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Abstract—The problem of Byzantine consensus has been key to
designing secure distributed systems. However, it is particularly
difficult, mainly due to the presence of Byzantine processes
that act arbitrarily and the unknown message delays in general
networks. Although it is well known that both safety and liveness
are at risk as soon as n/3 Byzantine processes fail, very few works
attempted to characterize precisely the faults that produce safety
violations from the faults that produce termination violations.

In this paper, we present a new lower bound on the solvability
of the consensus problem by distinguishing deceitful faults
violating safety and benign faults violating termination from the
more general Byzantine faults, in what we call the Byzantine-
deceitful-benign fault model. We show that one cannot solve
consensus if n ≤ 3t+d+2q with t Byzantine processes, d deceitful
processes, and q benign processes.

In addition, we show that this bound is tight by presenting
the Basilic class of consensus protocols that solve consensus
when n > 3t + d + 2q. These protocols differ in the number
of processes from which they wait to receive messages before
progressing. Each of these protocols is thus better suited for
some applications depending on the predominance of benign or
deceitful faults.

Index Terms—agreement, consensus, fault tolerance, account-
ability, Byzantine-deceitful-benign,

I. INTRODUCTION

The problem of Byzantine consensus has been key to
designing secure distributed systems [1], [2], [3], [4], [5]. This
problem is particularly difficult to solve because a Byzantine
participant acts arbitrarily [6] and message delays are generally
unpredictable [7]. Any consensus protocol would fail in this
general setting if the number of Byzantine participants is
t ≥ n/3 [7], where n is the total number of participants.
In some executions, ⌈n/3⌉ Byzantine participants can either
prevent the termination of the consensus protocol by stopping
or by sending unintelligible messages. In other executions,
⌈n/3⌉ can violate the agreement property of the consensus
protocol by sending conflicting messages.

Interestingly, various research efforts were devoted to in-
crease the fault tolerance of consensus protocols in closed
networks (e.g., datacenters) by distinguishing the type of
failures [2], [3], [4], [8]. Some works overcome the t <
n/3 bound by tolerating a greater number of omission than
commission faults [1], [2]. These works are naturally well-
suited for closed networks where processes are protected from
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intrusions by a firewall: their processes are supposedly more
likely to crash than to be corrupted by a malicious adversary.
In this sense, these protocols favor tolerating a greater number
of faults for liveness than for safety.

Unfortunately, fewer research efforts were devoted to ex-
plore the fault tolerance of consensus protocols in open
networks (e.g., blockchains). In such settings, participants
are likely to cause a disagreement if they can steal valuable
assets. This is surprising given that attacks are commonplace
in blockchain systems as illustrated by the recent losses of
$70, 0001 and $18 million2 in Bitcoin Gold, and of $5.6
million in Ethereum Classic3. Comparatively, some blockchain
participants, called miners, are typically monitored continu-
ously so as to ensure they provide some rewards to their
owners, hence making it less likely to prevent termination.
To our knowledge, only alive-but-corrupt (abc) processes [9]
characterize the processes that violate consensus safety. Un-
fortunately, abc processes are restricted to only try to cause
a disagreement if the coalition size is sufficiently large to
succeed at the attempt, which is impossible to predict in
blockchain systems.

A. Our Results

In this paper, we present a new lower bound on the
solvability of the Byzantine consensus problem by precisely
exploring these two additional types of faults (that either
prevent termination or agreement when t ≥ n/3). Our lower
bound states that there is no protocol solving consensus in the
partially synchronous model [7] if n ≤ 3t + d + 2q with t
Byzantine processes, d deceitful processes, and q benign pro-
cesses. These different types of processes define the Byzantine-
deceitful-benign (BDB) failure model and are characterized
by the faults they commit. First, a deceitful process is a
process that sends some conflicting messages (messages that
contribute to a violation of agreement) during its execution.
Second, a benign process is a faulty process that never sends
any conflicting messages, contributing to non-termination. For
example, a benign process can crash or send stale messages,
or even equivocate as long as its messages have no effect on

1https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-
in-double-spends/

2https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
3https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-

acknowledge-the-51-attack-on-network/
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the agreement property. These two faults lie at the core of the
consensus problem, as the property of validity can be locally
checked for correctness, while termination and agreement can
be violated in the presence of enough malicious processes.
Compared to abc faults, we do not impose the restriction on
deceitful processes to know whether their attack will succeed.
Hence, while a protocol might tolerate d < n/3 abc faults
along with q < n/3 benign faults, it would not necessarily
tolerate d < n/3 deceitful faults along with q < n/3 benign
faults. The contrary direction always holds.

Furthermore, we show that this lower bound is tight, in that
we present the Basilic4 class of protocols that solves consensus
with n > 3t+ d+ 2q. Basilic builds upon recent advances in
the context of accountability [10] by taking into account key
messages only if they are cryptographically signed by their
sender. If they are properly signed, the recipient stores these
messages and progresses in the consensus protocol execution.
Recipients also cross-check the messages they received with
other recipients, based on the assumption that signatures
cannot be forged. Once conflicting messages are detected,
they constitute an undeniable proof of fraud to exclude the
faulty sender before continuing the protocol execution. Thanks
to this exclusion, Basilic satisfies a new property, active
accountability, which guarantees that deceitful processes can
not prevent termination.

Basilic is a class of consensus protocols, each parameterized
by a different voting threshold or the number of distinct
processes from which a process receives messages in order
to progress. For a voting threshold of h ∈ (n/2, n], Basilic
satisfies termination if h ≤ n − q − t, and agreement if
h > d+t+n

2 . This means that for just one threshold, say
h = 2n/3, Basilic tolerates multiple combinations of faulty
processes: it can tolerate t < n/3, q = 0 and d = 0; but also
t = 0, q < n/3 and d < n/3; or even t < n/6, q < n/6
and d < n/6. This voting threshold can be modified by an
application in order to tolerate any combination of t Byzantine,
d deceitful and q benign processes satisfying n > 3t+d+2q.
The generalization of Basilic to any voting threshold h thus
allows us to pick the best suited protocol depending on the
application requirements. If, on the one hand, the application
runs in a closed network (e.g., datacenter) dominated by
benign processes, then the threshold will be lowered to ensure
termination. If, on the other hand, the application runs in an
open network (e.g., blockchain) dominated by deceitful pro-
cesses, then the threshold will be raised to ensure agreement.

We illustrate in Figure 1 the new resilient-optimal bounds
that Basilic tolerates if there are only deceitful and benign
processes (i.e., for t = 0), compared to the classic Byzantine
fault-tolerant (BFT) bound [7]. We prove that these bounds
are resilient-optimal in the Byzantine-deceitful-benign failure
model. We observe that compared to state-of-the-art account-
able consensus protocols, Basilic satisfies active accountability

4The name “Basilic” is inspired from the Basilic cannon that Ottomans
used to break through the walls of Constantinople. Much like the cannon,
our Basilic protocol provides a tool to break through the classical bounds of
Byzantine fault tolerance.
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Fig. 1: The green area represents the bound for BFT consensus,
where t < n/3 and thus the same for d, q, i.e., d+ q < n/3.
The orange area is the new fault tolerance in the Byzantine-
deceitful-benign (BDB) failure model, where d < n− 2q and
q < n/2 (for t = 0). In blue, the area where it is impossible
to solve consensus in the BDB model.

and tolerates a greater number of faults, while maintaining
the same time, message and bit complexities in synchronous
periods.

B. Roadmap

The rest of the paper is structured as follows. In Section II,
we present the model and define the problem. In Section III,
we present our impossibility result in the Byzantine-deceitful-
benign model while we prove that Basilic solves the consensus
problem in Section IV and analyze its complexities in Sec-
tion V. Finally, we present the related work in Section VI,
and we finally conclude in Section VII.

II. MODEL & PROBLEM

We consider a committee as a set N = {p0, ..., pn−1}
of |N | = n processes. These processes communicate in a
partially synchronous network, meaning there is a known
bound ∆ on the communication delay that will hold after an
unknown Global Stabilization Time (GST) [7]. Processes com-
municate through standard all-to-all reliable and authenticated
communication channels [11], meaning that messages can not
be duplicated, forged or lost, but they can be reordered.

a) Cryptography: We assume a public-key infrastructure
(PKI) in that each party has a public key and a private key, and
any party’s public key is known to all [12]. As with other pro-
tocols that use this standard assumption [12], [13], we do not
require the use of revocation lists (we will remove processes
from the committee, but not their keys from the PKI). We
refer to λ as the security parameter, i.e., the number of bits of
the keys. As our claims and proofs require cryptography, they
hold except with ϵ(λ) negligible probability [14]. We formalize
negligible functions measured in the security parameter λ,
which are those functions that decrease asymptotically faster
than the inverse of any polynomial. Formally, a function ϵ(κ)
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is negligible if for all c > 0 there exists a κ0 such that
ϵ(κ) < 1/κc for all κ > κ0 [14].

b) Consensus: A protocol executed by a committee of
processes solves the consensus problem if the following three
properties are satisfied by the protocol:

• Termination. Every non-faulty process eventually de-
cides on a value.

• Agreement. No two non-faulty processes decide on dif-
ferent values.

• Validity. If all non-faulty processes propose the same
value, no other value can be decided.
c) Conflicting messages: In order to detect faulty pro-

cesses, these have to send distinct messages to different
processes where they were expected to broadcast the same
message to different processes [15], we refer to these messages
as conflicting. Given a protocol σ, we say that a message,
or set of messages, m sent by process p conforms to an
execution σE of the protocol σ, if σE belongs to the set of
all possible executions where p sent m and p is a non-faulty
process. Also, a faulty process p sending two messages m,m′

contributes to a disagreement if there is an execution σE of σ
such that (i) sufficiently many faulty processes sending m, m′

(and possibly more messages) to a disjoint subset of non-faulty
processes, one to each, leads to a disagreement, and (ii) σE

does not lead to a disagreement without p sending m, m′. Two
messages m, m′ are conflicting with respect to σ if:

1) m, m′ individually conform to algorithm σ for some
execution σE , σE′ , respectively, σE ̸= σE′ ,

2) there is no execution σE′′ of σ such that both messages
together conform to σE′′ , and

3) if p sending m,m′ to a disjoint subset of non-faulty
processes, one to each, contributes to a disagreement.

When combined in one message and signed by the sender,
conflicting messages constitute a proof of a process being
faulty with the purpose of causing a disagreement. We speak
of this proof as a proof-of-fraud (PoF). An example of two
conflicting messages is a faulty process sending two different
proposals for the same round (the proposer should only
propose one value per round).

Our definition of conflicting messages differs from previous
similar concepts in that conflicting messages allow for any
process p to verify if two messages are conflicting: a non-
faulty process can always construct a PoF from two conflicting
messages alone, but it cannot do so with all mutant mes-
sages [16], as p would need to also learn the entire execution,
or with messages sent from an equivocating process [17], as
these do not necessarily contribute to disagreeing.

d) Send, receive and deliver: Messages can be sent and
received, but we also consider broadcast primitives that contain
two functions: a broadcast function that allows process pi to
send messages through multiple channels accross the network,
and a deliver function that is invoked at the very end of
the broadcast primitive to indicate that the recipient of the
message has received and processed the message. There could
be however multiple message exchanges before the delivery

can happen. When we specify the broadcast primitives, we
attach the name of the protocol as a prefix to the broadcast and
deliver function to refer to a message broadcast or delivered
using that protocol, such as AARB-broadcast, AARB-deliver,
ABV-broadcast and ABV-deliver, as we detail later in this
paper.

e) Fault model: There are three mutually exclusive
classes of faulty processes: Byzantine, deceitful and be-
nign [18], in what we refer to as the Byzantine-deceitful-
benign (BDB) failure model. Each faulty process belongs to
only one of these classes. Byzantine, deceitful and benign
processes are characterized by the faults they can commit.
A fault is deceitful if it contributes to breaking agreement,
in that it sends conflicting messages violating the protocol
in order to lead two or more partitions of processes to a
disagreement. We allow deceitful processes to constantly keep
sending conflicting messages, even if they do not succeed at
causing a disagreement, but instead their deceitful behavior
prevents termination. As deceitful processes model processes
that try to break agreement, we assume also that a deceitful
fault does not send conflicting messages for rounds or phases
of the protocol that it has already terminated at the time that it
sends the messages. Deceitful processes can alternate between
sending conflicting messages and following the protocol, but
cannot deviate in any other way. A benign fault is any fault that
does not ever send conflicting messages. Hence, benign faults
cover only faults that can break termination, e.g. by crashing,
sending stale messages, etc.

As usual, Byzantine processes can act arbitrarily. Thus,
Byzantine processes can commit benign or deceitful faults,
but they can also commit faults that are neither deceitful nor
benign. A fault that sends conflicting messages and crashes
afterwards is, by these definitions, neither benign nor deceitful.
We denote t, d, and q as the number of Byzantine, deceit-
ful, and benign processes, respectively. We assume that the
adversary is static, in that the adversary can choose up to t
Byzantine, d deceitful and q benign processes at the start of
the protocol, known only to the adversary.

In order to distinguish benign (resp. deceitful) processes
from Byzantine processes that commit a benign (resp. de-
ceitful) fault during a particular execution of a protocol, we
formalize fault tolerance in the BDB model. Let Eσ(t, d, q)
denote the set of all possible executions of a protocol σ given
that there are up to t Byzantine, d deceitful and q benign
processes. We say that a protocol σ for a particular problem
P is (t, d, q)-fault-tolerant if σ solves P for all executions
σE ∈ Eσ(t, d, q). We abuse notation by speaking of a (t, d, q)-
fault-tolerant protocol σ as a protocol that tolerates t, d and q
Byzantine, deceitful and benign processes, respectively.

Note that, given a protocol σ, then Eσ(0, d + k, q) ⊂
Eσ(k, d, q) by definition. Thus, if σ is (k, d, q)-fault-tolerant
then σ is (0, d + k, q)-fault tolerant, and also (0, d, q + k)-
fault-tolerant. However, the contrary is not necessarily true: a
protocol σ that is (0, d+ k, q)-fault-tolerant is not necessarily
(k, d, q)-fault tolerant, as Eσ(k, d, q) ⊈ Eσ(0, d + k, q),
because Byzantine participants can commit more faults than
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deceitful or benign. Finally, a process is non-faulty if it
is neither Byzantine, nor deceitful, nor benign. Non-faulty
processes follow the protocol.

Compared to commission and omission faults, notice that
not all commission faults contribute to causing disagreements.
For example, some commission faults broadcast an invalid
message that can be discarded. In our BDB model, this
type of fault would categorize as benign, and not deceitful,
since invalid messages never contribute to a disagreement,
but can instead prevent termination (by only sending invalid
messages that are discarded). All omission faults are however
benign faults, while the contrary is also not true (as per the
same aforementioned example). Compared to the alive-but-
corrupt failure model, deceitful faults are not restricted to only
contribute to a disagreement if they know the disagreement
will succeed, but instead we let them try forever, even if they
do not succeed. Also, the alive-but-corrupt failure model does
not define benign faults.

We believe thus the BDB model to be better-suited for
consensus, as it establishes a clear difference in the types
of faults depending on the type of property that the fault
jeopardizes (agreement for deceitful, termination for benign),
without restricting the behavior of these faults to the cases
where they are certain that they will cause a disagreement.
We restate that the property of validity is defined only to
rule out trivial solutions of consensus in which all processes
decide a constant, and this property can be locally checked for
correctness.

III. IMPOSSIBILITY RESULTS

In this section, we extend Dwork et al.’s impossibility
results [7] on the number of non-faulty processes necessary to
solve the Byzantine consensus problem in partial synchrony
by adding deceitful and benign processes. First, we prove
in Section III-A lower bounds on the size of the committee
of any consensus protocol. Then, we prove in Section III-B
some lower bounds depending on the voting threshold of that
protocol, which we define in the same section.

A. Impossibility of consensus in the BDB model

First, we consider the case where t = 0, i.e., there are
only deceitful and benign processes. In particular, we show in
Lemma III.1 that if a protocol solves consensus then it tolerates
at most d < n − 2q deceitful processes and q < n/2 benign
processes. The intuition for the proof is analogous to the classi-
cal impossibility proof of consensus in partial synchrony in the
presence of t0 + 1 Byzantine processes. Lemma III.1 extends
the classical lower bound for the BFT model [7], by tolerating
a stronger adversary than the classical bound (e.g. an adversary
causing d = ⌈n/3⌉ − 1 deceitful faults and q = ⌈n/3⌉ − 1
benign faults). By contradiction, we show that in the presence
of a greater number of faulty processes than bounded by
Lemma III.1, in some executions all processes would either
not terminate, or not satisfy agreement, if maintaining validity.

Lemma III.1. Let a protocol σ and let σ solve consensus for
all executions σE ∈ Eσ(t, d, q) for some t, d, q > 0. Then,
d+ t < n− 2(q + t).

Proof. First, we show q < n/2 by contradiction, as done
by previous work for omission faults [7]. Suppose q ≥
n/2, d = 0, t = 0 and consider processes are divided into
a disjoint partition P,Q such that P contains between 1 and
q processes and Q contains n − |P |. First, consider scenario
A: all processes in P are benign and the rest correct, and all
processes in Q propose value 0. Then, by validity all processes
in Q decide 0. Then, consider scenario B: all processes in Q
are benign and the rest correct, and all processes in P propose
value 1. Then, by validity all processes in P decide 1. Now
consider scenario C: no process is benign, and processes in P
propose all 1 while processes in Q propose all value 0. For
processes in P scenario C is indistinguishable from scenario
B, while for processes in Q scenario C is indistinguishable
from scenario A. This yields a contradiction.

It follows that q < n/2. Hence, for n = 2, and since q < 1,
it is immediate that for d + t ≥ 2 it is impossible to solve
consensus. As such, we have left to consider d+t ≥ n−2(q+t)
with n ≥ 3. We will prove this by contradiction.

Consider processes are divided into three disjoint partitions
P,Q,R, such that P and Q contain between 1 and q + t
processes each, and R contains between 1 and d + t. First
consider the following scenario A: processes in P and R are
non-faulty and propose value 0, and processes in Q are benign.
It follows that P ∪R must decide value 0 at some time TA, for
if they decided 1 there would be a scenario in which processes
in Q are non-faulty and also propose 0, but messages sent from
processes in Q are delivered at a time greater than TA, having
processes in P ∪ R already decided 1. This would break the
validity property. Also, they must decide some value to satisfy
termination tolerating q + t benign faults.

Consider now scenario B: processes in P are benign, and
processes in R and Q are non-faulty and propose value 1. By
the same approach, R ∪Q decide 1 at a time TB .

Now consider scenario C: processes in P and Q are non-
faulty, and processes in R are deceitful, the messages sent
from processes in Q are delivered by processes in P at a time
greater than max(TA, TB), and the same for messages sent
from processes in P to processes in Q. Then, for processes in
P this scenario is identical to scenario A, deciding 0, while
for processes in Q this is identical to scenario B, deciding 1,
which leads to a disagreement. This yields a contradiction.

Corollary III.2 (Impossibility of consensus with t = 0). It is
impossible for a consensus protocol σ to tolerate d deceitful
and q benign processes if d ≥ n− 2q or q ≥ n/2.

Proof. This is immediate from Lemma III.1 since σ is
(0, d, q)-fault-tolerant if σ solves P for all executions σE ∈
Eσ(0, d, q).

We prove the impossibility result of Theorem III.3 by
extending the result of Corollary III.2: it is impossible to solve
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consensus in the presence of t Byzantine, q benign and d
deceitful processes unless n > 3t+ d+ 2q.

Theorem III.3 (Impossibility of consensus). It is impossible
for a consensus protocol to tolerate t Byzantine, d deceitful
and q benign processes if n ≤ 3t+ d+ 2q.

Proof. This is immediate from Lemma III.1 since σ is (t, d, q)-
fault-tolerant if σ solves P for all executions σE ∈ Eσ(t, d, q).

B. Impossibility bounds per voting threshold

The proofs for the impossibility results of Section III-A
(and for the classical impossibility results [7]) derive a trade-
off between agreement and termination. In some scenarios,
processes must be able to terminate without delivering mes-
sages from a number of processes that may commit benign
faults. In other scenarios, processes must be able to deliver
messages from enough processes before terminating in order
to make sure that no disagreement caused by deceitful faults
is possible. We prove in this section the impossibility results
depending on this trade-off.

A protocol that satisfies both agreement and termination in
partial synchrony must thus state a threshold that represents
the number of processes from which to deliver messages in
order to be able to terminate without compromising agreement.
If this threshold is either too small to satisfy agreement, or too
large to satisfy termination, then the protocol does not solve
consensus. We refer to this threshold as the voting threshold,
and denote it with h. Typically, this threshold is h = n −
t0 = ⌈ 2n

3 ⌉ to tolerate t0 = ⌈n
3 ⌉ − 1 Byzantine faults [19],

[10], [20], [21], [18]. We prove however in Lemma III.4 and
Corollary III.5 that h > d+t+n

2 with h ∈ (n/2, n] for safety.

Lemma III.4 (Impossibility of Agreement (t = 0)). Let σ be
a protocol with voting threshold h ∈ (n/2, n] that satisfies
agreement. Then σ tolerates at most d < 2h − n deceitful
processes.

Proof. The bound h ∈ (n/2, n] derives trivially: if h ≤ n/2
then two subsets without any faulty processes can reach the
threshold for different values (Lemma III.1). We calculate for
which cases it is possible to cause a disagreement. Hence,
we have two disjoint partitions of non-faulty processes such
that |A| + |B| ≤ n − d. Suppose that processes in A and in
B decide each a different decision vA, vB , vA ̸= vB . This
means that both |A| + d ≥ h and |B| + d ≥ h must hold.
Thus, |A| + |B| + 2d ≥ 2h and since |A| + |B| ≤ n − d
this means that n+ d ≥ 2h for a disagreement to occur. This
means that if h > n+d

2 then it is impossible for d deceitful
processes to cause a disagreement.

The proof of Lemma III.4 can be straightforwardly extended
to include Byzantine processes, resulting in Corollary III.5.

Corollary III.5. Let σ be a protocol with voting threshold
h ∈ (n/2, n] that satisfies agreement. Then σ tolerates at most
d+ t < 2h− n deceitful and Byzantine processes.

Next, in Lemma III.6 and Corollary III.7 we show the
analogous results for the termination property. That is, we
show that if a protocol solves termination while t = 0, then it
tolerates at most q ≤ n−h benign processes, or q+ t ≤ n−h
benign and Byzantine processes.

Lemma III.6 (Impossibility of Termination (t = 0)). Let σ be
a protocol with voting threshold h that satisfies termination.
Then σ tolerates at most q ≤ n− h benign processes.

Proof. If n− q < h, then termination is not guaranteed, since
in this case termination would require the votes from some
benign processes. This is impossible if h ≤ n − q, as it
guarantees that the threshold is lower than all processes minus
the q benign processes.

Corollary III.7. Let σ be a protocol with voting threshold h
that satisfies termination. Then, σ tolerates at most q + t ≤
n− h benign and Byzantine processes.

Combining the results of corollaries III.5 and III.7, one can
derive an impossibility bound for a consensus protocol given
its voting threshold. We show this result in Corollary III.8.

Corollary III.8. Let σ be a protocol that solves the consensus
problem with voting threshold h ∈ (n/2, n]. Then, σ tolerates
at most d+ t < 2h−n and q+ t ≤ n−h Byzantine, deceitful
and benign processes.

We show in Figure 2 the threshold h to tolerate a number
d of deceitful and q of benign processes. For example, for a
threshold h = ⌈ 5n

9 ⌉ − 1, we have that d < n
9 for safety and

q < 4n
9 for liveness, with t = 0. The maximum number of

Byzantine processes tolerated with d = q = 0 is the minimum
of both bounds, being for example t < n

9 for h = ⌈ 5n
9 ⌉ −

1. In the remainder of this paper, we assume the adversary
satisfies the resilient-optimal bounds of h < n − q − t and
h > d+t+n

2 , given a particular voting threshold h. The result of
Theorem III.3 holds regardless of the voting threshold. Thus,
a protocol that satisfies both h < n − q − t and h > d+t+n

2
can set its voting threshold h ∈ (n/2, n] in order to solve
consensus for any combination of t Byzantine, q benign and
d deceitful processes, as long as n > 3t+ d+ 2q holds.

IV. THE BASILIC PROTOCOL

In this section, we introduce the Basilic class of protocols,
a class of resilient-optimal protocols that solve, for different
voting thresholds, the actively accountable consensus problem
in the BDB model. In particular, all protocols within the
Basilic class tolerate t Byzantine, d deceitful and q benign
processes satisfying n > 3t + d + 2q, and, given a particular
protocol σ(h) of the class uniquely defined by a voting thresh-
old h ∈ (n/2, n], then σ(h) tolerates a number n of processes
satisfying d+ t < 2h− n and q + t ≤ n− h. In this section,
we first need to introduce few assumptions and definitions
in Section IV-A. Second, we present the overview of the
Basilic protocol in Section IV-B, and show its components
in sections IV-D, IV-E, and IV-C.
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Fig. 2: Number of deceitful processes d and benign processes
q tolerated for safety and liveness, respectively, per voting
threshold h and with t = 0 Byzantine processes.

A. Additional Assumptions

a) Adversary: In order to limit the computational power
of processes to prevent the adversary from forging keys, we
model processes as probabilistic polynomial-time interactive
Turing machines (ITMs) [22], [23], [24]. A process is an ITM
defined by the following protocol: it is activated upon receiving
an incoming message to carry out some computations, update
its states, possibly generate some outgoing messages, and wait
for the next activation. The adversary A is a probabilistic ITM
that runs in polynomial time (in the number of message bits
generated by non-faulty processes).

b) Actively accountable consensus problem: The ac-
countable consensus problem [10] includes the property of
accountability in order to provide guarantees in the event
that deceitful and Byzantine processes manage to cause a
disagreement. This property is however insufficient for the
purpose of Basilic. We need an additional property that
identifies and removes all deceitful behaviors that prevent
termination. Faulty processes can break agreement in a finite
number of conflicting messages, but once they send a pair of
these conflicting messages, they leave a trace that can result
in their exclusion from the system. Our goal is to exploit this
trace to make sure that deceitful processes cannot contribute
to breaking liveness. As a result, we include the property of
active accountability, stating that deceitful faults do not prevent
termination of the protocol.

Definition 1 (Actively accountable consensus problem). A
protocol σ with voting threshold h solves the actively ac-
countable consensus problem if the following properties are
satisfied:

• Termination. Every non-faulty process eventually de-
cides on a value.

• Validity. If all non-faulty processes propose the same
value, no other value can be decided.

• Agreement. If d + t < 2h − n then no two non-faulty
processes decide on different values.

• Accountability. If two non-faulty processes output dis-
agreeing decision values, then all non-faulty processes
eventually identify at least 2h − n faulty processes re-
sponsible for that disagreement.

• Active accountability. Deceitful behavior does not pre-
vent liveness.

We generalise the previous definition of accountability [10]
by including the voting threshold h. That is, the previous
definition of accountability is the one we present in this work
for the standard voting threshold of h = 2n/3.

B. Basilic Internals

Basilic is a class of consensus protocols, all these protocols
follow the same pseudocode (Algorithms 1–2) but differ by
their voting threshold h ∈ (n/2, n]. The structures of these
protocols follow the classic reduction [25] from the consensus
problem, which accepts any ordered set of input values, to the
binary consensus problem, which accepts binary input values.

a) Basilic Overview: More specifically, Basilic has at its
core the binary consensus protocol called actively accountable
binary consensus or AABC for short (Alg. 2–3) and presented
in Section IV-D. We show in Figure 3 an example execution
with n = 4 processes in the committee. First, each process pi
selects their input value vi, which they share with everyone
executing an instance of a reliable broadcast protocol called
actively accountable reliable broadcast or AARB for short.
Then, processes execute one instance AABCi of the binary
consensus protocol for each process pi to decide whether to
select their associated input value from process pi. Finally,
processes locally process the minimum input value from the
values whose associated AABC instance output 1.

This AABC protocol shares similarities with Poly-
graph [10], as it also detects guilty processes, but goes further,
by excluding these detected processes and adjusting its voting
threshold at runtime to solve consensus even in cases where
Polygraph cannot (n/3 ≤ t+ q + d < n). We summarize the
comparison of Basilic with the state of the art in Table II.
Finally, the rest of the reduction is depicted in Alg. 1 and
invokes n actively accountable reliable broadcast instances or
AARB (Alg. 4) described in Section IV-E, followed by n of
the aforementioned AABC instances.

b) Certificates and transferable authentication.: Basilic
uses certificates in order to validate or discard a message, and
also to detect deceitful processes by cross-checking certifi-
cates. A certificate is a list of previously delivered and signed
messages that justifies the content of the message on which the
certificate is piggybacked. Thus, non-faulty processes perform
transferable authentication [17]. That is, process pi can deliver
msg from pj by verifying the signature of msg , even if msg
was received from pk, for k ̸= i ̸= j.

c) Detected deceitful processes: A key novelty of Basilic
is to remove detected deceitful processes from the committee
at runtime. For this reason, we refer to dr as the number
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p0 : v0 AARB0 : v0
p1 : v1 AARB1 : v1
p2 : v2 AARB2 : v2
p3 : v3 AARB3 : v3

reliably broadcast proposals

AABC0 : 1

AABC1 : 0

AABC2 : 1

AABC3 : 0

{v0 : 1, v1 : 0, v2 : 1, v3 : 0} v0

binary consensus decisions

min(v0, v2)

bits and associated proposals decide one

Basilic’s multi-valued consensus

Fig. 3: Basilic execution example for a committee of n = 4. First, each process pi selects their input value vi, which they share
with everyone executing their respective instance AARBi of AARB. Then, processes execute one instance AABCi of the
binary consensus protocol to decide whether to select their associated input value from process pi. Finally, processes locally
process the minimum input value from the values whose associated AABC instance output 1.

of detected deceitful processes, and define a voting thresh-
old h(dr) that varies with the number of detected deceitful
processes. Therefore, processes start Basilic with an initial
voting threshold h(dr = 0) = h0, e.g., h0 = ⌈ 2n

3 ⌉, but
then update the threshold by removing detected deceitful
processes, i.e. h(dr) = h0 − dr. This way, detected deceitful
processes break neither liveness nor safety, as we will show.
Certificates must always contain h(dr) signatures from distinct
processes justifying the message (after filtering out up to dr
signatures from detected deceitful processes), or else they will
be discarded. Recall that the adversary is thus constrained
to the bounds from Corollary III.8 depending on the voting
threshold. As Basilic uses a threshold that updates at runtime
starting from an initial threshold h(dr) = h0 − dr, we restate
these bounds applied to the initial threshold h0 ≤ n−q−t and
h0 > d+t+n

2 , or to the updated threshold h(dr) < n−q−t−dr
and h(dr) >

d+t+n
2 − dr.

C. The General Basilic Protocol

We bring together the n instances of the AABC binary
consensus protocol with the n instances of the AARB reliable
broadcast protocol in Algorithm 1, where we show the general
Basilic protocol. The protocol derives from Polygraph’s gen-
eral protocol [10], which in turn derives from DBFT’s multi-
valued consensus protocol [19].

Non-faulty processes first start their respective AARB pro-
tocol (for which they are the proposing process) by proposing
a value in line 2. Delivered proposals are stored in msgs
with the index corresponding to the source of the proposal.
A binary consensus at index k is started with input value
1 for each index k where a proposal has been recorded
(line 6). Notice that we can guarantee to decide 1 on at most
h(dr) proposals (line 7), where dr can be up to d and is
set by update-committee in Algorithm 3, meaning that, for
the standard threshold h(dr) = ⌈ 2n

3 ⌉ − dr, the maximum
number of decided proposals is ⌈n

3 ⌉, since dr < n
3 . Once non-

faulty processes decide 1 on at least h(dr) AABC instances,
non-faulty processes start the remaining AABC instances with
input value 0 (line 9), without having to wait to AARB-deliver
their respective values.

Finally, once all AABC instances have terminated (line 10),
non-faulty processes can output a decision. As such, processes
take as input a list of AARB-delivered values and their
associated index and output a decision selecting the AARB-
delivered value with the lowest associated index whose binary
consensus with the same index output 1 (line 13).

Algorithm 1 The general Basilic with initial threshold h0.
1: Basilic-gen-proposeh0 (vi):
2: msgs ← AARB-broadcast(EST, ⟨vi, i⟩) � Algorithm 4
3: repeat:
4: if (∃v, k : (EST, ⟨v, k⟩) ∈ msgs) then � proposal AARB-delivered
5: if (BIN-CONSENSUS[k] not yet invoked) then � Algorithm 2
6: bin-decisions[k]← BIN-CONSENSUS[k].AABC-prop(1)

7: until |bin-decisions[k] = 1| ≥ h(dr) � decide 1 on at least h(dr)

8: for all k such that BIN-CONSENSUS[k] not yet invoked do
9: bin-decisions[k]← BIN-CONSENSUS[k].AABC-prop(0)

10: wait until for all k, bin-decisions[k] ̸= ⊥
11: j ← min{k : bin-decisions[k] = 1})
12: wait until ∃v : (EST, ⟨v, j⟩) ∈ msgs

13: decide v

D. Actively accountable Binary Consensus

We show in Algorithm 2 the Basilic actively accountable
binary consensus (AABC) protocol with initial threshold h0 ∈
(n/2, n], along with some additional components and func-
tions in Algorithm 3. First, note that all delivered messages are
correctly signed (as wrongly signed messages are discarded)
and stored in sig msgs , along with all sent messages (as we
detail in Rule 3 of Alg. 2).

The Basilic’s AABC protocol is divided in two phases, after
which a decision is taken. A key difference with Polygraph
is that when a timer for one of the two phases reaches its
timeout, if a process cannot terminate that phase yet, then it
broadcasts its set of signed messages for that phase and resets
the timer, as detailed in Rule 4. This allows Basilic to prevent
deceitful processes from breaking termination by trying to
cause a disagreement and never succeeding. For example, for
n = 4 and h = ⌈2n/3⌉ = 3, if q = 1 and d = 1, the
deceitful process can prevent the 2 non-faulty processes from
terminating by constantly sending them conflicting messages,
even if none of these non-faulty processes will reach the
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Algorithm 2 Basilic’s AABC with initial threshold h0 for pi.
14: AABC-proph0 (vi):
15: est ← vi
16: r ← 0
17: timeout ← 0
18: cert [0]← ∅
19: bin vals ← ∅
20: repeat:
21: r ← r + 1
22: timeout ← ∆ � set timer
23: coord← ((r − 1)modn) + 1 � rotate coordinator

24: ▶ Phase 1:
25: timer ← start-timer(timeout) � start timer
26: abv-broadcast(EST[r], est , cert [r − 1], i, bin vals)
27: if (i = coord) then
28: wait until bin vals[r] = {w}
29: broadcast(COORD[r], w)

30: wait until bin vals[r] ̸= ∅ ∧ timer expired
31: ▶ Phase 2:
32: timer ← timeout � reset timer
33: if ((COORD[r], w) ∈ sig msgs ∧ w ∈ bin vals[r]) then
34: aux ← {w} � prioritize coordinator’s value

35: else aux ← bin vals[r] � else use any received value

36: broadcast(ECHO[r], aux) � broadcast signed ECHO message
37: wait until (vals = comp-vals(sig msgs, bin vals, aux)) ̸= ∅ ∧

timer expired
38: ▶ Decision phase:
39: if (|vals| = 1) then est ← vals[0] � if only one, adopt as estimate
40: if (est = (rmod 2) ∧ pi not decided before) then
41: decide(est); returnest � if parity matches, decide

42: else est ← (rmod 2) � otherwise, the estimate is the round’s parity bit

43: cert [r]← compute-cert(vals, est , r, bin vals, sig msgs)

44: Upon receiving a signed message s msg:
45: pofs ← check-conflicts({s msg}, sig msgs) � returns ∅ or PoFs
46: update-committee(pofs) � remove fraudsters

47: Upon receiving a certificate cert msg:
48: pofs ← check-conflicts(cert msg, sig msgs) � returns ∅ or PoFs
49: update-committee(pofs) � remove fraudsters

50: Upon receiving a list of PoFs pofs msg:
51: if (verify-pofs(pofs msg)) then � if proofs are valid then
52: update-committee(pofs msg) � remove fraudsters from committee

53: Rules:
1) Every message that is not properly signed by the sender is discarded.
2) Every message that is sent by abv-broadcast without a valid certificate
after Round 1, except for messages with value 1 in Round 2, are discarded.
3) Every signed message received is stored in sig msgs , including
messages within certificates.
4) Every time the timer reaches the timeout for a phase, and if that phase
cannot be terminated, processes broadcast their current delivered signed
messages for that phase (and all messages received for future phases and
rounds) and reset the timer for that phase. These messages are added to
the local set of messages and cross-checked for PoFs on arrival.

threshold for the disagreeing values. Thus, once the timer is
reached, processes exchange their known set messages and can
update the committee removing processes that sent conflicting
messages. It is important that processes wait for this timer
before taking a decision for the phase, or before exchanging
signed messages, since only waiting for that timer guarantees
that all sent messages will be received before the timer reaches
its timeout, after GST. Each process maintains an estimate
(line 15), initially given as input, and then proceeds in rounds
executing the following phases:

1) In the first phase, each process broadcasts its estimate

(given as input) via an accountable binary value reliable
broadcast (ABV-broadcast) (line 26), which we present in Al-
gorithm 3, lines 67–85 and discuss in Section IV-D. Decision
and abv-broadcast messages are discarded unless they come
with a certificate justifying them.

The protocol also uses a rotating coordinator (line 23) per
round which carries a special COORD message (lines 27-29).
All processes wait until they deliver at least one message from
the call to abv-broadcast and until the timer, initially set to
∆, expires (line 30). (Note that the bound on the message
delays remains unknown due to the unknown GST.) If a
process delivers a message from the coordinator (line 33),
then it broadcasts an ECHO message with the coordinator’s
value and signature in the second phase (line 36). Otherwise,
it echoes all the values delivered in phase 1 as part of the call
to abv-broadcast (line 35).

2) In the second phase, processes wait till they receive
h(dr) ECHO messages, as shown in the call to comp-vals
(line 37), which returns the set of values that contain these
h(dr) signed ECHO messages. Function comp-vals is depicted
in Algorithm 3 (lines 86–95). Processes then try to come to
a decision in lines 39-43. As it was the case for phase 1,
when the timer expires in phase 2, all processes broadcast
their current set of ECHO messages. Then, they update their
committee if they detect deceitful processes through PoFs
(lines 44-52) and recheck if they reach the updated h(dr)
threshold, after which they reset the timer.

3) During the decision phase, if there is just one value
returned by comp-vals and that value’s parity matches with the
round’s parity, process pi decides it (line 41) and broadcasts
the associated certificate in the call to compute-cert. If the
parity does not match then process pi simply adopts the value
as the estimate for the next round (line 39). If instead there is
more than one value returned by comp-vals then pi adopts the
round’s parity as next round’s estimate (line 42). Adopting the
parity as next round’s estimate helps with convergence in the
next round, in this case where processes are hesitating between
two values. The call to compute-cert (depicted at lines 96–105
of Algorithm 3) gathers the signatures justifying the current
estimate and broadcasts the certificate if the estimate was
decided in this round.

a) Detecting and removing deceitful processes: Upon
receiving a signed message, non-faulty processes check if the
received message conflicts with some previously delivered
message in storage in sig msgs by calling check-conflicts
(line 45). This function returns pofs = ∅ if there are
no conflicting messages, or a list pofs of PoFs otherwise.
Then, at line 46, non-faulty processes call update-committee
(depicted at lines 54–66 of Algorithm 3) to remove the
|pofs| detected deceitful processes at runtime. In the call to
update-committee, process pi removes all processes that are
proven deceitful via new PoFs, and updates the committee
N , its size n, and the voting threshold h(dr). After that, pi
rechecks all delivered messages in that phase in case it can now
terminate the phase with the new threshold h(dr) (and after
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Algorithm 3 Helper Components.
54: update-committee(new pofs): � function that removes fraudsters
55: if (new pofs ̸= ∅ ∧ new pofs ̸⊆ local pofs) then
56: new pofs ← new pofs\local pofs � consider only new PoFs
57: local pofs ← local pofs ∪ new pofs � store new PoFs
58: broadcast(POF, new pofs) � broadcast new PoFs
59: new deceitful ← new pofs.get processes() � extract deceitful
60: new deceitful ← new deceitful\local deceitful
61: local deceitful ← local deceitful ∪ new deceitful
62: N ← N\{new deceitful}; n← |N | � remove new deceitful
63: dr ← |local deceitful | � update number of detected deceitful
64: h(dr)← recalculate-threshold(N, dr)
65: recheck-certs-termination() � check termination of current phase
66: reset-current-timer() � reset timer of current phase

67: abv-broadcast(MSG, val , cert , i, bin vals):
68: broadcast(BVECHO, ⟨val , cert , i⟩) � broadcast message
69: if ( r = 3 or (r = 2 and val = 1)) then
70: discard all messages received without a valid certificate
71: Upon receipt of (BVECHO, ⟨v, ·, j⟩)
72: if ((BVECHO, ⟨v, ·, ·⟩) received from ⌊n−q−t

2
⌋ − dr + 1

73: distinct processes and (BVECHO, ⟨v, ·, i⟩) not yet broadcast) then
74: Let cert be any valid certificate cert received in these messages
75: broadcast(BVECHO, ⟨v, cert , i⟩)
76: if ((BVECHO, ⟨v, ·, ·⟩) received from h(dr) distinct processes and
77: (BVREADY, ⟨v, ·, ·⟩) not yet broadcast) then
78: Let cert be any valid certificate cert received in these messages
79: Construct bv cert a certificate with h(dr) signed BVECHO
80: bin vals ← bin vals.add(BVREADY, ⟨v, cert , j, bv cert⟩)
81: broadcast(BVREADY, ⟨v, cert , j, bv cert⟩)
82: if ((BVREADY, ⟨v, cert, j, bv cert⟩) received from 1 process) then
83: bin vals ← bin vals.add(BVREADY, ⟨v, cert , j, bv cert⟩)
84: if ((BVREADY, ⟨v, cert, j, bv cert⟩) not yet broadcast) then
85: broadcast(BVREADY, ⟨val , cert , i, bv cert⟩)

86: comp-vals(msgs, b set , aux set): � check for termination of phase 2

87: If ∃S ⊆ msgs where the following conditions hold:
88: (i) |S| contains h(dr) distinct ECHO[r] messages
89: (ii) aux set is equal to the set of values in S � h(dr) with same est
90: then return(aux set)
91: Else If ∃S ⊆ msgs where the following conditions hold:
92: (i) |S| contains h(dr) distinct ECHO[r] messages
93: (ii) Every value in S is in b set � h(dr) messages with different est
94: then return(V = the set of values in S)
95: Else return(∅) � else not ready to terminate

96: compute-cert(vals, est , r, bin vals,msgs): � compute and send cert
97: if (est = (rmod 2)) then
98: if (r > 1) then
99: to return ← (cert : (EST[r], ⟨v, cert , ·⟩) ∈ bin vals)

100: else to return ← (∅)
101: else to return ← (h(dr) signed msgs containing only est)

102: if (vals = {(rmod 2)}∧ no previous decision by pi) then
103: cert[r]← h(dr) signed messages containing only rmod 2
104: broadcast(est , r, i, cert [r]) � broadcast decision

105: return(to return)

filtering out messages delivered by the dr removed deceitful
processes) by calling recheck-certs-termination() in line 65 of
Algorithm 3. Finally, it resets the timer for the current phase
by calling reset-current-timer() in line 66 of Algorithm 3.

b) Termination and agreement of Basilic’s AABC: We
show the detailed proofs of agreement and termination in
Lemmas A.8 and A.11. The idea is that removing deceitful
processes has no effect on agreement, while it facilitates
termination, since the threshold h(dr) = h0 − dr decreases

the initial threshold h0 with the number of removed deceitful
processes. Also, since all non-faulty processes broadcast their
delivered PoFs and thanks to the property of accountability,
eventually all non-faulty processes agree on the same set of
removed deceitful processes.

Then, if a process pi terminates broadcasting certificate
certi while another process pj already removed newly de-
tected deceitful processes new dr present in certi, then
|certi|−new dr ≥ h(dr+new dr) by construction. As such,
either a non-faulty process terminates and then all subsequent
non-faulty processes can terminate, even after removing more
deceitful processes, or they all eventually reach a scenario
where all deceitful processes are detected dr = d and removed,
after which they all terminate.

Note that removing processes at runtime can result in
rounds whose coordinator is already removed. For the sake of
correctness, we do not change the coordinator for that round
even if it has already been removed. This guarantees that all
non-faulty processes eventually reach a round in which they all
agree on the same coordinator, which is a non-faulty process.
If this round is the first after GST and after all deceitful
processes have been removed from the committee, then non-
faulty processes will reach agreement.

c) Accountable Binary Value Broadcast: The ABV-
broadcast that we present in Algorithm 3 is inspired from the
E protocol presented by Malkhi et al. [26] and the binary
broadcast presented in Polygraph [10]. If non-faulty processes
add a value v to bin vals (lines 80 and 83) as a result of the
ABV-broadcast, we say that they ABV-deliver v. Processes
exchange BVECHO and BVREADY messages during ABV-
broadcast. BVECHO messages are signed and must come with a
valid certificate cert i justifying the value, as shown in lines 68
and 75. BVREADY messages carry the same information
as BVECHO messages plus an additional certificate bv cert
containing h(dr) BVECHO messages justifying the BVREADY
message, constructed in line 79. This way, as soon as a process
receives a BVREADY message with a value (line 82), it already
obtains h(dr) BVECHO messages too, meaning it can ABV-
deliver that value adding it to bin vals (lines 80 and 83). Non-
faulty processes broadcast signed BVECHO messages for their
estimate (line 68) and for all values for which they receive at
least ⌊n−q−t

2 ⌋−dr+1 signed BVECHO messages from distinct
processes.

We prove in the technical report [27] that waiting for this
many BVECHO messages for a value v guarantees that all
non-faulty processes ABV-deliver v. In particular, we show in
the technical report [27] that our ABV-broadcast satisfies the
following properties: (i) ABV-Termination, in that every non-
faulty process eventually adds at least one value to bin vals;
(ii) ABV-Uniformity, in that non-faulty processes eventually
add the same values to bin vals; (iii) ABV-Obligation, in
that if ⌊n−q−t

2 ⌋− dr +1 non-faulty processes ABV-broadcast
a value v, then all non-faulty processes ABV-deliver v; (iv)
ABV-Justification, in that if a non-faulty process ABV-delivers
a value v then v was ABV-broadcast by a non-faulty process;
and (v) ABV-Accountability, in that every ABV-delivered
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value contains a valid certificate from the previous round.
We show in Lemma IV.1 that Basilic’s AABC satisfies

AABC-active accountability, but we defer the rest of the proofs
of actively accountable binary consensus to the Appendix A.

Lemma IV.1 (AABC-Active accountability). Basilic’s AABC
satisfies active accountability.

Proof. We show that if a faulty process pi sends two con-
flicting messages to two subsets A, B ⊆ N , each containing
at least one non-faulty process, then eventually all non-faulty
processes terminate, or instead they receive a PoF for pi and
remove it from the committee, after which they all terminate.

First, we observe that no process gets stuck in some
round. Process pi cannot get stuck in phase 1 since, by
ABV-Termination, every non-faulty process eventually ABV-
delivers a value.

We show now that a process also does not get stuck waiting
on phase 2. First, notice that every value that is included in
an ECHO message from a non-faulty process is eventually
delivered to bin vals . Then, note that all non-faulty processes
eventually deliver h(dr) ECHO messages, or instead, when
the timer expires, processes will exchange their delivered
ECHO messages and be able to construct PoFs and remove
dr deceitful processes that are preventing termination. In the
latter case, after removing all deceitful processes from the
committee and updating the threshold, processes will now
deliver enough ECHO messages to terminate phase 2, since
h(dr) < n− q − t− d for dr = d.

Then, we show that all non-faulty processes always hold a
valid certificate to broadcast a proper message, which could
otherwise prevent termination of a phase during the ABV-
broadcast in phase 1. For an estimate whose parity is the same
as that of the finished round r− 1 (line 101), process pi must
have received a valid certificate for the round (or it would
not have terminated such round). If the parity matches in this
round r, then a non-faulty process can always construct a valid
certificate from the delivered estimates in round r−1 (line 99).

As a result, all processes always progress infinitely in every
round. Consider the first round r after GST where (i) the
coordinator is non-faulty and (ii) all deceitful processes have
been detected and removed by all non-faulty processes. In this
case, every non-faulty process will prioritize the coordinator’s
value, adopting it as their ECHO message adding only that
value. Hence, every non-faulty process adopts the same value,
and decides either in round r or round r+1 (by Lemma A.7).

E. Actively accountable Reliable Broadcast

Algorithm 4 shows Basilic’s actively accountable reliable
broadcast (AARB). The protocol is analogous to the secure
broadcast presented in previous work [26], with the difference
that we also introduce a timer that non-faulty processes use to
periodically broadcast their set of delivered ECHO messages, in
order to detect deceitful processes. We refer to the process that
starts the AARB protocol as the source. The protocol starts
when the source broadcasts an INIT message with its proposed

value v (line 107). Upon delivering that message, all non-
faulty processes also broadcast a signed ECHO message with
v (line 109). Then, once a process pi delivers h(dr) distinct
signed ECHO messages for the same value v, pi first broadcasts
a READY message (line 112) with a certificate containing the
h(dr) ECHO messages justifying v (constructed in line 111),
and then AARB-delivers the value (line 113). The same occurs
if instead a process delivers just one valid READY message
containing a valid certificate justifying it in lines 114-118.

As it occurs with Basilic’s AABC protocol presented in
Algorithms 2 and 3, upon cross-checking newly received
signed messages with previously delivered ones (lines 120
and 123), non-faulty processes can detect deceitful faults and
update the committee (lines 121 and 124), removing them at
runtime, by calling update-committee. This can also occur
when receiving a list of PoFs (line 125). Note that this is
the same call to the same function as in the AABC protocol
shown in Algorithm 2, because non-faulty processes update the
committee across the entire Basilic protocol, and not just for
that particular instance of AARB or AABC where the deceitful
process was detected. We show in Appendix A that Basilic’s
AARB protocol satisfies the following properties of actively
accountable reliable broadcast:

• AARB-Unicity. Non-faulty processes AARB-deliver at
most one value.

• AARB-Validity. Non-faulty processes AARB-deliver a
value if it was previously AARB-broadcast by the source.

• AARB-Send. If the source is non-faulty and AARB-
broadcasts v, then non-faulty processes AARB-deliver v.

• AARB-Receive. If a non-faulty process AARB-delivers
v, then all non-faulty processes AARB-deliver v.

• AARB-Accountability. If two non-faulty processes
AARB-deliver distinct values, then all non-faulty processes
receive PoFs of the deceitful behavior of at least 2h(dr)− n
processes including the source.

• AARB-Active accountability. Deceitful behavior does
not prevent liveness.

F. Basilic’s fault tolerance in the BDB model

We show in Figure 4 the combinations of Byzantine, deceit-
ful and benign processes that Basilic tolerates, depending on
the initial threshold h0. The solid lines represent the variation
in tolerance to benign and deceitful processes as the number
of Byzantine processes varies for a particular threshold. For
example, for h0 = 2n

3 , if t = 0 then d < n
3 and q < n

3 . As t
increases, for example to t = ⌈n

6 ⌉−1, then d < n
6 and q < n

6 .

We compare our Basilic’s fault tolerance with that of previ-
ous works in Figure 5. In particular, we represent multiple val-
ues of the initial threshold h0 ∈ {5n/9, 2n/3, 3n/4, 5n/6}
for Basilic. First, we show that classical Byzantine fault-
tolerant (BFT) protocols tolerate only the case t < n/3 with a
blue triangle dot ( ) in the figure. This is the case of most
partially synchronous BFT consensus protocols [19], [10],
[20], [21], [18]. Notice that Zero-loss Blockchain [18] (ZLB)
also tolerates instead d < 5n/9 and 3q + d < n faults, where
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Algorithm 4 Basilic’s AARB with initial threshold h0.
106: AARB-broadcasth0 (vi): � executed by the source
107: broadcast(INIT, vi) � broadcast to all
108: Upon receiving (INIT, vi) from pj and not having sent ECHO:
109: boadcast(ECHO, v, j) � echo value to all

110: Upon receiving h(dr) (ECHO, v, j) and not having sent a READY:
111: Construct certi containing at least h(dr) signed msgs (ECHO, v, j)
112: broadcast(READY, v, certi, j) � broadcast certificate
113: AARB-deliver(v, j) � AARB-deliver value

114: Upon receiving (READY, v, cert, j), and not having sent a READY:
115: if (verify(cert) = False) then continue
116: Set certi to be one of the valid certs received (READY, v, cert, j)
117: broadcast(READY, v, certi, j) � broadcast certificate
118: AARB-deliver(v, j) � AARB-deliver value

119: Upon receiving a signed message s msg:
120: pofs ← check-conflicts({s msg}, sig msgs) � returns ∅ or PoFs
121: update-committee(pofs) � remove fraudsters

122: Upon receiving a certificate cert msg:
123: pofs ← check-conflicts(cert msg, sig msgs)� returns ∅ or PoFs
124: update-committee(pofs) � remove fraudsters

125: Upon receiving a list of PoFs pofs msg:
126: if (verify-pofs(pofs msg)) then � if proofs are valid then
127: update-committee(pofs msg) � exclude from committee

128: Rules:
1) Processes broadcast their current delivered signed INIT and ECHO
messages once a timer timer, initially set to ∆, reaches 0, and reset
the timer to ∆.
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Fig. 4: Combinations of benign, deceitful and Byzantine
processes that Basilic tolerates, for an initial threshold h0.

d and q is the number of deceitful and benign faults, but that
ZLB does not solve consensus for these bounds, and instead
it recovers from disagreements. Second, we represent Flexible
BFT [9] in their greatest fault tolerance setting in partial
synchrony. As we can see, such setting overlaps with Basilic’s
initial threshold of h0 = 2n/3. However, the difference lies
in that while Basilic tolerates all the cases in the solid line
h0 = 2n/3, Flexible BFT only tolerates a particular dot of
the line, set at the discretion of each client. That is, Flexible
BFT’s clients must decide, for example, whether they tolerate
either ⌈2n/3⌉ − 1 total faults, being none of them Byzantine,
or instead tolerate ⌈n/3⌉ − 1 Byzantine faults, not tolerating
any additional fault. Basilic can however tolerate any range

satisfying both h0 > n+d+t
2 for safety and h0 ≤ n − q − t

for liveness, which allows our clients and servers to tolerate
significantly more combinations of faults for one particular
threshold h0 ∈ (n/2, n]. For this reason, we represent the
line of Flexible BFT as a dashed line, whereas Basilic’s
lines are solid. For each initial voting threshold h0, the
maximum number of Byzantine processes Basilic tolerates
is t < min(2h0 − n, 1 − h0), which is obtained by setting
q = d = 0 and resolving both bounds for safety and liveness.
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Fig. 5: Fraction of faulty processes, compared with fraction
of Byzantine processes, for a particular initial threshold h0 of
the general Basilic protocol, compared with other works.

G. Basilic’s correctness

We show in Lemma IV.2 that Basilic satisfies active ac-
countability. We defer to Appendix A the rest of the proofs
that show that the Basilic class of protocols solves the ac-
tively accountable consensus problem for the resilient-optimal
bounds of the impossibility results shown in Section III.

Lemma IV.2 (Active accountability). Basilic satisfies active
accountability.

Proof. We show that if a faulty process pi sends two con-
flicting messages to two subsets A, B ⊆ N , each containing
at least one non-faulty process, then eventually all non-faulty
processes terminate, or instead they receive a PoF for pi and
remove it from the committee, after which they all terminate.

First, analogously to Lemma IV.1, w.l.o.g. we treat only
the case dr = 0, since all conflicting messages that can be
sent in Basilic are messages of Basilic’s AARB or AABC,
that already satisfy active accountability (see Lemmas IV.1
and A.6). This means that if dr > 0, then non-faulty processes
eventually update the committee and threshold, after which
they recheck if they hold enough signed messages to terminate.
Next, we prove termination. By the AARB-Send property
(Lemma A.3), all non-faulty processes will eventually deliver
the proposals from non-faulty processes. Eventually all non-
faulty processes propose 1 in all binary consensus whose index
corresponds to a non-faulty proposer, and by AABC-Validity

11



decide 1. Since eventually h(dr) ≤ n − q − d − t if enough
dr prevent termination and are thus detected and removed, we
can conclude that at least h(dr) binary consensus instances
will terminate deciding 1.

Once non-faulty processes decide 1 on at least h(dr)
proposals, they propose 0 to the rest (line 9), and by AABC-
Termination (Lemma A.11) all remaining binary consensus
instances will terminate. Next, we show that for every binary
consensus upon which we decided 1, at least one non-faulty
process AARB-delivered its associated proposal. For the sake
of contradiction, if no non-faulty process had AARB-delivered
its associated proposal, then all non-faulty processes would
have proposed 0, meaning by AABC-Validity that the final
decision of the binary consensus would have been 0, not 1.
As a result, by the AARB-Receive property (Lemma A.4),
eventually all non-faulty processes will deliver the proposal
for all binary consensus that they decided 1 upon. Finally,
processes decide the value proposed by the proposer with the
lower index.

We summarize all proofs in the result shown in Theo-
rem IV.3 to show that the Basilic protocol with initial threshold
h0 solves consensus if d+ t < 2h0 − n and q + t ≤ n− h0.
This result translates in the Basilic class of protocols solving
consensus if n > 3t+ d+ 2q, as we show in Corollary A.19.

Theorem IV.3 (Consensus per threshold). The Basilic proto-
col with initial threshold h0 solves the actively accountable
consensus problem if d+ t < 2h0 − n and q + t ≤ n− h0.

Corollary IV.4 (Consensus). The Basilic class of protocols
solves actively accountable consensus if n > 3t+ d+ 2q.

V. BASILIC’S COMPLEXITY

In this section, we show the complexities of Basilic. We
execute one instance of Basilic’s AARB reliable broadcast and
of Basilic’s AABC binary consensus per process. We prove
these complexities in the appendix B.

A. Naive Basilic

We summarize the complexities of the three protocols
without optimizations in Table I.

Complexity AARB AABC Basilic

Time O(1) O(n) O(n)
Message O(n2) O(n3) O(n4)
Bit O(λn3) O(λn4) O(λn5)

TABLE I: Time, message and bit complexities of Basilic
AARB, AABC and the general Basilic protocol, after GST,
and without optimizations.

B. Optimized Basilic

The complexities of Basilic after GST share the same
asymptotic complexity of other recent works that are not
actively accountable [10], [28], some of them not being
accountable either [29], as we show in Table II. This is because

the adversary cannot prevent termination of any phase. Thus,
after GST, all processes can continue to the next phase or
terminate the protocol by the time the timer for that phase
expires, resulting in an execution equivalent to that of Poly-
graph (apart from one additional message broadcast in ABV-
broadcast). In this table, naive Basilic represents the protocol
we show in Algorithm 1 and Table I, whereas the following
row, multi-valued Basilic, shows the analogous optimizations
shown in Polygraph and applicable to the Basilic protocol
as well [10]. The rows containing ’superblock’ refer to the
result of applying the additional superblock optimization [19],
[30], which consists on deciding on the union of all h(dr)
(O(n)) proposals whose associated AABC instance output
1. This optimization is only available to protocols without
a leader in which all processes propose a value [19], [10]
(i.e. DBFT, Polygraph and Basilic in Table II). After these
optimizations, the resulting normalized bit complexity (i.e. per
decision) of Basilic is as low as those of other works that are
only accountable and not actively accountable, such as BFT
Forensics [28] or Polygraph [10]. Furthermore, since this is
the lowest complexity to obtain accountability [10], this means
that this is also optimal in the bit complexity. Note that other
optimizations present in other works, such as the possibility to
obtain an amortized complexity of O(λn2) in BFT Forensics
per decision after n iterations of the protocol [31], is also pos-
sible in Basilic’s consensus protocol. An additional advantage
of Basilic, as well as of other leaderless protocols, compared
to leader-based works [28], [31], is that the distribution of
proposals scatters the bits throughout multiple channels of the
network, instead of bloating channels that have the leader as
sender or recipient, as previously noted [30].

Finally, not only are the rest of the protocols in Table II
not actively accountable, but also this means that they only
solve consensus tolerating at most t < n/3 faults in the BDB
model, whereas Basilic with initial threshold h0 = 2n/3 solves
consensus where d + t < n/3 and q + t ≤ n/3 faults, hence
tolerating the strongest adversary among these proposals.

TABLE II: Complexities of Basilic compared to other works.

Algorithm Msgs Bits Acc. Actacc.

PBFT [29] O(n3) O(λn4) ✗ ✗
Tendermint [32] O(n3) O(λn3) ✗ ✗
HotStuff [31] O(n2) O(λn2) ✗ ✗
DBFT superblock [19] O(n3) O(n3) ✗ ✗

BFT Forensics [28] O(n2) O(λn3) ✓ ✗
Polygraph’s binary [10] O(n3) O(λn4) ✓ ✗
Naive Polygraph [10] O(n4) O(λn5) ✓ ✗
Polygraph Multi-v. [10] O(n4) O(λn4) ✓ ✗
Polygraph superblock [10] O(n3) O(λn3) ✓ ✗

Basilic’s AABC O(n3) O(λn4) ✓ ✓
Naive Basilic O(n4) O(λn5) ✓ ✓
Multi-valued Basilic O(n4) O(λn4) ✓ ✓
Basilic superblock O(n3) O(λn3) ✓ ✓
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VI. RELATED WORK

Accountability has been proposed for distributed systems
by Haeberlen et al. [33] in PeerReview and particularly for
the problem of consensus by Civit et al. [34] in Polygraph.
We extended Polygraph in ZLB [18] to tolerate up to 5n/9
deceitful faults for eventual consensus, but ZLB tolerates only
t < n/3 for consensus. This work leverages accountability to
replace deceitful processes by new processes. Unfortunately,
ZLB requires deceitful processes to eventually stop trying to
cause a disagreement.

Malkhi et al. [9] offers Flexible BFT, a failure model and
theoretical results to tolerate ⌈2n/3⌉ − 1 alive-but-corrupt
(abc) processes. An abc process behaves maliciously only if it
knows it can violate safety, and behaves correctly otherwise.
This is an even stronger assumption than ZLB’s deceitful
faults eventually behaving correctly. Additionally, their fault
tolerance requires a commitment from clients to not tolerate
a single Byzantine fault in order to tolerate ⌈2n/3⌉ − 1 abc
faults, or to instead tolerate no abc faults if clients decide to
tolerate t = ⌈n/3⌉ − 1 Byzantine faults.

Neu et al.’s ebb-and-flow system [35] is available in partial
synchrony for t < n/3 and satisfies finality in synchrony for
t < n/2. They also motivate the need for a model like BDB
in their recent availability-accountability dilemma [36]. Sheng
et al. [28] characterize the forensic support of a variety of
blockchains. Unfortunately, none of these works tolerate q =
⌈n
3 ⌉−1 benign and even d = 1 deceitful faults, or d = ⌈n

3 ⌉−1
and even q = 1 benign fault, a direct consequence of them not
satisfying active accountability.

Upright [2] tolerates n = 2u+r+1 faults, where u and r are
the numbers of commission and omission faults, respectively.
Upright tolerates n/3 commission faults or instead n/2 omis-
sion faults, falling short of Basilic’s q + d < 2n/3 deceitful
and benign faults or t < n/3 Byzantine faults tolerated.
Upright does also not tolerate more faults for commission than
the lower bound for BFT consensus. Anceaume et al. [37]
tolerate t < n/2 Byzantine faults for the problem of eventual
consensus, at the cost of not tolerating t = 1 Byzantine fault
for deterministic consensus. Our Basilic class also tolerates
this case if h0 is set to h0 = ⌊n

2 ⌋ + 1, this is part of the
Basilic class. We refer to the technical report [27] for a proof
of correctness of Basilic for eventual consensus.

Basilic is, to the best of our knowledge, the first protocol tol-
erating n > 3t+d+2q in the BDB model, thanks to the prop-
erty of active accountability. However, previous works already
try to discourage misbehaviors by threatening of slashing a
deposit or removing a faulty process, or both. Ranchal-Pedrosa
and Gramoli [38] propose the TRAP protocol, an accountable
consensus protocol tolerating up to k rational players and
t Byzantine players causing a disagreement by threatening
deviant rationals, for n > max( 32k + 3t, 2(k + t)). Freitas de
Souza et al. [39] provide an asynchronous accountable lattice
agreement protocol. Shamis et al. [40] store signed messages
in a dedicated ledger so as to punish processes in case of
misbheavior. Buterin and Griffith propose the Casper [41]

algorithm that incurs a penalty in case of double votes but does
not ensure termination when t < n/3. Although Buchman et
al. [42] aimed at slashing processes without accountability, the
authors have recently incorporated accountability in [43]. Li
et al. propose SUNDR [44] that requires cross-communication
between non-faulty clients to detect failures. Lev-Ari et al.
propose FairLedger [45] that requires synchrony to detect
faulty processes.

VII. CONCLUSION

In this paper, we showed that it is impossible to solve
consensus in the BDB model against an adversary controlling
n > 3t + d + 2q, where t, d, and q are the number of
Byzantine, deceitful and benign processes, respectively. We
then present our Basilic class of protocols, the first class of
resilient-optimal protocols for the consensus problem in the
BDB model. Basilic solves actively accountable consensus
tolerating any combination of t, d and q Byzantine, deceitful
and benign processes, respectively, satisfying h0 > n+d+t

2 for
safety and h0 ≤ n − q − t for liveness, for an initial voting
threshold h0. We prove this result to be resilient-optimal. We
showed that Basilic’s bit complexity is comparable to previous
accountable consensus protocols that tolerate less faults.
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APPENDIX

A. Basilic Proofs

In this section, we prove the rest of the properties of Basilic,
including its AABC and AARB protocols, but we refer to the
technical report [27] for the proofs of ABV-broadcast.

1) Actively accountable reliable broadcast: In this section,
we prove the properties of Basilic’s AARB. In these proofs.
We prove AARB-unicity in Lemma A.1, AARB-validity in
Lemma A.2, AARB-send in Lemma A.3, AARB-Receive in
Lemma A.4, AARB-accountability in Lemma A.5 and AARB-
active accountability in Lemma A.6.

Lemma A.1 (AARB-Unicity). Non-faulty processes AARB-
deliver at most one value.

Proof. By construction all non-faulty processes AARB-deliver
at most one value.

Lemma A.2 (AARB-Validity). If non-faulty process pi AARB-
delivers v, then v was AARB-broadcast by ps.

Proof. Process pi AARB-delivers v if it receives h(dr)
messages ⟨ECHO, v, ·, ·⟩. Non-faulty processes only send an
ECHO message for v if they receive ⟨INIT, v⟩. Thus, since
d + t < h(dr), ps AARB-broadcast v to at least one non-
faulty process.

Lemma A.3 (AARB-Send). If ps is non-faulty and AARB-
broadcasts v, then all non-faulty processes eventually AARB-
deliver v.

Proof. Deceitful processes either broadcast v or multicast v′

to a partition A and v to a partition B. In the first case (in
which all deceitful behave like non-faulty processes), since the
number of benign and Byzantine processes is q+t < n−h(dr)
it follows that at least h(dr) non-faulty processes will echo
v, being that enough for all processes to eventually AARB-
deliver it.

Consider instead some dr ≤ d+t deceitful processes behave
deceitful echoing different messages to two different partitions
each containing at least one non-faulty process. Then when the
timer expires and non-faulty processes exchange their deliv-
ered ECHO messages, all processes will update their committee
removing the dr detected deceitful. Thus, since processes also
recalculate the thresholds and recheck them after updating the
committee, this case becomes the aforementioned case where
no deceitful process behaves deceitful. The same occurs if one
of the partitions AARB-delivers a value while the other does
not and reaches the timer (Lemma A.4).

Lemma A.4 (AARB-Receive). If a non-faulty process AARB-
delivers v from ps, then all non-faulty processes eventually
AARB-deliver v from ps.

Proof. First, since d + t < 2h(dr) − n it follows that de-
ceitful and Byzantine processes can not cause two non-faulty
processes to AARB-deliver different values (analogously to
Lemma III.4). Then, before a process pi AARB-delivers
a value v, it broadcasts a READY message containing the
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certificate that justifies delivering v. Thus, when pj receives
that READY message, it also AARB-delivers v.

Lemma A.5 (AARB-Accountability). If two non-faulty pro-
cesses pi and pj AARB-deliver v and v′, respectively, such
that v ̸= v′, then all non-faulty processes eventually receive
PoFs of the deceitful behavior of at least 2h(dr)−n processes
(including ps).

Proof. Non-faulty processes broadcast the certificates of the
values they AARB-deliver, containing h(dr) signed ECHO
messages from distinct processes. Hence, analogous to
Lemma III.4, at least 2h(dr) − n processes must have sent
conflicting ECHO messages, and they will be caught upon
cross-checking the conflicting certificates. Also, some non-
faulty processes must have received conflicting INIT messages
from ps in order to reach the threshold h(dr) to AARB-deliver
conflicting messages, meaning that ps is also faulty.

Lemma A.6 (AARB-Active accountability). The Basilic’s
AARB protocol satisfies active accountability.

Proof. We prove here that if a number of faulty processes
send conflicting messages to two subsets A, B ⊆ N , each
containing at least one non-faulty process, then (i) eventually
all non-faulty processes terminate without removing the faulty
processes, or (ii) eventually all non-faulty processes receive
a PoF for these faulty processes and remove them from
the committee, after which, if the source is non-faulty, they
terminate.

W.l.o.g. we consider just pA ∈ A and pB ∈ B. If they both
terminate despite the conflicting messages, we are finished.
Suppose instead a situation in which only one of them, for
example pA, terminated AARB-delivering a value v. Then
pA broadcast a READY message with enough h(dr) ECHO
messages in the certificate cert for pB to also AARB-deliver v
and terminate. Let us consider w.l.o.g. only one faulty process
pi. If a signature from pi in cert conflicts with a local signature
from pi stored by pB , then pB constructs and broadcasts a
PoF for pi, and then updates the committee and the threshold.
Then, it rechecks the certificate filtering out the signature by
pi, which would cause pB to also AARB-deliver v (since the
threshold also decreased accordingly).

Suppose neither pA nor pB has terminated yet. Then, when
the timer is reached and they both broadcast their delivered
INIT and ECHO, they will both be able to construct a PoF for
pi, after which they update the committee and the threshold.
Then, if the source was non-faulty, non-faulty processes can
terminate analogously to the previous case.

2) Basilic binary consensus: We focus in this section on the
properties of Basilic’s binary consensus, AABC. We first prove
that if all non-faulty processes start a round r with the same
estimate v, then all non-faulty processes decide v in round r
or r + 1. Then, we prove AABC-agreement in Lemma A.8,
AABC-strong validity in Lemma A.9 and AABC-validity as
Corollary A.10 of Lemma A.9, AABC-active accountability in

Lemma IV.1, AABC-termination in Lemma A.11, and AABC-
accountability in Lemma A.12. This thus makes AABC the
first actively accountable binary consensus protocol, as we
show in Theorem A.13.

Lemma A.7. Assume that each non-faulty process begins
round r with the estimate v. Then every non-faulty process
decides v either at the end of round r or round r + 1.

Proof. By ABV-Obligation, v is eventually delivered to every
non-faulty process. By ABV-Justification, v is the only value
delivered to each non-faulty process. As such, v is the only
value in bin vals and the only value echoed by non-faulty
processes, since deceitful processes that prevent termination
are removed from the committee when the timer expires (and
the threshold is updated). This means that v will be the only
value in vals . If v = r mod 2 then all non-faulty processes
decide v. Otherwise, by the same argument every non-faulty
process decides v in round r + 1.

Lemma A.8 (AABC-Agreement). If d+ t ≤ 2h− n, no two
non-faulty processes decide different values.

Proof. W.l.o.g. assume that the non-faulty process pi decides v
in round r. This means that pi received h(dr) ECHO messages
in round r, and that vals = {v}. Consider the ECHO messages
received by non-faulty process pj in the same round. If v is
in pj’s vals then pj adopts estimate v because v = r mod 2.
If instead pj’s vals = {w}, w ̸= v, then pj received h(dr)
ECHO messages containing only w.

Analogously to Lemma III.4, it is impossible for pj and
for pi to receive h(dr) ECHO messages for v and for w,
respectively. We then conclude, by Lemma A.7, that non-faulty
processes decide value v in round r + 1 or round r + 2.

Lemma A.9 (AABC-Strong Validity). If a non-faulty process
decides v, then some non-faulty process proposed v.

Proof. This proof is identical to Polygraph’s proof of strong
validity [10].

Corollary A.10 (AABC-Validity). If all processes are non-
faulty and begin with the same value, then that is the only
decision value.

Lemma A.11 (AABC-Termination). Every non-faulty process
eventually decides on a value.

Proof. This proof derives directly from Lemma IV.1.

Lemma A.12 (AABC-Accountability). If two non-faulty pro-
cesses output disagreeing decision values, then all non-faulty
processes eventually identify at least 2h− n faulty processes
responsible for that disagreement.

Proof. This proof is identical to Polygraph’s proof of account-
ability [10], with the a generalization to any threshold h(dr)
analogous to the one we make in Lemma A.5.

Theorem A.13. Basilic’s AABC solves the actively account-
able binary consensus problem.
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Proof. Immedaite from Corollary A.10 and Lem-
mas A.8, IV.1, A.11, and A.12.

3) General Basilic protocol: We prove in this section the
Basilic protocol’s active accountability in Lemma IV.2, validity
in Lemma A.15, termination in Corollary A.14, agreement in
Lemma A.16, and accountability in Lemma IV.2, converging
to Theorem A.18.

Corollary A.14 (Termination). Basilic satisfies termination.

Proof. Trivial from Lemma IV.2.

Lemma A.15 (Validity). Basilic satisfies validity.

Proof. This is trivial by Corollary A.10 and the proofs of
AARB. Suppose all processes begin Basilic with value v.
If all processes are non-faulty then every proposal AARB-
delivered was AARB-sent by a non-faulty process, and since
all processes AARB-send v, only v is AARB-delivered.

Since initially processes only start an AABC instance for
which they can propose 1, this means that eventually all
processes start one AABC instance proposing 1. By Corol-
lary A.10, this instance will terminate with all processes de-
ciding 1. Since the rest of the AABC instances will eventually
terminate by Lemma A.11, this means that processes will
terminate at least one instance of AABC outputting 1. Upon
calculating the minimum of all values (which are all v) whose
associated bit is set to 1, all processes will decide v.

Lemma A.16 (Agreement). Basilic satisfies agreement.

Proof. Immediate from Lemmas A.8 and A.4.

Lemma A.17 (Accountability). If two non-faulty processes
output disagreeing decision values, then all non-faulty pro-
cesses eventually identify at least 2h − n faulty processes
responsible for that disagreement.

Proof. Immediate from Lemmas IV.1 and A.6.

Theorem A.18 (Theorem IV.3). The Basilic protocol with
initial threshold h0 ∈ (n/2, n] solves the actively accountable
consensus problem if d+ t < 2h0 − n and q + t ≤ n− h0.

Proof. Corollary A.14 and Lemmas IV.2, A.15, A.16, and IV.2
satisfy termination, active accountability, validity, agreement,
and accountability, respectively.

Corollary A.19 (Corollary IV.4). The Basilic class of pro-
tocols solves the actively accountable consensus problem if
n > 3t+ d+ 2q.

Proof. The proof is immediate from Theorem IV.3 after re-
moving h0 from the system of two inequations defined by
d+ t < 2h0 − n and q + t ≤ n− h0.

B. Proofs of Basilic’s complexities

We prove in this section the complexities of Basilic, and of
Basilic’s AARB and AABC, which we presented in Section V.

Lemma A.20 (Basilic’s AARB Complexity). After GST and
if the source is non-faulty, Basilic’s AARB has time complexity
O(1), message complexity O(n2) and bit complexity O(λ·n3).

Proof. After GST, non-faulty processes will have received a
message from each non-faulty process and from each deceitful
processes by the timeout. Thus, either non-faulty processes
can terminate, or they broadcast their current list of ECHO
and INIT messages, after which they remove the detected
deceitful processes, and they can terminate too. Thus, the time
complexity is O(1). Then, the message complexity is O(n2),
as each non-faulty process broadcasts at least one ECHO and
READY message, and, in some executions, a list of ECHO
messages that they delivered by the time the timer reaches
0. Since READY messages contain O(n) signatures, or O(λn)
bits, the bit complexity of Basilic’s AARB is O(λn3).

Lemma A.21 (Basilic’s AABC Complexity). After GST,
Basilic’s AABC protocol has time complexity O(n), message
complexity O(n3) and bit complexity O(λ · n4).

Proof. After GST, the Basilic protocol terminates in the first
round (i) whose leader is a non-faulty process and (ii) after
having removed enough deceitful faults so that they cannot
prevent termination. Since t+d+q < n, we have that (i) holds
in O(n). As for every added round in which deceitful faults
prevent termination, a non-zero number of deceitful faults
are removed, we have that (ii) holds in O(n) as well. This
means that Basilic terminates in O(n) rounds. In each round
during phase 1 of AABC, non-faulty processes execute an
ABV-broadcast of O(n2), obtaining O(n3) messages. The bit
complexity is O(λn4) as each message may contain up to two
ledgers of O(n) signatures, or O(λn) bits. The complexities
of phase 2 are equivalent and obtained analogously to those
of phase 1, as non-faulty processes may broadcast O(n)
signatures if deceitful faults prevent termination of phase 2,
or a certificate if they decide in this round.

Theorem A.22. The Basilic protocol has time complexity
O(n), message complexity O(n4) and bit complexity O(λ·n5).

Proof. The proof is immediate from Lemma A.21 and
Lemma A.20 since Basilic executes n instances of AARB and
after n instances of AABC.
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