which would mean

that at least 𝑡 +1 honest processes can decrypt their share and recon-
struct all 𝑛 · (𝑡 + 1) shared secrets associated to the decided bitmask,

or instead eventually there is an epoch after GST whose leader

10

𝑐𝑑,0,0 · · · 𝑐𝑑,0,𝑘 · · · 𝑐𝑑,0,𝑛−1

.

.

.
.
.
.

.

.

.

𝑐𝑑,𝑖,0 · · · 𝑐𝑑,𝑖,𝑘 · · · 𝑐𝑑,𝑖,𝑛−1

.

.

.
.
.
.

.

.

.

𝑐𝑑,𝑛−1,0 · · · 𝑐𝑑,𝑛−1,𝑘 · · · 𝑐𝑑,𝑛−1,𝑛−1





𝑐𝑐𝑐𝑑,0 = {𝑐𝑑,0,𝑘 }
𝑘∈[𝑛]

;

𝑐𝑐𝑐𝑑,𝑖 = {𝑐𝑑,𝑖,𝑘 }
𝑘∈[𝑛]

;

𝑐𝑐𝑐𝑑,𝑛−1 = {𝑐𝑑,𝑛−1,𝑘 }
𝑘∈[𝑛]

;

𝑠
𝑑,0

:

𝑠
𝑑,𝑖

:

𝑠
𝑑,𝑛−

1
: ∏

𝑘∈[𝑛]
𝑐𝑑,0,𝑘 = 𝑣𝑑,0;

∏
𝑘∈[𝑛]

𝑐𝑑,𝑖,𝑘 = 𝑣𝑑,𝑖 ;

∏
𝑘∈[𝑛]

𝑐𝑑,𝑛−1,𝑘 = 𝑣𝑑,𝑛−1;

𝑐𝑐𝑐𝑑 = {𝑐𝑑,𝑖 }
𝑖∈[𝑛]

Figure 2: Example of the aggregation of the secret shares {𝑐𝑑,𝑖,𝑘 } generated from 𝑛 secrets {𝑠𝑑,𝑖 }𝑖∈[𝑛] locally by each process 𝑝𝑑
(the same aggregation occurs for commitments instead of secret shares).

𝑝𝑑
init

𝑝0

𝑝𝑖

𝑝𝑛 − 1

broadcast ⟨echo{𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 }⟩

{𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,0, 𝑣𝑣𝑣𝑑,0, 𝜋𝜋𝜋𝑑,0}

{𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑖 , 𝑣𝑣𝑣𝑑,𝑖 , 𝜋𝜋𝜋𝑑,𝑖 }

{𝑣𝑣𝑣𝑑 ,𝑐𝑐𝑐𝑑 ,𝑐𝑐𝑐𝑑,𝑛−1, 𝑣𝑣𝑣𝑑,𝑛−1, 𝜋𝜋𝜋𝑑,𝑛−1}

Figure 3: Example of the beginning of the optimized RBV-broadcast protocol for process 𝑝𝑑 .

is an honest process and this honest process proposes a bitmask

containing 𝑡 + 1 secrets RBV-delivered by all honest processes, and

in this case the consensus protocol terminates in this epoch. That

is, thanks to the consensus protocol it is impossible for Byzantine

processes to prevent termination, or to decide a result that honest

process cannot reconstruct, for 𝑡 < 𝑛/3.
This optimization reduces the bit complexity of Kleroterion to

O(𝜆𝑛3) per decision, since one iteration generates 𝑛 random out-

puts. We now show how to reduce the bit complexity of Kleroterion

to make it quadratic per decision. We speak of the complexity per

decision as the normalized complexity.

The optimized RBV-Broadcast showed in Algorithm 6

can be combined with the Kleroterion.Decide and

Kleroterion.Reconstruct functions we showed in Algorithms 4

and 5, respectively, with the modifications that honest processes

verify the correct aggregation of the received decided secrets and

decrypted shares during the reconstruction, as well as replacing

Pinakion.check with dleq.verify, as we did for Algorithm 6

because of their redundancy [27]. That is, within the call to

𝐾𝑙𝑒𝑟𝑜𝑡𝑒𝑟𝑖𝑜𝑛.𝑣𝑒𝑟𝑖 𝑓 𝑦 of line 11 of Algorithm 5, honest processes also

check 𝑣𝑑,𝑘 =
∏

𝑗 ∈[𝑛] 𝑣𝑑,𝑘,𝑗 and 𝑐𝑑,𝑘 =
∏

𝑗 ∈[𝑛] 𝑐𝑑,𝑘,𝑗 to verify the

received shares from process 𝑝𝑘 .

Amortized complexity. The final observation that reduces the bit

(and message) complexity of Kleroterion was noted by previous

work [5, 27], and relates to the time complexity of consensus. Since

a linear factor of the complexity derives from the possibility that

O(𝑡) leaders are faulty after GST, this means that, in the presence of

a static adversary, for 𝑛 consecutive executions of Kleroterion, there

will be Ω(𝑛) outputs (or O(𝑛2) with the aforementioned aggregated

inputs optimization). As such, the total bit complexity per decision

and after 𝑛 iterations of the protocol can be decreased by a linear

factor. We define this complexity per decision as the amortized bit

complexity.

As a result, the amortized and normalized bit complexity of

Kleroterion is O(𝜆𝑛2), same as the amortized and normalized bit

complexity of SPURT. We justify in the following the advantages

of a democratic protocol compared with a leader-based one.

5.2 Distributing bits and computation
To the best of our knowledge, previous PVSS-based random bea-

cons implement a protocol that is not democratic, i.e. where all

inputs are routed through the leader of the epoch. In contrast,

democratic protocols like Kleroterion distribute inputs across all

processes, although there is still a leader to select the subset of all

inputs using a bitmask to reference inputs. Thus, the leader of a

non-democratic protocol has to perform heavy computation and

receive and share a significant amount of data, while our Klerote-

rion protocol distributes the sharing of data and computation by

executing n instances of RBV-broadcast. The only message that the

leader of an epoch must share compared to the rest of the processes

in Kleroterion is the bitmask, of size O(𝑛) bits. We summarize the

distribution of computation and communication of Kleroterion com-

pared to SPURT in Table 4 (which is a re-instantiation of Table 1).

We omit the reconstruction phase as it is equivalent in both SPURT

and Kleroterion.

Distributing communication. For the case of SPURT, since the
leader needs to perform the aggregations of each share of secrets,

the channels to the leader transfer O(𝜆𝑛) bits per decision, all with
the same recipient. Then, the leader computes the aggregated values,

outputting also O(𝜆𝑛) bits to each process. For Kleroterion with the
aforementioned optimizations, Kleroterion only sends O(𝜆) bits per
pairwise channel per decision, and distributes the verification and

11

Table 4: Comparison of normalized and amortized bits sent
per each pairwise channel of the network and computation
complexity per decision, in SPURT [27] and Kleroterion.

Phase Computation Bits per channel

Leader Non-leader Leader non-leaders

S
P
U
R
T Commitment O(𝑛) O(𝑛) O(𝜆𝑛) O(𝜆)

Aggregation O(𝑛2) - - -

Agreement O(𝑛) O(𝑛) O(𝜆𝑛) O(𝜆)

K
l
e
r
o
t
e
r
i
o
n
-

Commitment O(𝑛) O(𝑛) O(𝜆) O(𝜆)
Aggregation O(𝑛) O(𝑛) O(𝜆) O(𝜆)
Agreement O(𝑛) O(𝑛) O(𝑛) O(𝜆)

computation of aggregated values, also decreasing the computation

complexity, as we show later.

This difference, sometimes referred to as the per route bit com-

plexity (or per channel), means that the leader of SPURT and other

non-democratic protocols will be the bandwidth of network routes

to the leader, whereas Kleroterion exploits all pairwise channels

of the network. Recent results prove that consensus protocols

with comparable bit complexity but lower per route complexity

perform at a significantly greater throughput than their counter-

parts [25, 26, 59, 60, 62]. Notice also that the O(𝑛) bits sent by the

leader during the agreement phase of Kleroterion enables batching,

as we discuss later.

Distributing computation. The democratic approach of Klerote-

rion also helps distributing computation between processes. In par-

ticular, while the commitment phase requires𝑂 (𝑛) exponentiations
per decision (same as SPURT), the aggregation differs significantly.

SPURT requires the leader to verify the PVSS shares from all pro-

cesses and aggregate them. As a result, SPURT’s leader performs

𝑂 (𝑛2) exponentiations per decision to verify all PVSS shares, and

𝑂 (𝑛2) multiplications to compute the aggregations, while the rest

of 𝑛 − 1 non-leader processes perform no work waiting for the

leader to perform these computations. In contrast, in Kleroterion

each process 𝑝𝑖 locally aggregates their 𝑛 secret shares by recipient,

and verify the shares from the 𝑛 − 1 other processes for which 𝑝𝑖 is
the recipient, resulting in 𝑂 (𝑛) exponentiations and aggregations

per decision per process, whether that is a leader or not.

Furthermore, the leader of SPURT needs to hash O(𝑛) group
elements to compute the digest that will be decided during the

consensus protocol. In contrast, Kleroterion’s digest is just one

hash of a bitmask of O(𝑛) bits. The computational complexities per

decision of the remaining agreement and reconstruction phases,

as well as the complexities of publicly verifying outputs, are the

same for Kleroterion and SPURT. This means that Kleroterion also

removes the quadratic computational bottleneck at the leader, in

addition to removing the bandwidth bottleneck at the network

channels involving the leader.

5.3 Decoupling proposals from consensus
Another advantage of our construction that executes first RBV-

broadcast and then a consensus that references these RBV-delivered

values is the possibility to make the bitmask of the consensus de-

cision reference more information than the secret shares of that

process. This does not affect correctness, as processes only decide

on 𝑡 + 1 bits that they can verify and whose associated data has

been reliably broadcast, and there are 𝑛− 𝑡 > 𝑡 + 1 honest processes.
An example where this decoupling is useful is blockchains.

In a blockchain application, processes could decide a union of

blocks (also known as superblock) by reliably broadcasting these

blocks and then deciding on a bitmask that represents the blocks

to merge into a superblock. This blockchain could benefit from

our RBV-broadcast protocol by implementing a random beacon

in the blockchain (e.g. for committee sortition or as a source of

randomness for other sevices) only at the additional cost of execut-

ing 𝑛 Pinakion.Share iterations, but reusing the same iteration of

consensus already existing in the blockchain.

6 CONCLUSION
In this paper, we presented Kleroterion, a democratic random bea-

con with quadratic bit complexity per output. For this purpose,

we first presented Pinakion, our proposal for a PVSS scheme, that

uses RBV-broadcast, a reliable broadcast implementation, in order

to broadcast secret shares. Then, we justified the advantages of

Kleroterion compared to recent works in that Kleroterion’s democ-

ratization of SPURT by disseminating inputs without routing them

through the leader removes the computational and bandwidth bot-

tleneck at the leader, and that Kleroterion allows for batching of

secret shares with other information, which can be a significant

improvement in applications like blockchains, where consensus is

typically used to decide on blocks of transactions.

As future work, we are working in further improving Kleroterion

by adding accountability and ensuring it preserves unpredictability

and bias-resistance against an adversary controlling more than 𝑡

faults.

ACKNOWLEDGEMENTS
We wish to thank Daniel Collins and Sara Tucci for their feed-

back on earlier versions of this paper. This research is supported

in part under Australian Research Council Future Fellowship fund-

ing scheme (project number 180100496) entitled “The Red Belly

Blockchain: A Scalable Blockchain for Internet of Things”,

REFERENCES
[1] 2019. RANDAO: A DAO working as RNG of Ethereum. https://github.com/

randao/randao

[2] 2020. Babe: Blind Assignment for Blockchain Extension protocol. https://w3f-

research.readthedocs.io/en/latest/polkadot/block-production/Babe.html

[3] 2020. Drand - a distributed randomness beacon daemon. https://github.com/

drand/drand.

[4] 2020. Polkadot: Learn Randomness. https://wiki.polkadot.network/docs/en/

learn-randomness

[5] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync hotstuff: Simple and practical synchronous state machine replication. S&P
(2020).

[6] Marcos K Aguilera and Sam Toueg. 2012. The correctness proof of Ben-Or’s

randomized consensus algorithm. Distributed Computing (2012).

12

https://github.com/randao/randao
https://github.com/randao/randao
https://w3f-research.readthedocs.io/en/latest/polkadot/block-production/Babe.html
https://w3f-research.readthedocs.io/en/latest/polkadot/block-production/Babe.html
https://github.com/drand/drand.
https://github.com/drand/drand.
https://wiki.polkadot.network/docs/en/learn-randomness
https://wiki.polkadot.network/docs/en/learn-randomness

[7] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss

with optimal communication complexity. Financial Cryptography and Data
Security (2021).

[8] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,

Ronen Tamari, and David Yakira. 2018. Helix: A scalable and fair consensus

algorithm resistant to ordering manipulation. (2018). https://eprint.iacr.org/

2018/863

[9] Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K. Reiter,

and Emin Gün Sirer. 2019. Efficient Verifiable Secret Sharing with Share Recovery

in BFT Protocols. CCS (2019).
[10] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. 2020. CRAFT: Composable Randomness and Almost Fairness from Time.
Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/2020/784

[11] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2020. Rand-
Piper – Reconfiguration-Friendly Random Beacons with Quadratic Communication.
Technical Report. Cryptology ePrint Archive. https://eprint.iacr.org/2020/1590

[12] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the

Weil pairing. Journal of cryptology (2004).

[13] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. 2014. Leakage-resilient

coin tossing. Distributed computing (2014).

[14] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation (1987).

[15] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay

and randomness beacons in ethereum. S&P (2017).

[16] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and Efficient Asynchronous Broadcast Protocols. CRYPTO (2001).

[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-

stantinople: Practical asynchronous Byzantine agreement using cryptography.

Journal of Cryptology (2005).

[18] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor

Shoup, and Dominic Williams. 2021. Internet Computer Consensus. https:

//ia.cr/2021/632

[19] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. Symposium on Theory of computing (1993).

[20] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. Applied Cryptography and Network Security (2017).

[21] Ignacio Cascudo and Bernardo David. 2020. ALBATROSS: Publicly AttestabLe

BATched Randomness Based On Secret Sharing. ASIACRYPT (2020).

[22] David Chaum and Torben Pryds Pedersen. 1993. Wallet Databases with Observers.

CRYPTO (1993).

[23] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic
Encryption Random Beacon. Technical Report. Cryptology ePrint Archive. https:

//eprint.iacr.org/2019/1320

[24] Pierre Civit, Seth Gilbert, and Vincent Gramoli. 2021. Polygraph: Accountable

Byzantine Agreement. ICDCS (2021).
[25] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. 2018. DBFT:

Efficient Leaderless Byzantine Consensus and its Application to Blockchains.

NCA (2018).

[26] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: A Secure,

Fair and Scalable Open Blockchain. S&P (2021).

[27] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. SPURT:

Scalable Distributed Randomness Beacon with Transparent Setup. S&P (2022).

[28] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. EUROCRYPT (2018).

[29] Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. 2022. FAST: Fair

Auctions via Secret Transactions. Applied Cryptography and Network Security
(2022).

[30] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel

Tschudi. 2021. GearBox: An Efficient UC Sharded Ledger Leveraging the Safety-
Liveness Dichotomy. Technical Report. Cryptology ePrint Archive. https://eprint.

iacr.org/2021/211

[31] Luciano Freitas de Souza, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan,

Nicolas Quero, and Petr Kuznetsov. 2021. RandSolomon: optimally resilient

multi-party random number generation protocol. (2021). http://arxiv.org/abs/

2109.04911

[32] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) (1988).
[33] A Elrond. 2019. Highly Scalable Public Blockchain via Adaptive State Sharding

and Secure Proof of Stake. https://elrond.com/assets/files/elrond-whitepaper.pdf

[34] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to

Identification and Signature Problems. CRYPTO (1987).

[35] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2021. Efficient Asynchronous Byzantine Agreement without Private Setups.

(2021). http://arxiv.org/abs/2106.07831

[36] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. SOSP
(2017).

[37] Adam Gągol, Damian Leundefinedniak, Damian Straszak, and Michał unde-

finedwiundefinedtek. 2019. Aleph: Efficient Atomic Broadcast in Asynchronous

Networks with Byzantine Nodes. Advances in Financial Technologies (2019).
[38] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.

Cambridge university press.

[39] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity technol-

ogy overview series, consensus system. (2018). http://arxiv.org/abs/1805.04548

[40] Somayeh Heidarvand and Jorge L. Villar. 2009. Public Verifiability from Pairings

in Secret Sharing Schemes. Selected Areas in Cryptography (2009).

[41] C. Edward Kelso. 2018. Bitcoin Gold Hacked for $18 Million. https://news.

bitcoin.com/bitcoin-gold-hacked-for-18-million/

[42] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. CRYPTO
(2017).

[43] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures. CCS (2020).
[44] Mikhail Krasnoselskii, Grigorii Melnikov, and Yury Yanovich. 2020. No-Dealer:

Byzantine Fault-Tolerant Random Number Generator. INFOCOM workshops
(2020).

[45] Yizhong Liu, Jianwei Liu, Marcos Antonio Vaz Salles, Zongyang Zhang, Tong

Li, Bin Hu, Fritz Henglein, and Rongxing Lu. 2021. Building Blocks of Sharding
Blockchain Systems: Concepts, Approaches, and Open Problems. Technical Report.
arXiv. http://arxiv.org/abs/2102.13364

[46] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-MVBA:

Optimal Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited.

PODC (2020).

[47] Robert J. McEliece and Dilip V. Sarwate. 1981. On sharing secrets and Reed-

Solomon codes. Commun. ACM (1981).

[48] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

Honey Badger of BFT Protocols. CCS (2016).
[49] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review (2008), 21260.

[50] Thanh Nguyen-Van, Tuan Nguyen-Anh, Tien-Dat Le, Minh-Phuoc Nguyen-Ho,

Tuong Nguyen-Van, Nhat-Quang Le, and Khuong Nguyen-An. 2019. Scalable

distributed random number generation based on homomorphic encryption. In-
ternational Conference on Blockchain (2019).

[51] David Pointcheval and Jacques Stern. 1996. Security Proofs for Signature Schemes.

EUROCRYPT (1996).

[52] Mayank Raikwar. 2022. Competitive Decentralized Randomness Beacon Protocols.

International Symposium on Blockchain and Secure Critical Infrastructure (2022).
[53] Jamie Redman. 2020. Bitcoin Gold 51% Attacked - Network Loses $70,000 in

Double Spends. https://news.bitcoin.com/bitcoin-gold-51-attacked-network-

loses-70000-in-double-spends/

[54] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics (1960).
[55] Alexandre Ruiz and Jorge L Villar. 2005. Publicly verifiable secret sharing from

Paillier’s cryptosystem. Western European Workshop on Research in Cryptology
(2005).

[56] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar

Weippl. 2021. Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness. Technical Report. https://eprints.cs.univie.ac.at/6629/1/2020-942.pdf

[57] Berry Schoenmakers. 1999. A Simple Publicly Verifiable Secret Sharing Scheme

and Its Application to Electronic Voting. CRYPTO (1999).

[58] Adi Shamir. 1979. How to Share a Secret. Commun. ACM (1979).

[59] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:

High-Throughput Robust BFT for Decentralized Networks. http://arxiv.org/abs/

1906.05552

[60] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State

Machine Replication Scalability Made Simple. EuroSys (2022).
[61] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. S&P (2017).

[62] Gauthier Voron and Vincent Gramoli. 2019. Dispel: Byzantine SMR with Dis-
tributed Pipelining. Technical Report. arXiv. http://arxiv.org/abs/1912.10367

[63] Gang Wang and Mark Nixon. 2020. RandChain: Practical Scalable Decentralized

Randomness Attested by Blockchain. International Conference on Blockchain
(2020).

[64] A Yao. 1982. Theory and applications of trapdoor functions. FOCS’82. Symposium
on Foundations of Computer Science (FOCS’97) (1982).

[65] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. PODC
(2019).

[66] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and AndrewMiller. 2021.

hbACSS: How to Robustly Share Many Secrets. https://eprint.iacr.org/2021/159

[67] Terence Zimwara. 2020. $5.6 Million Double Spent: ETC Team Finally Acknowl-

edges the 51% Attack on Network. https://news.bitcoin.com/5-6-million-stolen-

as-etc-team-finally-acknowledge-the-51-attack-on-network/

13

https://eprint.iacr.org/2018/863
https://eprint.iacr.org/2018/863
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/1590
https://ia.cr/2021/632
https://ia.cr/2021/632
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2021/211
https://eprint.iacr.org/2021/211
http://arxiv.org/abs/2109.04911
http://arxiv.org/abs/2109.04911
https://elrond.com/assets/files/elrond-whitepaper.pdf
http://arxiv.org/abs/2106.07831
http://arxiv.org/abs/1805.04548
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
http://arxiv.org/abs/2102.13364
https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
https://eprints.cs.univie.ac.at/6629/1/2020-942.pdf
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1912.10367
https://eprint.iacr.org/2021/159
https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/
https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/

	Abstract
	1 Introduction
	1.1 Related work

	2 Background & Model
	2.1 Random Beacon Problem
	2.2 Set Byzantine Consensus
	2.3 PVSS problem

	3 The Pinakion protocol
	4 The (Naive) Kleroterion protocol
	4.1 Proofs of correctness
	4.2 Complexities of naive Kleroterion

	5 Optimizations and Observations
	5.1 From quartic to quadratic bit complexity
	5.2 Distributing bits and computation
	5.3 Decoupling proposals from consensus

	6 Conclusion
	References

