
Blockchain Proportional Governance
Reconfiguration: Mitigating a Governance Oligarchy

Deepal Tennakoon
University of Sydney
Sydney, Australia

dten6395@uni.sydney.edu.au

Vincent Gramoli
University of Sydney
Sydney, Australia

vincent.gramoli@sydney.edu.au

Abstract—Blockchain governance is paramount to lead securely
a large group of users towards the same decisions without
disputes about the legitimacy of a blockchain instance over
another. As of today, there is no efficient way of protecting this
governance against an oligarchy. This paper aims to offer a new
dimension to the security of blockchains by proposing a solution
known as proportional governance reconfiguration. This solution
mitigates the formation of an oligarchy by (1) electing governors
proportionally using a proportional multi-winner election protocol
(2) reconfiguring the governance automatically and periodically.
The proportional governance reconfiguration relies on a Solidity
based implementation making it compatible and usable in many
smart contract supported blockchains. We prove our solution
solves the proportional governance problem and we evaluate our
solution on two smart contract supporting blockchains Ethereum-
PoA and Smart Redbelly Blockchain. Our results indicate that
our proportional governance can elect 200 governors within 6-
12 minutes when 1000 voters from 5 continents vote for 500
candidates.

Index Terms—Blockchain, Governance, Reconfiguration

I. INTRODUCTION

The notion of governance, which is generally understood
as the processes relied upon to make decisions and modify
the protocol, has become an important topic in blockchain [1],
[2], [3]. In the context of blockchains, governance can include
decisions such as updating the blockchain protocol, varying
blockchain parameters (e.g., changing the block period), and
deciding upon a block to be executed (e.g., reaching consen-
sus) [3], [4]. The absence of governance has led users to create
dissident instances of the two largest blockchains: Bitcoin is
now split into BTC and BCH while Ethereum is now split into
ETH and ETC [5], [6].

A pernicious threat in blockchain governance is the risk of
an attacker controlling an oligarchy amongst the governors. If
this happens the oligarchy can dictate the decisions to modify
the blockchain protocol making the blockchain governance
centralized. There are two methods which can create an
oligarchy in blockchain governance.

First, an oligarchy can be formed in the blockchain
governance through the governance election process. More
specifically, modern blockchains, which have mostly replaced
Proof-of-Work (PoW) with Proof-of-Stake (PoS) to improve
performance, elect governors based on their stake providing
more opportunities to those that have a higher stake to become

governors [7], [8], [3], [9]. Given the skewed distribution of
wealth, this can inadvertently create an oligarchy.

Second, an adversary can form an oligarchy by corrupting
governors in a committee with a bribe. Such bribery attacks on
governors are a potent threat because governors in blockchains
are usually limited in number [9], [3] and therefore forming
an oligarchy among such a limited set is not as challenging as
bribing an entire network of blockchain nodes.

To mitigate the two aforementioned methods of forming an
oligarchy of governors, we propose proportional governance
reconfiguration that is compatible with smart contract
supported blockchains.

The first part of proportional governance reconfiguration
is the proportional governance to tackle the formation of
an oligarchy among governors through the election process.
Proportional governance selects governance users or governors
that proportionally represent the voters. This is to prevent
an adversary from creating an oligarchy in the governance.
Proportionality is a concept widely used in social choice theory
to elect a set of candidates fairly to a legislative body [10].
In general terms, proportionality ensures that a diverse set of
candidates are elected ensuring even the minority voters are
represented in a legislative body.

As multiple governors need to be elected to a blockchain gov-
ernance committee, we needed a multi-winner election protocol.
Thus, we used the Single Transferable Vote (STV) protocol [11],
used for example to elect the Australian senate [12]. STV
outputs a set of candidates proportionally representative of the
voted preferences. However, the STV protocol is synchronous:
a voter simply has to cast a vote within a limited known
period of time for its vote to be counted when tallying votes.
Blockchains instead operate in a general network (e.g., the
Internet) where the communication is not synchronous1 and
where Byzantine nodes can arbitrarily delay messages. Thus,
the STV protocol executing on a blockchain with n nodes that
waits for votes from all n nodes cannot progress if Byzantine
voters do not cast votes. This is because one cannot distinguish
a slow voter from a Byzantine voter due to the upper bound
on the message delay being unpredictable.

1Synchronous communications assume the transmission delay of the
messages/votes sent over the communication links is bounded by a known
value [13]

1

Blockchain Election Proportional Governance

Tendermint [16] None no
Algorand [7] Sortition no

Hybrid consensus [17] PoW puzzle no
Zilliqa [18] PoW puzzle no

OmniLedger [19] Sortition no
RapidChain [15] PoW puzzle no
ComChain [20] None no

Libra [21] None no
SmartChain [22] None no

Polkadot [23] Multi-winner approval voting no
EOS [9] Multi-winner approval voting no

This work (compatible with any blockchain) Multi-winner preferential voting yes

TABLE I
BLOCKCHAINS WITH GOVERNANCE RECONFIGURATION DO NOT SOLVE THE

PROPORTIONAL GOVERNANCE PROBLEM (DEF. 1)

To solve this problem, we develop a variant of STV known
as BFT-STV that offers (1) the same proportionality guarantees
as STV, (2) does not assume synchrony and (3) works in
a Byzantine setting s.t. at most t < n/3 of n voters are
Byzantine (we denote f ≤ t as the actual number of Byzantine
voters). The ratio of f comes from (i) the need for voters
to reach consensus on the new set of governors and (ii) the
impossibility of solving consensus with f ≥ n/3 Byzantine
participants in blockchains under the general setting [14].
We implement BFT-STV in a smart contract to make our
proportional governance pluggable and compatible with smart
contract supported blockchains.

The second part of proportional governance reconfiguration
is the governance reconfiguration to reduce the risk of forming
an oligarchy through bribery. During reconfiguration, the
current governors are replaced with new governors based
on an election outcome. Such reconfigurations are used in
notable prior work to mitigate bribery attacks [15], [7], [3]. By
periodically selecting a diverse set of governors proportionally
representative of a sample set, the formation of an oligarchy
through bribery among governors can be mitigated. The
problem is if the current governors do not reconfigure upon
the selection of a set of new governors, the blockchain service
would create a split, leading users to create dissident instances
of the same blockchain [5], [6]. Instead, if all users initially
joining agree that the blockchain self-reconfigures upon a
special smart contract execution, then no split can occur. Thus,
our work proposes an automatic governance reconfiguration
protocol that rotates governors based on a smart contract output.

To the best of our knowledge, the proportional governance
reconfiguration we propose is the first solution that (1) mitigates
an oligarchy among governors and (2) is pluggable and
compatible with smart contract supported blockchains due
to its generality and smart contract based implementation.

In summary, this paper defines the proportional governance
reconfiguration problem (§III), designs a solution for it known
as the proportional governance reconfiguration that is com-
patible and pluggable with many smart contract supported
blockchains (§IV and §V), proves the solution correct (§IV-E)
and evaluates the solution (§VI). Our proposed solution offers
the following practical contributions:

• We introduce the first Byzantine fault tolerant multi-
winner election protocol, called BFT-STV to elect a

set of governors proportionally in order to mitigate an
oligarchy among governors (§IV). BFT-STV is a new
primitive that augments the STV election protocol to
work in a setting where at most t < n/3 Byzantine
voters exist among n voters without assuming synchrony
(we denote f ≤ t as the actual number of Byzantine
voters). As it is impossible to distinguish a non-responsive
Byzantine voter from a delayed message, we introduce
a new election quota qB = n−t

k+1 where k is the size
of the committee. Interestingly, we show that our BFT-
STV protocol preserves the proportionality of STV while
ensuring termination (§IV-E).

• We implement this new protocol in a smart contract
written in the Solidity programming language, making
our protocol easily compatible and pluggable with smart
contract supported blockchains [24], [25], [26], [27]
(one can reimplement our protocol to make it work
with a different smart contract programming language).
Implementing the BFT-STV protocol on a smart contract
comes with its own technical challenges. First, smart
contracts are public, thus to preserve privacy of votes to
avoid strategic voting, we employ a commit-reveal scheme
(§IV-B). Second, the STV algorithm and our BFT-STV
adaptation of it is NP-hard. Executing such an algorithm
on a smart contract leads to poor performance. Due to
this reason, we integrate an election sharding scheme to
make our solution scalable (§IV-D).

• The BFT-STV smart contract alone is not sufficient
to action the outcome of the election to reconfigure
the blockchain. Thus, we introduce a novel and au-
tomatic reconfiguration protocol that rotates governor
sets periodically based on the BFT-STV smart contract
output. The periodic reconfiguration of governors helps
mitigate bribery attacks launched by slowly-adaptive
adversaries [19], [15]. This mitigates the formation of
an oligarchy among governors. In particular, our protocol
revokes permissions of existing governors to elect new
governors periodically before a large portion of them could
be bribed forming an oligarchy.

• We prove that our protocols are correct (§IV-E and §V).
In particular, we also show that BFT-STV satisfies pro-
portionality without assuming synchrony. Our world-scale
evaluations of BFT-STV with 200 validators of Ethereum-
PoA and Smart Redbelly Blockchain [27] spanning 5
continents can elect 200 governors from 500 candidates
with 1000 voters casting ballots within 6-12 minutes (§VI).

In the remainder of this paper, we present the background
and motivations (§II), and the proportional governance recon-
figuration problem (§III). Next, we present our solution to this
problem in §IV and §V along with proofs that our solution
solves the proportional governance reconfiguration problem. In
§VI, we evaluate our solution. Finally, we present the related
work (§VII) and conclude (§VIII).

2

Fig. 1. If blockchain nodes disagree on a protocol update then they may start
accepting distinct blocks, which results in a hard-fork with a classic version
of the blockchain (e.g., ETC, BTC) and a new version of it (e.g., BCH, ETH).

II. BACKGROUND AND MOTIVATIONS

A. Importance of blockchain governance

The notion of governance in blockchains, which encompasses
the processes followed to make decisions impacting the
blockchain protocol has become an important topic recently [1],
[2], [3]. The governance structure includes the identity of parties
capable of suggesting changes, the avenue through which such
changes are proposed, the users capable of deciding the changes
and the parties implementing these changes. Due to the large
number of users of a blockchain, governance is especially
relevant to lead this large cohort towards a common goal. With
a lack of governance, the divergence of opinions may result
in the split of the blockchain into multiple instances sharing a
common transaction history but accepting distinct transactions.

As an example, consider Figure 1, where blockchain node 1
rejects a software upgrade and keeps accepting old-formatted
blocks whereas blockchain node 2 accepts this upgrade and
starts accepting blocks in a new format, leading to a hard
fork. The two largest blockchains were victims of such splits:
Bitcoin is now split into BTC and BCH [6] whereas Ethereum
is now split into ETH and ETC [5]. The absence of governance
can draw blockchain users into such clashes.

B. Preventing governance oligarchy

The biggest challenge is to prevent an attacker from obtaining
the control of the governance potentially forming an oligarchy.
This is usually tackled through making the governance decen-
tralized across multiple governors. However, having a fixed set
of governors can expose these governors to bribery attacks [7],
[15], [19], [28].

As blockchains typically handle valuable assets, several
works already noted the risk for a user to bribe other users to
build an oligarchy capable of stealing these assets [29]. Most of
these works explicitly assume a slowly-adaptive adversary [15],
[30], [19] that can corrupt a limited number of nodes between
consensus epochs but cannot corrupt participants during an
epoch.

To reduce the chances that governance users, or governors
being bribed, forming an oligarchy, the aforementioned works
propose governance reconfigurations [7], [15], [19], [28]. None
of these works solve the proportional governance reconfigura-
tion problem (§III).

C. Social choice theory with Byzantine fault tolerance

To propose meaningful properties for blockchain governance,
we draw inspiration from classic work on social choice theory.
Given a set of n voters, each casting an ordinal ballot as a
preference order over all m candidates, a multi-winner election
protocol outputs a winning committee of size k.

Black [31] was the first to define the proportionality problem
where elected members must represent “all shades of political
opinion” of a society.

Dummett [32] introduced fully proportional representation
to account for ordinal ballots, containing multiple preferences.
Given a set of n voters aiming at electing a committee of k
governors, if there exists 0 < ℓ ≤ k and a group of ℓ · qH
who all rank the same ℓ candidates on top of their preference
orders, then these ℓ candidates should all be elected. However,
it builds upon Hare’s quota qH , which is vulnerable to strategic
voting whereby a majority of voters can elect a minority of
seats [33]. This problem was solved with the introduction of
Droop’s quota qD as the smallest quota such that no more
candidates can be elected than there are seats to fill [11].

Woodall [34] replaces Hare’s quota with Droop’s quota
q = ⌊ n

k+1⌋ and defines the Droop proportionality criterion as
a variant of the fully proportional representation property: if
for some whole numbers j and s satisfying 0 < j ≤ s, more
than j · qD of voters put the same s candidates (not necessarily
in the same order) as the top candidates in their preference list,
then at least j of those s candidates should be elected. This is
the property we target in this paper and we simply rename it
proportionality (Def.1).

It is known that the First-Past-The-Post (FPTP) single-winner
election and the Single Non-Transferrable Vote (SNTV) multi-
winner election cannot ensure fully proportional representa-
tion [35]. The reason is that voters can only reveal their highest
preference.

This property can however be achieved using the Single
Transferable Vote (STV) algorithm. In STV, candidates are
added one by one to the winning committee and removed from
the ballots if they obtain a quota q of votes. STV is used
to elect the Australian senate and is known to ensure fully
proportional representation.

Unfortunately, this protocol is synchronous [36] in that its
quotas generally rely on the number of votes n received within
a maximum voting period. As one cannot predict the time it
will take to deliver any message on the Internet, one cannot
distinguish a slow voter from a Byzantine one. Considering n as
the number of governors or potential voters among which up to
t can be bribed or Byzantine, our protocol only waits for at most
n− t votes to progress without assuming synchrony. Waiting
for n−t prevents us from guaranteeing that the aforementioned
quotas can be reached. We thus define a new quota called the
Byzantine quota qB = ⌊n−t

k+1⌋ such that t < n/3 and reduce
the number of needed votes to start the election to n − t.
Based on qB , we propose BFT-STV that extends STV for
a Byzantine fault tolerance environment. We also show that
BFT-STV satisfies proportionality without assuming synchrony
(§IV-E). Of course, up to t of these n− t ballots may be cast
by Byzantine nodes, however, we show in Theorem 2 that
no adversary controlling up to t Byzantine nodes can act as
a dictator a property known as non-dictatorship proposed by
Arrow [37].

3

III. THE PROPORTIONAL GOVERNANCE RECONFIGURATION
PROBLEM

Our goal is to solve the proportional governance reconfigura-
tion problem to mitigate a governance oligarchy in blockchains.
The proportional governance reconfiguration problem encap-
sulates (1) the proportional governance problem (§III-B) and
(2) the governance reconfiguration problem (§III-C). To put
it simply, first we offer a blockchain governance that allows
distributed users to elect a committee of governors propor-
tionally representative of the voters and without dictatorship,
which solves the proportional governance problem (§III-B).
Second, we mitigate bribery attacks by periodically changing
the governors, which solves the governance reconfiguration
problem (§III-C).

In this section, we first present the computation model
(§III-A) before defining the proportional governance problem
(§III-B), the governance reconfiguration problem (§III-C) and
the threat model (§III-D).

A. Byzantine fault tolerant distributed model

We consider a distributed system of n governor nodes also
known as a governor committee, identified by public keys
I and network identifiers (e.g., domain names or static IP
addresses) A. We assume public key cryptography and that the
adversary is computationally bounded. Hence, only the issuer
of a transaction can sign it and any recipient can correctly
verify the signature. Governor nodes (i) execute the consensus
protocol in order to agree on a unique block to be appended
to the chain and (ii) execute transactions and maintain a local
copy of the state of the blockchain. Client2 nodes simply send
transaction requests to read from the blockchain (to check an
account balance), transfer assets, upload a smart contracts or
invoke a smart contract Candidate nodes m are nodes eligible
to become governors and are voted upon by n current governors
to be included in new governor sets periodically. We assume
m >> k s.t. k is the target next governor committee size.
The number of Byzantine nodes in the candidate nodes set is
assumed to be fc s.t. fc ≤ m/4.

As we target a secure blockchain system running over an
open network like the Internet, we consider the strongest fault
model called the Byzantine model [39], where nodes can
fail arbitrarily by, for example, sending erroneous messages
or delaying messages. We assume that there is no known
bound on the transmission delay of messages between nodes,
a property called partial synchrony [36]. As governors execute
consensus and consensus cannot be solved in our model with
n/3 Byzantine nodes [39], we assume there are f ≤ n/3
Byzantine nodes among the governor nodes. We assume a
slowly adaptive adversary as many prior works [40], [15],
[19] such that the adversary can only corrupt/bribe nodes
between governor reconfigurations (i.e., between committees).
The slowly-adaptive adversary cannot bribe nodes within a

2The term “client” is often used in Ethereum to refer to a node regardless
of whether it acts as a server. We use client in the traditional sense of the
client-server distinction [38].

committee due to its slowly adaptive nature. Note that a node
that is not Byzantine is called correct.

B. Proportional governance problem

We refer to the proportional governance problem as the
problem of designing a BFT voting protocol in which n
voters rank m candidates to elect a committee of k governors
(k < m and m > n) to ensure non-dictatorship as defined by
Arrow [37] and proportionality as defined by Dummett [32],
Woodland [34] and Elkind et al. [41] (cf. §II-C). The main
distinction is that we adapt this problem from social choice
theory to the context of distributed computing.

Definition 1 (The Proportional Governance Problem). The
secure governance problem is for a distributed set of n voters,
among which f ≤ t < n/3 are Byzantine, to elect a winning
committee of k governors among m candidates (i.e., m > k)
such that the following two properties hold:

• Proportionality: if, for some whole numbers j, s, and k
satisfying 0 < j ≤ s ≤ k, more than j(n− t)/(k + 1) of
voters put the same s candidates (not necessarily in the
same order) as the top s candidates in their preference
listings, then at least j of those s candidates should be
elected.

• Non-dictatorship: a single adversary, controlling up to
f < n/3 Byzantine voters, cannot always impose their
individual preference as the election outcome.

The need for these two properties stems from our goal of
guaranteeing proportional representation (proportionality) but
also disallowing a coalition of Byzantine nodes from imposing
their decision on the rest of the system (non-dictatorship).
Note that the non-dictatorship property differs slightly from
the original definition [37] that did not consider a Byzantine
coalition. In particular, our property considers coalitions and
prevents them from imposing their preference in “all” cases.

C. Governance reconfiguration problem

We refer to the governance reconfiguration problem as the
problem of ensuring blockchain safety despite governance
reconfiguration. We adopt the safety property from Garay et
al. [42] and restated more recently by Chan et al. [43] to
governance reconfiguration.

Definition 2 (The Governance Reconfiguration Safety). The
first block stored locally after governance reconfiguration by
any two correct governor nodes in the governance committee
should be equal.

Any two correct governors in the same committee starting
from the same block ensures that after the governance recon-
figuration, governors start with the same state. Thus, when the
governance committee executes the same set of totally ordered
new transactions from clients, the state at any two correct
governors remain identical since the start state is identical.
This helps satisfy blockchain safety.

4

D. Threat model

As in previous blockchain work [30], [7], [15], [19], we
assume a slowly adaptive adversary with a limited bribing
power that cannot bribe governors within a committee but can
only bribe/corrupt up to fc nodes between reconfigurations
such that fc < m/4 where m is the candidates.

For the initial set of governors to be sufficiently diverse, we
can simply select governors based on their detailed information.
This can be done by requesting initial candidates to go through
a Know-Your-Customer (KYC) identification process, similar to
the personal information requested from the Ethereum proof-
of-authority network users before they can run a validator
node [44]. A set of governors could then be selected depending
on the provided information while ensuring multiple governors
are not from the same jurisdiction, they are not employed by
the same company, they represent various ethnicities, they are
of balanced genders, etc.

1) Bribery attack: Limiting the number of nodes responsible
to offer the blockchain service as done in recent open
blockchains [45] exposes the service to a bribery attack [29],
which is an act of offering something to corrupt a participant.
This is because it is typically easier to bribe fewer participants.
In particular, as consensus cannot be solved with at least
n
3 Byzantine processes among n when message delays are
unknown [36], it is sufficient to bribe n

3 governors to lead
correct governors to disagree on the next block appended
to the blockchain and thus create a fork in the blockchain.
The attacker can then exploit this fork to have its transaction
discarded by the system and then re-spend the assets he
supposedly transferred in what is called a double spending.
Our reconfiguration protocol mitigates such a bribery attack in
the presence of a slowly-adaptive adversary by re-electing n
new governors from m candidates that execute the consensus
protocol every x blocks. This is how we mitigate the risk of
n
3 of the current governors getting bribed that can form an
oligarchy. More specifically, due to the assumption of a slowly
adaptive adversary that bribes/corrupts at most fc candidate
nodes s.t. fc < m/4, a governance committee k periodically
elected proportionally from a diverse set m will have f < n/3
with high probability (A reasonable assumption made in prior
work given that m >> k). Within the governance committee
period this f will remain static as the slowly-adaptive adversary
can only corrupt nodes between reconfigurations.

2) Sybil attacks: A Sybil attack consists of impersonating
multiple identities to overwhelm the system—in the context of
votes, a Sybil attack could result in an adversary voting with
multiple identities to alter the outcome of an election. Proof-of-
stake based voting approaches weigh a ballot cast by a voter
based on the coins they have staked. Thus, minimizing the
impact on the election outcome if an adversary splits their stake
among multiple identities and cast ballots. We adopt a solution
that consists of providing authenticating information, in the
form of know-your-customer (KYC) data, in exchange for the
permission to vote for governors, or be a governor candidate.
This authentication copes with Sybil attacks by preventing the

Fig. 2. The smart contract that implements the BFT-STV protocol is on-chain
➊, takes as an input a set of at least (n− t) ballots (each ranking k candidates
among m) cast by (n − t) voters among the n governors ➋ and outputs
a committee of k elected nodes ➌ to play the role of the new governors.
Note that the last committee of governors elected will then vote for the next
committee of governors ➋ and so on (one can fix k = n so that the committee
size never changes).

same authenticated user from using distinct node identities to
cast votes.

IV. BYZANTINE FAULT TOLERANT PROPORTIONAL
GOVERNANCE

In this section, we present how to elect, despite f ≤ t < n/3
Byzantine nodes, a diverse set of governors to mitigate the
formation of an oligarchy. The idea is to allow a set of n
blockchain nodes that are current governors to vote and elect
the committee of next governors proportionally representing
the current governor votes.

To this end, we propose the Byzantine Fault Tolerant Single
Transferrable Vote (BFT-STV) smart contract that solves the
proportional governance problem (Def. 1).

A. Overview

In order to guarantee that the election solves the proportional
governance problem (Def. 1), we designed the BFT-STV
algorithm and implemented it as a smart contract. In this
section, we present the high level pseudo code of the BFT-STV
algorithm. To bootstrap, the initial permissions to vote are
obtained by n initial governors after identification using KYC
to ensure diversity and prevent Sybil attacks (§III-D2). Recall
that governors cannot use the classic STV algorithm to elect a
new committee as the smart contract has to progress despite
up to t < n/3 Byzantine voters not casting proper ballots
and as the upper-bound on the message delay is unpredictable.
As depicted in Figure 2, the BFT-STV smart contract takes,
instead, as an input n − t ballots cast by the voters that are
governors. Each ballot consists of a rank of all the candidates,
hence the name ordinal ballot. Once the threshold n− t of cast
ballots is reached, the BFT-STV contract selects the governors
based on the preference order indicated in the n − t ballots.
Traditionally, the STV algorithm consists of counting which
candidates received a number of votes that exceed the quota
qD = n

k+1 where k is the size of the governance committee
to be elected. However, as there can be at most t Byzantine
nodes among the voters, we introduce the Byzantine quota

5

qB = n−t
k+1 (denoted q when clear from the context). We will

explain how the blockchain replaces the current governors by
the newly elected committee of governors in Section §V.

1: Initial state:
2: k, the size of the targeted committee.
3: n, the number of voters.
4: t, an upper bound on the number f of byzantine replicas, f ≤ t.
5: m, the number of candidates per ballot.
6: v, a mapping from candidates to their number of votes.
7: ballots , the set of received ordinal ballots, initially empty
8: C ⊆ I , the set of candidates.
9: E ⊆ C the set of eliminated candidates, initially empty.

10: S ⊆ C the set of winning candidates, initially empty.
11: pref [ballot] = index a map of ballot and its current preference index.
12: voted [vAddr] = false a map of voter addresses and whether voted.
13: privateVotes[vAddr] = hashVote a map of voter addr. and priv.

vote (ballot).
14: countprivate no. of private votes.
15: Sender [vAddr] = b a map of voter addr. and ballot.

16: commitVote(hashVote):
17: if voted [vAddr] == false then ▷ prevents double voting
18: privateVotes[vAddr]← hashVote ▷ store priv. votes for voters
19: countprivate ← countprivate + 1 ▷ no. priv. votes received
20: voted [vAddr]← true ▷ vAddr has voted
21: if countprivate == n-t then
22: votingEnded ← true
23: emit "threshold of votes reached" ▷ notify all priv. votes are received

24: reveal(b, h):
25: if votingEnded == true then ▷ voters reveal votes if election ended
26: if hash(b) == h & privateVotes[vAddr] == h then ▷ hashes eq.
27: if well-formed(b) then ballots ← ballots ∪ {b}
28: if (ballots has n− t ballots from distinct voters revealed) then
29: change-committee(ballots) ▷ replace committee

30: change-committee(ballots): ▷ replace committee
31: for all b ∈ ballots do ▷ for each received ballot
32: if (b[0] = c such that c ∈ C) then
33: v [c]← v [c] + 1 ▷ # 1st pref = c

34: pref [b]← 0 ▷ assign pref. index of b to the first preference/index 0

35: round ← 0 ▷ first round
36: while (|S| < k) do ▷ until the new committee is full
37: S ← STVB(v, ballots, pref) ▷ invoke classic STV
38: round ← round + 1 ▷ increment round number
39: if (|C| − |E| = k) then break ▷ stop eliminating

40: for all b ∈ ballots do ▷ for each ballot
41: for (j = 0; j < m; j++) do ▷ each candidate in decreasing pref. order
42: if (|S | < k ∧ b[j] ∈ C \ S \ E) then ▷ if eligible
43: S ← S ∪ {c} ▷ select c

44: emit S ▷ explicitly emit committee

Algorithm 1: Threshold Single Transferable Vote (Threshold-
STV) - Part 1

B. Byzantine Fault Tolerant Single Transferrable Vote

Alg. 1 presents the main functions of the BFT-STV smart
contract that the governors can invoke whereas Alg. 2 is
the classic STV algorithm adapted to progress in a partially
synchronous [36] environment and despite the presence of up
to t Byzantine voters, hence its name STVB .

a) Commit votes: Initially, the governors cast their hashed
ballots by invoking the function commitVote(·) at line 16 of
Alg. 1. This prevents the ballot content of each voter from being
known to other voters until the election counting begins. This
is to mitigate strategic voting. Once governors cast n−t private

45: Initial state:
46: k, the size of the targeted committee.
47: n, the number of voters.
48: t, an upper bound on the number f of byzantine replicas, f ≤ t.
49: qB = n−t

k+1
, the quota of votes to elect a candidate.

50: C ⊆ I , the set of candidates.
51: E ⊆ C, the set of eliminated candidates, initially empty.
52: S ⊆ C, the set of winning candidates, initially empty.
53: X ⊆ C, the set of excess candidates, initially empty.

54: STVB(v, ballots, pref):
55: if ∃c | v[c] > qB then ▷ if the quota is exceeded
56: S ← S ∪ {c} ▷ elect candidate
57: X ← X ∪ {c} ▷ save candidates that exceed quota in X

58: x [c]← v[c]− qB ▷ excess vote from candidate c

59: for all b ∈ ballots do ▷ for each ballot
60: if b[pref [b]] = c and c ∈ X then ▷ if current ballot pref = one of X
61: count [c]← count [c] + 1 ▷ the number of candidates c
62: pref-next [b]← pref [b] + 1 ▷ point to next preferred candidate
63: while b[pref-next [b]] ∈ (S ∨ E) do ▷ while not uneligible
64: pref-next [b]← pref-next [b] + 1 ▷ try next pref. pointer

65: if b[pref-next [b]] ̸∈ (S ∪ E) then ▷ if eligible candidate found
66: pref [b] = pref-next [b] ▷ move the preference pointer
67: z ← b[pref-next [b]] ▷ next preferred candidate in ballot
68: cand-next ← cand-next ∪ {⟨c, z⟩}▷ current&next candidates
69: count [z]← count [z] + 1 ▷ The number of candidates z

70: for all unique ⟨c, z⟩ ∈ cand-next do ▷ transfer excess votes
71: v [z]← v [z] + x [c] · (count [z]/count [c]) ▷ to next candidates

72: if ∀c : v[c] ≤ qB then ▷ if no candidates exceed the quota in the round
73: E ← (E ∪ t | t = min∀c(v[c])) ▷ eliminate candidate with least votes
74: transfer-vote ← v[t]
75: v[t]← 0 ▷ reset votes of least candidate to 0
76: for all b ∈ ballots do
77: while s < size do
78: if b[s] = t then ▷ store ballot and preference index...
79: elimpointer ← elimpointer ∪ (b, s) ▷ ...of least voted cand.

80: s← s+ 1 ▷ Increment preference
81: for all (b, s) ∈ elimpointer do
82: if b[s] = m ∧m ∈ E then ▷ If preference s of ballot b is eliminated
83: pref-next [b]← s+ 1
84: count [m]← count [m] + 1 ▷ count of candidates m in all ballots
85: while b[pref-next [b]] ∈ (S ∨ E) do ▷ until candidate is found
86: pref-next [b]← pref-next [b] + 1 ▷ ...increment pref. pointer

87: if b[pref-next [b]] ̸∈ S ∪ E then
88: pref [b]← pref-next [b] ▷ move the preference pointer
89: z ← b[pref-next [b]]
90: cand-next ← cand-next ∪ (m, z) ▷ least voted & next cand.
91: count [z]← count [z] + 1 ▷ the number of candidates z

92: for all unique (m, z) ∈ cand-next do ▷ transfer from least voted cand.
93: v [z]← v [z] + transfer-vote · (count [z]/count [m])

94: X ← null
95: return S ▷ return the set of winning candidates

Algorithm 2: Threshold Single Transferable Vote (Threshold-
STV) - Part 2

votes in the form of ballot hashes, the BFT-STV smart contract
emits a broadcast notifying governors that their respective
ballots can be revealed to commence counting votes (lines 21-
23).

b) Reveal votes: Governors/voters upon receiving the
broadcast in line 23, invoke the reveal(·) function parsing the
plain ballot b and the hash of this ballot h (line 24). If (1) hash
of b equals h and (2) h equals the hash of the ballot previously
stored in the commit phase for the same voter, then the validity
of the ballot b is checked. Upon successful validation, the
ballot b is added to the list of ballot ballots (lines 26-27). Note

6

that verifying the validity of a ballot involves checking that the
governors have not voted for themselves on their ballots and
there are no duplicated preferences. Once the smart contract
receives n − t well-formed ballots the change-committee(·)
function is invoked (line 29).

c) Count votes: The change-committee function starts by
computing the score of the valid candidates as the number of
votes they receive at lines 31–33. Valid candidates are initially
selected through KYC (§III-D2) before being periodically voted
upon by governors to be elected as the next set of governors. A
preference pointer is initialized to the first preference of each
ballot at line 34. Then a new round of the STV election process
starts (lines 35–38). This execution stops once the committee
of new governors is elected (line 36). If before the targeted
committee is elected, the number of eliminated candidates has
reached a maximum and no more candidates can be eliminated
to achieve the target committee size, then the STV election
stops (line 39). The remaining non-eliminated candidates are
elected by decreasing order of preferences at lines 40–43 until
the target committee size is reached. Finally, the smart contract
emits the committee of elected candidates (line 44), which
notifies the replicas of the election outcome.

C. Classic STV with the Byzantine quota

Alg. 2 presents the classic STV algorithm but using the
new Byzantine quota qB by electing candidates whose number
of votes exceed qB (line 55). This algorithm executes two
subsequent phases: in the first phase (lines 54–71) the algorithm
elects the candidates whose number of votes exceeds the quota
qB = n−t

k+1 ; in the second phase (lines 72–94), the algorithm
eliminates the least preferred candidate if no candidates
received a number of votes that exceeds the quota. In each
round of STV function call (line 37), when a candidate exceeds
the quota (line 55), their excess votes are transferred to the next
eligible preferences of the ballots that contain the candidate
(line 71). In each round of ballot iteration, if no candidate
has reached the quota, the candidate with the least vote(s)
is eliminated (line 73). This candidates’ excess votes are
transferred to the next eligible preference of the ballots that
contain the candidate that received the least votes (line 93). The
elimination of candidates stops when no more candidates can
be eliminated to achieve the committee size (line 39). At this
point, even though the remaining candidates did not receive
enough votes to reach the quota, they are elected as part of
the committee (line 43).

D. Election sharding

As many modern blockchains cannot handle demanding
smart contract workloads [46], executing the NP-hard BFT-STV
algorithm on a smart contract with many voters and candidates
is a challenging task. To tackle this challenge, when the number
of voters n and candidates m are large, we shard the BFT-
STV algorithm into smaller sub-elections. More specifically,
our election sharding approach groups voters and candidates
into N groups of equal size. Thus, a voter can only vote for
candidates in their group. If there are N groups, each group

can elect k/N governors to the committee such that the total
elected governors is k in the end.

From a voting theory perspective, this sharding approach
is exactly the same as dividing the seats in a main legislative
body into electoral districts such that voters living in a specific
electoral district only cast ballots for candidates from the same
district. Thus, providing better representation in the legislative
body for populations in each electoral district.

From a computer science perspective, sharding the BFT-
STV elections as mentioned above makes the ordinal ballot
sizes smaller as a voter only orders preferred candidates in
their own group. This decrease in ballot sizes reduces CPU
and memory usage of the blockchain node during BFT-STV
contract execution helping us achieve election outcomes fast
without losing ballots cast by voters. With this election sharding
approach (§VI), we see that the BFT-STV smart contract can
elect 200 governors from 500 candidates within 6-12 minutes
when 1000 voters cast ballots. Thus, our approach is faster
than many committee election methods [3], [47], [8].

E. Proofs of proportional governance

In this section, we show that BFT-STV (Alg. 1 and 2) solves
the proportional governance problem (Def. 1). To this end,
the first theorem shows that the BFT-STV protocol ensures
Proportionality. As mentioned in §III-B, recall that n, m
and k denote the number of voting governors, the number
of candidates and the targeted committee size, respectively.
Note that the proof holds even if Byzantine voters vote in the
worst possible way.

Theorem 1. The BFT-STV multi-winner election protocol
satisfies Proportionality.

Proof. By examination of the code of Alg. 1 and 2, the only
difference between BFT-STV and STV is the number of votes
needed to elect a candidate. STV typically starts with n received
ballots whereas the BFT-STV starts the election as soon as
(n− t) ballots are received (line 28 of Alg. 1), where t is the
upper bound on the number f of Byzantine nodes and n is the
total number of governors eligible to vote. This number of BFT-
STV ballots is distributed among a larger number of candidates
m. This can result in less than k candidates receiving enough
votes to reach the classic STV quota where k is the size of the
committee. By the Proportionality definition (Def.§III-B), we
need to show that if j · (n− t)/(k + 1) voters put the same s
candidates as the top s candidates in their ballot preference,
then j of those s candidates will still be elected. The proof
follows from [48, p. 48–49]: line 73 of Alg. 2 indicates that by
elimination, and lines 40-43 of Alg. 1 indicates by electing the
remaining non eliminated candidates in decreasing preference
order, we elect the required k seats if k candidates cannot
reach the qB quota. Thus, we still elect the top j candidates
such that j = s = k, satisfying proportionality.

The next theorem shows that the BFT-STV protocol ensures
Non-dictatorship as defined in Def. 1.

7

Theorem 2. The BFT-STV multi-winner election protocol
satisfies Non-dicatorship.

Proof. The proof shows the existence of an input of correct
nodes for which a single adversary controlling f Byzantine
nodes cannot have its preference ba be the winning committee.
Let ba[−1] be the least preferred candidate of the adversary,
we show that there exist preferences b1, ..., bn−f from correct
nodes such that the winning committee includes ba[−1]. The
result then follows from the assumption k < m.

By examination of the pseudocode, the winning committee
is created only after receiving n− t correctly formatted ballots
(line 28 of Alg. 1). By assumption, there can only be at most
f ≤ t < n/3 ballots cast by Byzantine nodes. As a result,
among all the n− t received ballots, there are at least n−2t >
n/3 ballots cast from correct nodes. In any execution, an
adversary controlling all the Byzantine nodes could have at
most f ballots as the adversary cannot control the ballot cast by
correct nodes. Let b1, ..., bn−f be the ballots input by correct
nodes to the protocol such that their first preference is the
least preferred candidate of the adversary, i.e., ∀i ∈ {1, n− t} :
bi = ba[−1]. Because f ≤ t < n/3, we know that ba[−1]
will gain more votes than any of the other candidates, and
will thus be the first to be elected (line 55 of Alg. 2). By
assumption, we have k < m, which means that there is a
candidate the adversary prefers over ba[−1] that will not be
part of the winning committee. Hence, this shows the existence
of an execution where despite having an adversary controlling
f Byzantine nodes, the adversary preference is not in the
winning governance committee.

V. AUTOMATIC GOVERNANCE RECONFIGURATION

In this section we present our governance reconfiguration
protocol to mitigate bribery attacks that could form an oligarchy
among governors. Subsequently, we prove that our reconfig-
uration protocol solves the governance reconfiguration safety
(Def. 2).

Offering proportionality and non-dictatorship is not sufficient
to cope with an adaptive adversary. In order to mitigate
bribery attacks, we now propose a governance reconfiguration
that complements the BFT-STV algorithm. The subsequent
governance reconfiguration protocol assumes that all blockchain
nodes in a network has the BFT-STV smart contract deployed
at bootstrap time.

Alg. 3 allows switching from the current governance com-
mittee S0 to the new governance committee S elected with
the BFT-STV smart contract (§IV) . Note once a governor
g : g ∈ S0 emits S (line 44 of Alg. 1), they immediately stop
processing any further blocks.

Once a blockchain node (i.e., candidate, governor, client)
receives from governor g : g ∈ S0 newly elected governors S
and a blockchain prefix (line 10 of Alg. 3), the reconfiguration
protocol commences. Note that duplicate broadcasts received
by the same governor are not considered. First, every received
S from a governor g : g ∈ S0 is added to Elected. Thus,
Elected stores all received S from current governors (line 12

1: initial:
2: A is a set of IP addresses.
3: BC is a set of blockchains s.t. Blockchain[start : end] ∈ BC.
4: Elected: a set s.t. S ∈ Elected.
5: count: a map between a governor sets received and its occurrences.
6: Bcount: a map between a block and its occurrences in received prefixes.
7: S: newly elected governor committee
8: S0: current governor committee
9:

10: upon receiving S, Blockchain[start : end] from a governor in S0:
▷ recv. sc emits event from Alg.1, line 44 and bc prefix

11: if g ∈ S0 & received[g] == false then ▷ prevents duplicate broadcast
12: Elected← Elected ∪ S
13: BC ← BC ∪Blockchain[start : end]

14: for all S ∈ Elected do
15: count← count[S] + 1
16: if count[S] = n− t then
17: threshold← S ▷ received same S from n − t

18: if threshold == S then
19: for all bc ∈ BC do
20: for all B ∈ bc do
21: Bcount[B]← Bcount[B] + 1 ▷ no. of block B in recv. prefix
22: if Bcount[B] == n− t & B.index > highestIndex then

▷B is in n − t gov. chains
23: highestIndex← B.index
24: Bdecided ← B ▷ decided block so far
25: for all ip ∈ S do ▷ for IPs in committee
26: A← A ∪ {ip} ▷ add the IP address

27: close-connect ▷ stop connections with current governors
28: connect(A) ▷ connect with elected governors in A

29: if my-ip ∈ S then ▷ if I’m an elected governor
30: init(Bdecided) ▷ init. governor with Bdecided and its state.

31: threshold← NULL ▷ reset variables
32: Bcount← NULL
33: count← NULL

Algorithm 3: Governance reconfiguration at a blockchain node

of Alg. 3). Next, every blockchain prefix Blockchain[start :
end] received from a governor g : g ∈ S0 is stored in BC
(line 13 of Alg. 3). The blockchain prefix contains a chain of
blocks where the start index start is the first block decided in
the blockchain of governor g when in S0 while the end index
end is the last block decided in the blockchain of g when S
was emitted by g.

Once a governor broadcasted event S is received n − t
times (i.e., same S received n− t times) from n− t unique
governors (line 17 of Alg. 3), that means at least n − 2t of
the received S were from correct governors in the committee.
Since f ≤ t < n/3, S is the correct governor committee
elected. When this condition is met, Alg. 3 executing on every
blockchain node finds the block with the highest index decided
by n − t unique governors g : g ∈ S0 using the blockchain
prefixes received (lines 19-24 of Alg. 3).

Subsequently, the reconfiguration protocol closes the existing
network connection with the previous governor committee
(line 27 of Alg. 3). Then, every blockchain node connects with
the new governor committee (line 28 of Alg. 3). Finally, if the
blockchain node is also a governor elected in S, these governors
initialize themselves with Bdecided which is the highest index
block decided by n− t governors from committee S0.

For sake of simplicity, we consider that nodes connect to
the IP addresses of the new governors. The implementation
could be easily adjusted so that nodes connect to a specific

8

node ID that uniquely identifies a node. Since every blockchain
node connects with the newly elected governor committee, (1)
clients can send requests to the new governor committee (2)
governors can reach consensus on governance decisions and
(3) governors can elect the next set of governors.

Theorem 3. The governance reconfiguration (Alg. 3) satisfies
the Governance Reconfiguration Safety property.

Proof. By examination of Alg. 3 from the blockchain prefixes
received from n − t governors that sent S, each correct
blockchain node finds the common block with the highest
index Bdecided of all n− t prefixes. This block is the highest
confirmed/decided block by the governance committee S0

(lines 19-24 of Alg. 3). If a correct local blockchain node
is elected to the new governance committee S, then this node
initializes with Bdecided (line 30 of Alg. 3). Every newly
elected correct governor node in S initializes with the same
Bdecided. Thus, the first block locally stored after governance
reconfiguration by any two correct governor nodes is equal
satisfying our safety property.

VI. EVALUATION OF BYZANTINE FAULT TOLERANT
PROPORTIONAL GOVERNANCE

A. World-scale evaluation

We evaluate our Byzantine Fault Tolerant Proportional
Governance protocol on a world-scale to observe its feasibility.
To this end, we integrated our solution to Ethereum PoA and
Smart Redbelly Blockchain (SRBB) [27] which are two smart
contract supporting blockchains on the slower and faster end
of the blockchain spectrum. We used the Diablo blockchain
benchmarking suite [46] that evaluates blockchains against
pre-specified workloads. Our pre-specified workload consisted
of 1000 voters (i.e., current governors) casting random ordinal
ballots to 500 candidates to elect a committee of 200 governors
using our BFT-STV smart contract. We employed 200 AWS
c5.2xlarge EC2 instances of Ethereum PoA and SRBB [27],
spanning 10 AWS regions and 5 continents. Each AWS instance
represented 5 governors of the respective blockchain realising
a total of 1000 governors (i.e., 200×5), a restriction we placed
due to budgetary constraints. Finally, we used a transaction
sending rate of 1000 TPS, and considered the number of
Byzantine voters as t=333 (t < n/3).

Table II depicts the time taken in seconds for the BFT-
STV smart contract to elect a committee of 200 governors
when 1000 voters (i.e., current governors) cast random ordinal
ballots to 500 candidates on Ethereum PoA and SRBB.
Ethereum PoA takes 728 seconds (i.e., 12 minutes) to elect
a committee of 200 governors while SRBB [27] which was
recently found to yield better performance compared to modern
blockchains like Algorand [7], Solana [25], and Avalanche [49],
elected a committee of 200 governors within 358 seconds (i.e.,
5.96 minutes).

Based on Table II, the BFT-STV algorithm executed on
a smart contract was able to elect a committee of governors
within 12 minutes in one of the slowest smart contract supported
blockchains (i.e., Ethereum) and within half that time in a

Fig. 3. The execution time of BFT-STV in SRBB as we vary the number of
candidates (with 150 voters) and as we vary the number of voters (with 50
candidates)

faster blockchain (i.e., SRBB [27]). In contrast, Polkadot [3]
and Tron [47] elects a committee of governors in 24 hours
and 6 hours respectively. EoS elects a committee of governors
in 63 seconds [50] but elects only a small committee of 21
validators.

Blockchain #voters #ballots #candidates #governors time (seconds)
Ethereum PoA 1000 1000 500 200 728

SRBB 1000 1000 500 200 358

TABLE II
BFT-STV: THE TIME IN SECONDS FOR 200 GEO-DISTRIBUTED NODES OF

ETHEREUM POA AND SRBB REPRESENTING 1000 VOTERS (CURRENT
GOVERNORS) TO ELECT 200 NEW GOVERNORS FROM 500 CANDIDATES.

B. Micro-benchmarking the BFT-STV smart contract

In Figure 3 we present the performance of the BFT-STV
smart contract with varying numbers of voters/governors and
candidates. More specifically, Figure 3 presents the average
BFT-STV smart contract execution time in seconds on a single
SRBB [27] node over 3 runs for different numbers n and m
of voters and candidates, respectively.

In Figure 3, the top curve varies the number m of candidates
whereas the bottom curve varies the number n of voters. More
specifically, we varied the number n of voters and the number
m of candidates from 50 to 150 to elect a committee of k =
m/2 validators. Therefore, while we fixed m = 50 and varied
n, we had to fix n = 150 to vary m up to 150. Varying m
also allowed us to elect a varying committee of size k = m/2,
showing the ability of BFT-STV to elect committees of dynamic
size. We generated a random ordinal/ranked ballot for each
voter in this benchmark. As our goal was to purely observe the
BFT-STV smart contract execution, we only used a single node
for this particular benchmark to avoid the execution times being
distorted with the consensus times. We also considered t < n/3
(i.e., the number of Byzantine voters). The observations from
Figure 3 are as follows:

1) First, we observe that the number of candidates m impacts
the performance significantly with n = 150 voters, which
confirms our expectation. However, we also observe that
the raise decreases as m exceeds 100. We conjecture that
this is due to the way the Ethereum Virtual Machine [24]
in EVM-based blockchains garbage collects and alternates

9

between CPU resource usage for transaction execution
and I/O usage to persist the information.

2) Second, we observe that when the number of voters
increases with m = 50, the execution time increases
sub-linearly: it doubles while the number of voters triples.
This is because increasing the number n of voters helps
candidates reach the quota qB of votes rapidly without
transferring the vote excess. Hence, the committee is
elected faster than expected and raises the execution time
only slightly.

VII. RELATED WORK

In this section, we present the work related to blockchain
governance. Table I, provides a summary of such blockchains.
For the sake of brevity, we omit the discussion of blockchains
that assume synchrony [51], [24], [40], [49], [19], [15], [52].

A. Proof-of-stake blockchain governance

Algorand [7] assumes a slowly adaptive adversary to mitigate
bribery like we do (§III-D). Algorand offers governance through
sortition, the act of electing governors randomly among a set
of candidates. To mitigate bribery attacks, Algorand replaces
governors at each step of the consensus protocol within a
consensus round. The key advantage of the sortition is its non-
interactive cryptographic technique that prevents adversaries
from predicting future governors. However, Algorand does
not aim at offering proportionality as it does not execute
a proportional election to select governors. The PoS based
sortition used in Algorand can lead to an oligarchy among
governors as nodes with more stake have more probability of
being elected as governors.

Polkadot [23] rotates its governors every era, a period that
lasts about one day, with a multi-winner election. Unlike our
solution that employs KYC, Polkadot exploits a nominated
proof-of-stake (NPOS). In NPOS, the chances of being elected
as a governor is proportional to the stake a candidate possesses.
Thus, despite using a multi-winner election, Polkadot favors
the wealthiest, leaving the potential for an oligarchy to be
formed within the governance.

EOS [9] runs a delegated multi-winner approval voting
system to elect 21 governors. As opposed to BFT-STV (§IV),
EOS exploits delegated proof-of-stake (DPOS) where token
holders elect governors by casting a vote with a weight
proportional to the token holder’s stake. Thus, EOS [9] also
favors the wealthiest to be elected as governors leaving the
potential for an oligarchy to be formed among the governors.

In summary, the aforementioned solutions do not offer
proportionality as each vote is based on the wealth or assets the
corresponding voter owns: the more they own the higher weight
their vote gets. Given the Pareto Principle [53] stating that few
users typically own most of the resources (as an example in
2021, the wealthiest 1% of US citizens owned about 1/3 of the
total wealth [54]), these approaches have the risk of forming
an oligarchy of governors.

B. Proof-of-work blockchain governance

Zilliqa [18] requires a candidate to solve a PoW puzzle
and produce a reconfiguration block to join a committee of
governors. Thus, the election of the governance committee
favors powerful nodes capable of solving the PoW puzzle fast.
Such PoW blockchain governance mechanisms can lead to an
oligarchy in the governance where the oligarchy consists of
governors with the highest computation power.

C. BFT blockchain governance

The vast majority of Byzantine fault tolerant (BFT)
blockchains assume that the list of governors is selected
by an external service. As a result, no proportionality is
offered. ComChain [20] lists the public keys of governors
in configuration blocks but assumes that the new lists of
governors are proposed by an external service. Similarly,
Tendermint/Cosmos [55] lists the public keys of governors in
blocks but associates a voting power to each validator based on
its stake, hence risking the same bribery attacks as other proof-
of-stake blockchains (§VII-A). SmartChain [22] also stores the
committee public keys in dedicated reconfiguration blocks but
simply grants governor credentials to every requesting node,
without requiring an election. Libra [21] mentions a similar
reconfiguration service but no details are provided regarding
the selection of governors or whether this selection offers
proportionality. As far as we know other BFT blockchains have
a static set of governors, which makes them more vulnerable
to bribery attacks and the formation of an oligarchy, including
Stellar [56], SBFT [57], Concord [58] and Quorum [26].

VIII. CONCLUSION

We presented proportional governance reconfiguration to
mitigate the formation of an oligarchy of governors in
blockchain governance committees. Proportional governance
reconfiguration is the first solution that embeds the following
two contributions: (1) preventing an oligarchy among governors
using proportionality (Def. 1) and automatic governance
reconfiguration, and (2) providing compatibility with a wide
range of smart contract supported blockchains [26], [7], [59].
We proved the proportional governance reconfiguration ensures
proportionality and non-dictatorship (Def. 1) and implemented
proportional governance on Ethereum-PoA and Smart Redbelly
Blockchain [27] which are two smart contract supporting
blockchains. Our evaluation showed that our proportional
governance solution implemented as BFT-STV on a smart
contract (Alg. 1) can elect 200 governors within 6-12 minutes
when 1000 voters cast ordinal ballots to 500 candidates.

ACKNOWLEDGEMENTS

This work is supported in part by the Australian Research
Council Future Fellowship funding scheme (#180100496)
entitled “The Red Belly Blockchain: A Scalable Blockchain
for Internet of Things” and the Ethereum Foundation.

10

REFERENCES

[1] F. Michelle, Blockchain Governance. Cambridge University Press, 2018,
pp. 182–209.

[2] V. Zamfir, “Blockchain governance,” in Ethereum Community Confer-
ence, 2019, accessed: 2021-05-28, https://www.youtube.com/watch?v=
PKyk5DnmW50.

[3] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama,
H. K. Alper, X. Luo, F. Shirazi, A. Stewart, and G. Wood, “Overview of
polkadot and its design considerations,” arXiv, Tech. Rep. 2005.13456,
2020.

[4] “Block producers ranking - real time statistics,” accessed: 2020-11-14,
https://eosauthority.com/producers_rank.

[5] L. Kiffer, D. Levin, and A. Mislove, “Stick a fork in it: Analyzing the
ethereum network partition,” in Proceedings of the 16th ACM Workshop
on Hot Topics in Networks, 2017, pp. 94–100.

[6] N. Webb, “A fork in the blockchain: Income tax and the bitcoin/bitcoin
cash hard fork,” North Carolina Journal of Law & Technology, vol. 19,
no. 4, 2018.

[7] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Operating Syst. Principles, 2017, pp. 51–68.

[8] “The eth2 upgrades,” accessed: 2020-11-14, https://ethereum.org/en/eth2/.
[9] “EOS.IO technical white paper v2,” accessed: 2020-12-

07, https://github.com/EOSIO/Documentation/blob/master/
TechnicalWhitePaper.md#consensus-algorithm-bft-dpos.

[10] R. Dixon, “Fair criteria and procedures for establishing legislative
districts,” Policy Studies Journal, vol. 9, no. 6, p. 839, 1981.

[11] N. Tideman, “The single transferable vote,” Journal of Economic
Perspectives, vol. 9, no. 1, pp. 27–38, March 1995.

[12] “Proportional representation voting systems of australia’s parliaments,”
2021, accessed:2021/06/04 –https://www.ecanz.gov.au/electoral-systems/
proportional.

[13] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in distributed
systems,” in International conference on reliable software technologies.
Springer, 1996, pp. 38–57.

[14] M. C. Pease, R. E. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, 1980.

[15] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
931–948. [Online]. Available: https://doi.org/10.1145/3243734.3243853

[16] K. J., “Tendermint: Consensus without mining,” 2014.
[17] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the

permissionless model,” in 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[18] “The zilliqa technical whitepaper,” https://docs.zilliqa.com/whitepaper.pdf.
[Online]. Available: https://docs.zilliqa.com/whitepaper.pdf

[19] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE Symposium on Security and Privacy (S&P), 2018,
pp. 583–598.

[20] G. Vizier and V. Gramoli, “Comchain: A blockchain with Byzantine
fault tolerant reconfiguration,” Concurrency and Computation, Practice
and Experience, vol. 32, no. 12, Oct 2019.

[21] S. Bano, M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot,
Z. Li, D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State
machine replication in the libra blockchain,” 2019, accessed: 2019-10-
01, https://developers.libra.org/docs/assets/papers/libra-consensus-state-
machine-replication-in-the-libra-blockchain.pdf.

[22] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
byzantine replication to blockchain: Consensus is only the beginning,” in
50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, 2020, pp. 424–436.

[23] A. Cevallos and A. Stewart, “A verifiably secure and proportional
committee election rule,” arXiv e-prints, pp. arXiv–2004, 2020.

[24] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2015, yellow paper.

[25] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0. 8.13,” Whitepaper, 2018.

[26] J. Chase, “Quorum whitepaper,” accessed: 2020-12-04,
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%
20Whitepaper%20v0.2.pdf.

[27] D. Tennakoon, Y. Hua, and V. Gramoli, “Smart Redbelly Blockchain:
Reducing congestion for Web3,” in Proceedings of the 37th IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
2023.

[28] F. T. Lui, “An equilibrium queuing model of bribery,” Journal of Political
Economy, 1985.

[29] J. Bonneau, “Why buy when you can rent? Bribery attacks on Bitcoin-
style consensus,” in Financial Cryptography and Data Security Work-
shops, 2016, pp. 19–26.

[30] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in CCS, 2016.

[31] D. Black, The Theory of Committees and Elections. Cambridge
University Press, 1958.

[32] M. Dummett, Voting Procedures. Oxford University Press, 1984.
[33] J. L. . I. D. Hill, “To advance the understanding of preferential voting

system - notes on the droop quota,” Voting matters, 2007.
[34] D. Woodall, “Properties of preferential election rules,” in Voting Matters,

1994, accessed: 04/05/2021, https://www.votingmatters.org.uk/ISSUE3/
P5.HTM.

[35] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon, Multiwinner
Voting: A NewChallenge for Social Choice Theory. Lulu.com, 2017.

[36] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” J. ACM, vol. 35, no. 2, pp. pp.288–323, 1988.

[37] K. J. Arrow, “A difficulty in the concept of social welfare,” Journal of
Political Economy, vol. 58, no. 4, pp. 328–346, 1950.

[38] A. S. Tanenbaum and M. van Steen, Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007.

[39] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[40] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable byzantine consensus,”
in 21st International Conference on Principles of Distributed Systems,
2017, pp. 25:1–25:19.

[41] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko, “Properties of
multiwinner voting rules,” Social Choice and Welfare, vol. 48, no. 3, pp.
599–632, 2017.

[42] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in 34th Annu. Int. Conf. the Theory
and Applications of Crypto. Techniques, 2015, pp. 281–310.

[43] B. Y. Chan and E. Shi, “Streamlet: Textbook streamlined blockchains,”
in Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, 2020, pp. 1–11.

[44] poa.network, “Poa validator dapp,” 2022, accessed: 2022-22-04 - https:
//validators.poa.network/poa-dapps-validators.

[45] T. Crain, C. Natoli, and V. Gramoli, “Red belly: a secure, fair and scalable
open blockchain,” in IEEE Symposium on Security and Privacy (S&P),
May 2021, pp. 1501–1518. [Online]. Available: https://www.computer.
org/csdl/pds/api/csdl/proceedings/download-article/1t0x9nljvwI/pdf

[46] V. Gramoli, R. Guerraoui, A. Lebedev, C. Natoli, and G. Voron, “Diablo:
A benchmark suite for blockchains,” To appear in 18th European
Conference on Computer Systems (EuroSys), 2023. [Online]. Available:
https://gramoli.github.io/pubs/Eurosys23-Diablo.pdf

[47] D. Staff, “Tron governance: How to vote using trx,” accessed:2022-10-14,
https://decrypt.co/resources/tron-governance-how-to-vote-using-trx.

[48] S. Janson, “Thresholds quantifying proportionality criteria for election
methods,” arXiv preprint arXiv:1810.06377, 2018.

[49] T. Rocket, “Snowflake to avalanche: A novel metastable
consensus protocol family for cryptocurrencies,” Tech. Rep.,
2018, accessed: 2021-12-01. [Online]. Available: https://ipfs.io/
ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV

[50] G. A. F. Rebello, G. F. Camilo, L. Guimaraes, L. A. C. de Souza,
and O. Duarte, “Security and performance analysis of quorum-based
blockchain consensus protocols,” Electrical Engineering Program,
COPPE/UFRJ, Tech. Rep, 2020.

[51] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2008.
[52] V. K. Bagaria, S. Kannan, D. Tse, G. C. Fanti, and P. Viswanath,

“Prism: Deconstructing the blockchain to approach physical limits,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15,
2019, 2019, pp. 585–602.

11

https://www.youtube.com/watch?v=PKyk5DnmW50
https://www.youtube.com/watch?v=PKyk5DnmW50
https://eosauthority.com/producers_rank
https://ethereum.org/en/eth2/
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#consensus-algorithm-bft-dpos
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md#consensus-algorithm-bft-dpos
https://www.ecanz.gov.au/electoral-systems/proportional
https://www.ecanz.gov.au/electoral-systems/proportional
https://doi.org/10.1145/3243734.3243853
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://www.votingmatters.org.uk/ISSUE3/P5.HTM
https://www.votingmatters.org.uk/ISSUE3/P5.HTM
https://validators.poa.network/poa-dapps-validators
https://validators.poa.network/poa-dapps-validators
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/1t0x9nljvwI/pdf
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/1t0x9nljvwI/pdf
https://gramoli.github.io/pubs/Eurosys23-Diablo.pdf
https://decrypt.co/resources/tron-governance-how-to-vote-using-trx
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV

[53] V. Pareto, Cours d’Économie Politique: Nouvelle édition par G.-H.
Bousquet et G. Busino. Librairie Droz, 1964.

[54] R. Frank, “The wealthiest 10% of americans own a record 89% of all
u.s. stocks,” https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-
of-americans-own-a-record-89percent-of-all-us-stocks.html. [Online].
Available: https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-
of-americans-own-a-record-89percent-of-all-us-stocks.html

[55] tendermint.com, “Tendermint,” accessed: 2021-07-21 https://docs.
tendermint.com/master/.

[56] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni, J. Jove,
R. Malinowsky, and J. McCaleb, “Fast and secure global payments
with stellar,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019, pp. 80–96.

[57] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a scalable
and decentralized trust infrastructure,” in Proceedings of the 49th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019.

[58] VMware, “Concord,” accessed: 2020-11-28, https://github.com/vmware/
concord.

[59] “Ethereum Proof-of-Authority Consortium - Azure,”
https://docs.microsoft.com/en-us/azure/blockchain/templates/ethereum-
poa-deployment. [Online]. Available: https://docs.microsoft.com/en-
us/azure/blockchain/templates/ethereum-poa-deployment

12

https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-of-americans-own-a-record-89percent-of-all-us-stocks.html
https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-of-americans-own-a-record-89percent-of-all-us-stocks.html
https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-of-americans-own-a-record-89percent-of-all-us-stocks.html
https://www.cnbc.com/2021/10/18/the-wealthiest-10percent-of-americans-own-a-record-89percent-of-all-us-stocks.html
https://docs.tendermint.com/master/
https://docs.tendermint.com/master/
https://github.com/vmware/concord
https://github.com/vmware/concord
https://docs.microsoft.com/en-us/azure/blockchain/templates/ethereum-poa-deployment
https://docs.microsoft.com/en-us/azure/blockchain/templates/ethereum-poa-deployment
https://docs.microsoft.com/en-us/azure/blockchain/templates/ethereum-poa-deployment
https://docs.microsoft.com/en-us/azure/blockchain/templates/ethereum-poa-deployment

	Introduction
	Background and Motivations
	Importance of blockchain governance
	Preventing governance oligarchy
	Social choice theory with Byzantine fault tolerance

	The Proportional Governance Reconfiguration Problem
	Byzantine fault tolerant distributed model
	Proportional governance problem
	Governance reconfiguration problem
	Threat model
	Bribery attack
	Sybil attacks

	Byzantine Fault Tolerant Proportional Governance
	Overview
	Byzantine Fault Tolerant Single Transferrable Vote
	Classic STV with the Byzantine quota
	Election sharding
	Proofs of proportional governance

	Automatic Governance Reconfiguration
	Evaluation of Byzantine Fault Tolerant Proportional Governance
	World-scale evaluation
	Micro-benchmarking the BFT-STV smart contract

	Related Work
	Proof-of-stake blockchain governance
	Proof-of-work blockchain governance
	BFT blockchain governance

	Conclusion
	References

