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Abstract—Most popular blockchain solutions rely on proof-
of-work to guarantee that participants reach consensus on a
unique block per index of the chain. As consensus is impossible in
the general case, it seems that these blockchain systems require
messages are delivered fast and no participant mines faster than
the crowd. To date, no experimental settings have however been
proposed to demonstrate this hypothesis.

In this paper, we identify conditions under which these
blockchain systems fail to ensure consensus and present a
reproducible execution on our Ethereum private chain. To this
end, we introduce the Blockchain Anomaly, the impossibility
for the blockchain to guarantee that a committed transaction
is not abortable. This anomaly may translate into dramatic
consequences for the user of proof-of-work blockchains.
Named after the infamous Paxos anomaly, this anomaly makes
dependent transactions, like “Bob sends money to Carole after
he received money from Alice” impossible and may lead to
double spending. We also explain how the anomaly differs from
a 51-percent attack and how one could avoid it by adapting the
Ethereum implementation or by exploiting smart contracts.
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I. INTRODUCTION

Mainstream public blockchain systems, like Bitcoin [1]
and Ethereum [2], require to reach consensus on the Internet
despite the presence of malicious participants and possible
congestions that delay messages. Yet, it is impossible for a dis-
tributed system including a faulty process to reach consensus
if messages may not be delivered within a bounded time [3].
This raises interesting questions about the properties ensured
by blockchains. Foundational consensus algorithms [4] were
proposed to never reach a decision in case of arbitrary message
delays, but to respond only correctly if ever. Surprisingly, these
blockchain systems adopt a different approach, sometimes re-
sponding incorrectly, especially when delays occur [5]. These
few last years, the concept of private chain gained traction
for its ability to offer blockchain among multiple companies
in a private, controlled environment. The R3 consortium is
currently running an Ethereum private chain with more than 45
banks worlwide.1 To understand the limitations of consensus
and its potential consequences in the context of private chains,
we deployed our own private chain and stress-tested the
systems in corner-case situations.

In this paper, we present the Blockchain anomaly, a new
problem named after the Paxos anomaly [6], [7], [8], that
prevents Bob from executing a transaction based on the current
state of the blockchain. In particular, we identified a complex

1http://www.coindesk.com/r3-ethereum-report-banks.

scenario where the agreement on the state of the blockchain
is not sufficient to guarantee immutability of the chain. This
anomaly can lead to dramatic consequences, like the loss
of virtual assets or a double-spending attack. We also show
that some smart contracts, expressive code snippets that help
defining how virtual assets can be owned and exchanged in
the system, may suffer from the Blockchain anomaly. These
results confirm the risk of using a blockchain in a private con-
text without understanding its complex design features, which
also confirms the need for solid research foundations [9].
We terminate this paper by providing the source code of a
more complex smart contract that can circumvent a particular
example of the Blockchain anomaly.

Most blockchain systems track a transaction by including it
in a block that gets mined before being appended to the chain
of existing blocks, hence called blockchain. The consensus
algorithm guarantees a total order on these blocks, so that
the chain does not end up being a tree. This process is
actually executed speculatively in that multiple new blocks
can be appended transiently to the last block of the chain—a
transient branching process known as a fork. Once the fork
is discovered, meaning that the participants learn about its
branches, the “longest” (i.e., heaviest in Ethereum or deepest
in Bitcoin) branch is adopted as the valid one. Blockchain
systems usually assume that forks can grow up to some limited
depth, as extending a branch requires to solve a cryptopuzzle
that boils down to computing for a long time during which one
gets likely notified of the longest chain. Bitcoin recommends
six blocks to be mined after a transaction is issued to consider
the transaction accepted by the system. Similarly, Ethereum
states that five to eleven more blocks should be appended after
a block for it to be accepted [2].

However, consensus cannot be solved in the general case.
In particular, foundational results of distributed computing
indicate that consensus cannot be reached if there is no upper-
bound on the time for a message to be delivered and if some
participant may fail [3]. Consensus is usually expressed in
three properties: agreement indicating that if two non-faulty
participants decide they decide on the same block, validity
indicating that the decided block should be one of the blocks
that were proposed and termination indicating that eventually a
correct participant decides. The common decision that is taken
by famous consensus protocols, like Paxos [10] and Raft [11],
is to make sure that if the messages get delayed, at least
validity and agreement remain ensured by having the algorithm
doing nothing, hence sacrificing termination to ensure that only
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correct responses—satisfying both validity and agreement—
can be returned. These “indulgent” consensus algorithms [12]
are appealing, because if after some time the network stabilizes
and messages get delivered in a bounded time, then consensus
can be reached [4].

We show experimentally that the Ethereum protocol can
suffer from the Blockchain anomaly. We describe a distributed
execution where even committed transactions of a private
chain get reordered so that the latest transaction ends up
being committed first. We chose Ethereum for our experiments
as it is a mainstream blockchain system that allows the
deployment of private chains. Although there exist solutions
in the distributed computing literature to order some trans-
actions [13] or to use unstructured overlays to cope with
malicious participants [14], to our knowledge no experiment
has ever been proposed to show that proof-of-work protocols
are subject to such a problem.

We show how to reproduce the Blockchain anomaly by
following the same execution, where messages get delayed
between machines while some miner mines new blocks.
Despite transactions being already committed the eventual
delivery of messages produces a reorganisation reordering
some of the committed transactions. In our execution, miners
are setup to dedicate different number of cores to the mining
process, hence mining at different speeds. We argue that the
misconfiguration of a machine and the heterogeneous mining
capabilities of machines belonging to different companies are
sufficiently realistic to allow an attacker to execute a double-
spending attack.

Section II overviews the blockchain technology, the Paxos
anomaly and defines the important terms of the paper. In
Section III, we present the blockchain anomaly. In Section IV,
we present our experiments and illustrate how the anomaly is
possible with less than half of the mining power. In Section V,
we explain how replacing transactions by smart contracts could
help bypassing the anomaly. Section VI presents the related
work. And Section VII concludes.

II. PRELIMINARIES

In this section, we present the key concepts of Bitcoin and
Ethereum consensus protocols, the condition of their termi-
nation and the Paxos anomaly before presenting the general
model. We consider a distributed blockchain system of n peers
where peers can exchange coins from one to another through
transactions. Peers can fail arbitrarily, they can stop working
and can be malicious. Any peer can issue transactions that get
recorded into the transaction pool. Only special peers, called
miners, can bundle a subset of the pool of transactions into
a block after ensuring that there are sufficient funds available
on the accounts of the ledger and that these transactions do
not conflict.

A. Blockchain Systems

A blockchain can be considered as a replicated state ma-
chine [15] where a reversed link between blocks is a pointer
from a state to its preceding state as depicted in Figure 1(a).

Consensus is necessary to totally order the blocks, hence
maintaining the chain structure. To reach consensus despite
arbitrary failures, including malicious behaviors, traditional
blockchain systems adopted a technique based on proof-of-
work, requiring a proof of computation [16]. Miners provably
solve a hashcash crypto puzzle [17] to append a new block to
the chain. Given a block and a threshold, a miner repeatedly
selects a nonce and applies a pseudo-random function to this
block and the selected nonce until it obtains a result lower
than the threshold. The difficulty of this work limits the rate
at which new blocks can be generated by the network.

B. From Nakamoto’s Consensus to Smart Contracts

Nakamoto’s consensus [1] is at the core of Bitcoin,
the mainstream decentralised digital currency. Interestingly,
Nakamoto’s consensus does not guarantee agreement deter-
ministically. Instead it guarantees that agreement is met with
some probability close to 1. The difficulty of the crypto puzzles
used in Bitcoin leads to mining a block every 10 minutes.
The advantage of this long period, is that it is relatively rare
for the blockchain to fork due to blocks being simultaneously
mined and Bitcoin resolves these forks by choosing the longest
branch and discarding the other(s).

Ethereum [18] is a recent open source cryptocurrency
platform that also builds upon proof-of-work. As opposed to
Bitcoin’s consensus protocol, Ethereum generates one block
every 12–15 seconds. While it improves the throughput (trans-
actions per second) it also favors transient forks as miners are
more likely to propose new blocks simultaneously. To avoid
frequently wasting mining efforts to resolve forks, Ethereum
uses the GHOST (Greedy Heaviest Observed Subtree) protocol
that does not necessarily discard all the, so called uncle,
blocks of non selected branches. Ethereum offers a Turing-
complete programming language that can be used to write
smart contracts [19] that define new ownership rules.

C. Termination of Consensus

By relaxing the agreement property of consensus,
blockchain systems can guarantee termination deterministi-
cally. In the context of blockchain, termination of consensus
indicates that a block has been decided for the next available
block index. We say that all the transactions of a decided block
are committed.2 This decision upon a block inclusion in the
chain is necessary for cryptocurrency exchange platforms, for
example, to determine that coins of a particular type that are
newly minted3 within this block can be converted into altcoins
(coins of a different type) or fiat currencies (e.g., EUR, USD).
In particular, observing that a block was mined and appended
to the chain is not sufficient to guarantee that it is decided: this
block could be part of one branch of a transient fork without
consensus being reached yet on any of these branches.

2Here, we use the term “committed” rather than “confirmed” as, in the
blockchain terminology, a transaction is meant to be “confirmed” sometimes
when only its block is mined, and sometimes when k + 1 blocks get mined
(its own block and the k successor blocks).

3As opposed to mining that includes the computation of the miners, minting
consists simply of the creation of coins.
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(a) The blockchain structure starts with a genesis block
at index 0 and links successive blocks in reverse order of
their index; a new block is decided at index i > 0 when
the blockchain depth reaches i+k (note that a blockchain
of depth of 0 is a genesis block)

ti

tj

ti

time

index i

index j

ti tj

1. ti is proposed 2. ti appears committed 4. tj is committed first

3. tj is proposed by another node

(b) The Blockchain anomaly: a first client issues ti
that gets successfully mined and committed then a
second client issues tj , with tj being conditional
to the commit of ti (note that j ≥ i + k for
ti to be committed before tj gets issued), but
the transaction tj gets finally reorganized and suc-
cessfully committed before ti, hence violating the
dependency between ti and tj

ti ti’

time

index i

index j

1. ti and tj are proposed

2. ti’ and tj’ are proposed

3. ti’ and tj are committed

tj tj’

ti’

tj

(c) The Paxos anomaly: a first leader proposes
ti and tj for slots i and j > i (with tj being
implicitly conditional to the commit of ti), a
second leader proposes t′i and t′j while a third
leader commits t′i and tj for slots i and j,
respectively, hence violating the dependency
between ti and tj

Fig. 1: An example of decided blocks and the difference between the Paxos and the Blockchain anomaly

Figure 1(a) depicts the termination of consensus on the
index i of a blockchain starting with the genesis block. An
arrow pointing from right to left indicates that a block contains
a hash of its predecessor block, the one located immediately
on its left. Newly mined blocks are added to the right end of
the blockchain that may fork transiently if multiple blocks
referring to the same predecessor get mined concurrently.
Forks are only transient and their resolution depends on the
blockchain system in use. The consensus for an index i
terminates when participants decide on the new block to be
assigned at index i. The decision upon the block at index i
occurs for all i > 0 when the blockchain depth reaches i+ k,
where k ≥ 0 is a constant dependent on the Blockchain.

Different blockchain systems adopt different values of k
to define termination. In Bitcoin (btc), kbtc = 5, meaning
that the block at index i is decided—consensus for index
i terminates—when the kbtc + 1 = 6 blocks at indices
i, ..., i + 5 have been successfully mined. As we previously
mentioned, a new block is decided every 10 minutes in
Bitcoin, hence it takes (kbtc + 1) ∗ 10min = 1hour for a
transaction to be committed in Bitcoin. In Ethereum (eth) since
version 1.3.5 Homestead, keth = 11, meaning that the block
at index i is decided—consensus for index i terminates—
when the blockchain depth reaches i + 11. Hence it takes
(keth+1)∗15 sec = 3min for transactions to be committed in
Ethereum. Note that some cryptocurrency exchange platforms
adopt different values of k to adjust the probability of agree-
ment, hence QuadrigaCX Ether Trading waits for k′btc+1 = 4
blocks to be mined in the Bitcoin blockchain while it waits for
keth+1 = 12 blocks to be mined in the Ethereum blockchain.4

D. The Paxos Anomaly

Paxos is a famous consensus protocol originally guaran-
teeing agreement and validity despite crash failures [10].
The Paxos anomaly [7], [6] stems from the difficulty of
implementing conditional requests (or transactions) in Paxos:
Paxos decides on individual proposed transactions, poten-
tially violating dependencies between transactions even when

4https://www.quadrigacx.com/faq.

proposed by the same requester as depicted in Figure 1(c)
where a slot can be viewed as the index of the decision.
These dependencies can be useful to make the execution of
a transaction tj dependent on the successful execution of a
previous transaction ti: for example if Bob wants to transfer
an amount of money to Carole (tj) only if he successfully
received some money from Alice (ti). In centralised systems,
this anomaly can be easily avoided by enforcing an ordering
on these transactions by simply forwarding all requests to a
primary node or coordinator [6]. However, in Paxos, as in fully
decentralised systems, the first transaction may not be decided
in favor of another proposed transaction in a first consensus
instance, while in a subsequent consensus instance the second
transaction may be successfully decided. This results in a
violation of the condition that the second transaction should
be decided only if the first transaction was decided.

Below we present the Blockchain anomaly due to the
decentralised aspects of blockchain systems, like Bitcoin and
Ethereum. The Blockchain anomaly shares similarities with
the Paxos anomaly, except that it can occur when transac-
tions, issued by different nodes of the system, are not even
concurrent.

III. THE BLOCKCHAIN ANOMALY

We present the Blockchain anomaly, an anomaly of
blockchain consensus protocols.

A. Causes of the Blockchain Anomaly

The problem stems from the asynchrony of the network, in
which message delays cannot be bounded, and the termination
of consensus. Although two miners mine on the same chain
starting from the same genesis block, a long enough delay
in messages between them could lead to having the miners
seemingly agree separately on different branches containing
more than k blocks each, for any k. This anomaly is dramatic
as it can lead to simple attacks within any network where users
have an incentive to maximise their profits—in terms of coins,
stock options or arbitrary ownership. Moreover, this scenario is
realistic in the context of (consortium or fully) private chain
where the employees of an institution, like Data61-CSIRO,
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have direct access to some of the network resources. When
messages get finally delivered, the results of the disagreement
creates inconsistencies.

B. Uncommitting Transactions is Abnormal

Figure 1(b) depicts the Blockchain anomaly, where a trans-
action ti gets committed as part of slot i. After observing
that ti is committed, a node proposes a new transaction tj
knowing that ti was successfully committed. Again, one can
imagine a simple scenario where “Bob transfers an amount of
money to Carole” (tj) only if “Bob had successfully received
some money from Alice” (ti) before. However, once these
nodes get notified of another branch of committed transactions,
they decide to reorganise the branch to resolve the fork. The
reorganisation removes the committed transaction ti from slot
i. Later, the transaction tj is successfully committed in slot i.

The anomaly stems from the violation of the dependency
between tj and ti: tj occurred meaning that Bob has trans-
ferred an amount of money to Carole, however, ti did not
occur meaning that Bob did not receive money from Alice.
Note that in Bitcoin, transaction ti gets discarded whereas in
Ethereum transaction ti may in some cases be committed in
slot j.

C. Facilitating a Double-Spending Attack

One dramatic consequence of the Blockchain anomaly is
the possibility for an attacker to execute a double-spending
attack: converting, for example, all his coins into goods
twice. The scenario is similar to a double-spending attack
against Bitcoin [20] and consists of the attacker issuing a first
transaction t1 that converts all its coins into goods in block i
and starting mining blocks after block i−1 in isolation of the
network. As part of this mining, the attacker mines another
transaction t2 that also converts all its coins into goods. The
attacker then waits for the blockchain depth to reach i+k after
which it can collect its goods as a result of transaction t1, then
it publicizes its longer chain without t1 so that the chain gets
adopted by the rest of network. t2 gets committed in block j
and after the chain depth reaches j + k, the peer can collect
its goods for the second time. Note that even if one tries to re-
commit t1 later, the transaction will be invalidated because the
balance is insufficient, however, the double-spending already
occurred.

D. Tracking Blockchain Anomalies

Another dramatic aspect of the Blockchain anomaly is that
it goes undetected. More specifically, the Blockchain anomaly
relies on a wrongly committed state of the blockchain. Once
the wrongly committed state gets uncommitted, there is no
way to a posteriori observe this problematic state and to notice
that a blockchain anomaly occurred. Although it is possible
to observe that a peer mined several blocks in a row, there
is no way to track down the beneficiaries of the Blockchain
anomaly. This dangerously incentivizes participants to lever-
age the Blockchain anomaly to attack the private chain.

IV. EXPERIMENTAL EVALUATION

In this section, we describe a distributed execution involving
a private chain that results in the Blockchain anomaly.

A. Experimental Setup

We deployed a private blockchain system in our local area
network using geth version 1.4.0, which is a Go implementa-
tion of the command line interface for running an Ethereum
node. We setup three machines connected through a 1 Gbps
network, two consisting of miners, p1 and p3, generating
blocks and one consisting of a peer p2 simply submitting
transactions. Peers p1 and p2 consist of 2 machines with 4 ×
AMD Opteron 6378 16-core CPU running at 2.40 GHz with
512 GB DDR3 RAM, each. Peer p3 consists of a machine with
2 × 6-core Intel Xeon E5-260 running at 2.1 GHz with 32 GB
DDR3 RAM.

We artificially created a network delay by transiently anni-
hilating connection points between machines. Note that such
artificial delays could be reproduced by simply unplugging an
ethernet cable connecting a computer to the company network
and does not require an employee to access physically a switch
room.

Also, we made sure p3 would mine faster than p1, by mining
with the 24 hardware threads of p3 and a single hardware
thread of p1. The same speed difference could be obtained
between a loaded server and a server that does run any other
service besides mining. Note that hardware characteristics may
also help one machine mine faster than the rest of a private
chain network. For example, a machine equipped with an
AMD Radeon R9 290X would mine faster in Ethereum than a
pool of 25 machines, each of them mining with an Intel Core
i7. The same setting as the one used above could allow us to
conduct a 51-percent attack, however, the 51-percent attack is
not necessary to encounter a blockchain anomaly. For example
in a private blockchain adopting the longest branch, if the
attacker only owns a minority of the mining power then not
adapting the block size or the difficulty of the crypto-puzzle
adequately with respect to the network delay could result in
having the system adopting p3’s branch anyway.

B. Distributed Execution

For the sake of reproducibility, we present a simple exe-
cution where a malicious miner mines faster than a correct
miner, the discussion of the anomaly when the malicious
miner owns less than half of the mining power is defer to
Section IV-E. In our experiment, the client only sends coins
once the peer owns a verified amount of coins. The peer
performs a transaction t2 only if it was shown by the system
that the previous transaction t1 had been committed and the
money was successfully transferred to its wallet.

Figure 2 depicts the distributed execution leading to the
Blockchain anomaly where p1, p2 and p3 exchange informa-
tion about the blockchain whose genesis block is denoted ‘G’.

1) Peer p1 mines a first block after the genesis block and
informs p2 and p3 to update their view of the blockchain
state.
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1

30 mined blocks

12 mined blockst1

t2

t2 12 blocks

t1p1

p2

p3
message delays

t1G
0 1 2 3 15

G
0 32

blockchain state viewed by p1 and p2:

blockchain state viewed by p3: t2G
0 32 33 45

t2G
0 32 33 45

ti transaction ti submitted to pool ti block mined with transaction tii i mined blocks

1

Fig. 2: Execution scenario leading to the Blockchain anomaly: p3 mines a longer chain than p1 without including t1 and
without disseminating new blocks until it forces a reorganisation that imposes t2 to be committed while t1 appears finally

uncommitted

2) Peer p3 mines a second block and informs p1 and p2 of
this new block.

3) A network delay is introduced between peers p1 and p2
on the one hand, and peer p3 on the other hand.

4) Peer p1 submits transaction t1 and informs p2 but fails
to inform p3 due to the network delay. In the meantime,
peer p3 starts mining a long series of 30 blocks.

5) Peer p1 mines a block that includes transaction t1 and
mines 12 subsequent blocks; p1 then informs p2 but not
p3 due to the network delay.

6) Peer p2 receives the notification from p1 that t1 is
committed because its block and k subsequent blocks
are mined; then p2 decides to submit transaction t2 that
should only execute after t1.

7) The network becomes responsive and p3 who receives
the information that t2 is submitted, mined t2 in a block
along with 12 subsequent blocks.

8) Once peers p1 and p2 receive from p3 the longest
chain of 45 blocks, they adopt this chain, discarding
or postponing the blocks that were at indices 2 to 15,
including the transaction t1, of their chain.

9) All peers agree on the final chain of 45 blocks in which
t2 is committed and where t1 is finally not committed
before t2.

This execution results in a violation of the conditional
property of transaction t2 stating that t2 should only execute if
t1 executed first. This violation occurred because transaction
t1 had been included in one chain, decided and agreed by two
of the participants, it was then changed after the message of
the third participant was finally delivered to the rest of the

network.

C. Automating the Reproduction of the Anomaly

To illustrate the anomaly, we wrote a script that automated
the execution depicted in Figure 2. Figure 3(b) represents the
execution of a script that execute 8 iterations of the Blockchain
anomaly over a period of 50 minutes. Again the goal is to wait
until t1 gets committed before issuing t2 that ends up being
committed while t1 does not appear to be. Note that this is
similar to Figure 1(b) except that t2 is not necessarily included
at the index t1 occupied initially. In particular, the block in
which t2 gets included varies from one iteration to another due
to the non-determinism of the execution as indicated by the
curve with square points. This non-determinism is explained
by the randomness of the mining process and the latency
of the network that also impacts the time it takes for the
consensus to terminate (curve with triangle points) in each
iteration of the experiment. Note that we use k = 11 in
this experiment, making sure that 12 blocks were successfully
mined, as recommended since the release of Ethereum 1.3.5
Homestead, for the consensus to terminate.

As expected, in each of these eight cases we observed
the Blockchain anomaly: even though t2 was issued after t1
was successfully observed as committed, if the messages get
successfully delivered, then the reorganisation results in t2
being committed while t1 is not. Finally, we can observe that
the time to disseminate a committed transaction to all the peers
of the network is much shorter than the termination delay.
This is due to the time needed to mine a block, which is
significantly larger than the latency of our network.
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Fig. 3: Experimental evaluation of the anomaly

D. Swap Frequency with Different Mining Difficulties

In the previous experiment, we used the default Ethereum
difficulty (0x4000) and automated the execution with a precise
script. To better understand the cause of the anomaly we tried
reproducing the anomaly by hand (without the script) with
larger difficulties.

Figure 3(a) depicts the average number of blockchain
anomalies leading to a swap, where both t2 and t1 are
eventually committed in reverse order, occurring in our private
chain for 6 different mining difficulties. Each bar results from
the average number of anomalies observed during 6 manual
runs of the scenario depicted in Figure 2.

We ran this particular experiment with k = 10 for the
termination of consensus, meaning that t1 was mined in block
at index i and it was committed once the chain depth reached
i + 10 blocks. (We presented the anomaly in the case where
k = 11 in Section IV-C.)

We varied the difficulty from 0x2000 to 0x40000 and
measure the frequency of the Blockchain anomaly and the
time it would take for consensus to terminate (upper curve).
We observed that the termination time was proportional to
the difficulty while the occurrence of the anomaly was not
significantly affected by the difficulty. This is explained by the
fact that the difficulty impacts the time it takes to mine k+1
blocks for termination. In addition we report the time it would
take for a transaction in a mined block to be disseminated to
all the peers of the network (bottom curve) and observed that
it was not related to the difficulty.

E. The Blockchain Anomaly Differs from the 51-Percent Attack

For the sake of reproducibility we simplified the execution
leading to the Blockchain anomaly in Figure 2. It is however
important to note that the Blockchain anomaly can occur even
though the malicious user controls less than half of the mining
power. To this end, Figure 4 depicts an execution where peer
p3 owns strictly less than half of the mining power. As the
network is delayed between all pairs of nodes, we can see

Fig. 4: Half of the mining power is not necessary for the
blockchain anomaly as it is sufficient to discard the

blockchain containing t1

1 contract conditionalPayment {
2 // to keep track of the amount paid by Alice
3 uint32 paid ;
4 // map addresses to their respective balance
5 mapping (address => uint256) public balances;
6 // the address of Alice’s account
7 address A = 0x57ec7927841e2d25aad5f335e3b701369b177392;
8 // the address of Bob’s account
9 address B = 0x5ae58375c89896b09045de349289af9034902905;

10 // the address of Carole’s account
11 address C = 0x3b12387c88de7834ab3129e3949d0918c4a09122;
12

13 // enables function depending on invoker
14 modifier onlyFrom(address address) {
15 if (msg.sender != address) throw;
16

17 }
18

19 // Alice sends money to Bob
20 function sendTo(address B, uint32 amount) onlyFrom(A) {
21 if ( balances [A] >= amount) { // sufficient funds?
22 balances [A] −= amount;
23 balances [B] += amount;
24 paid = amount; // sorting the amount paid
25 }
26 }
27

28 // Bob sends money to Carole
29 function sendIfReceived(address C, uint32 amount) onlyFrom(B) {
30 if (paid > amount) { // only if previous payment
31 balances [B] −= amount;
32 balances [C] += amount;
33 } else {
34 throw; // cancel contract execution
35 }
36 }
37 }

Fig. 5: A smart contract written in the Solidity programming
language to replace transactions prone to the blockchain

anomaly: the sendIfReceived function checks that the
transfer from A to B occurred before executing the transfer

from B to C

that p1 alone cannot mine a chain longer than p3’s and that
the blockchain of p1 containing t1 gets eventually overridden.

V. SMART CONTRACTS

Smart contracts are a foundational aspect of the Ethereum
system, as they are distributed code execution based on con-
ditional aspects. The contracts can be programmed to allow
for certain conditions to be met in order for the code to be
executed. What we found was that the anomaly prevention
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1 contract problematicConditionalPayment {
2 ...
3 function checkPayment(address B, uint32 amount) onlyFrom(B)

constant returns (bool result ) {
4 if (paid > amount) { // check that Alice paid
5 return true ;
6 } else throw;
7 }
8 // Bob sends money to Carole
9 function sendIfReceived(address C, uint32 amount) onlyFrom(B) {

10 balances [B] −= amount;
11 balances [C] += amount;
12 }
13 }

Fig. 6: Executing the transfer to Carole in a separate
function may suffer from the Blockchain anomaly

depended entirely on the programming of the smart contract.
This means that if a smart contract was coded so that it did
not properly check the condition that the first transaction had
occurred, it would execute as normal, acting like a normal
transaction and suffering from the anomaly.

In Figure 5, we illustrate the writing of a smart con-
tract in the Solidity programming language with which we
could not observe the anomaly. The key point is that the
sendIfReceived function groups two steps: the check that
the amount has been paid at Line 22 and the payment that
results from this successful check at Lines 23 and 24. Because
these two steps are executed on-chain, we know that one has
to be necessarily true for the second to occur.

However, if the two steps were parts of two separate
functions of the contract, one checking that the amount had
been paid and another that would do the payment and be
invoked upon the returned value of the former then the
anomaly could arise. For example, consider Figure 6 where
one function, checkPayment, checks that the payment
from Alice proceeded correctly (Lines 3–7) and the other
function, sendIfReceived, is modified to execute the
payment unconditionally (Lines 9–13). Even if Bob invokes
checkPayment and observes that it returns successfully
before invoking sendIfReceived the anomaly may arise.
The reason is that the check is made off-chain and nothing
guarantees that the payment from Alice was not reorganized
while Bob was checking the result off-line.

To conclude, the former contract in Figure 5 does not suffer
from the Blockchain anomaly as it executes the check and the
conditional transfer on-chain.

VI. RELATED WORK

Proof-of-work has been previously compared to Byzan-
tine Fault Tolerant protocols [21], [22]. Some of this re-
search [21] focuses on comparing experimentally Bitcoin
against PBFT [23]. The Bitcoin blockchain and the PBFT
consensus protocol were evaluated with nodes scattered at 8
locations around the world. As one could expect given the dif-
ficulty of the crypto puzzle of Bitcoin, the experiments showed
that PBFT achieves a lower latency and a higher throughput

than Bitcoin in serving transactions. However, PBFT suffers
from scalability limitations and using sharding [24] could be
necessary to scale to hundreds of nodes.

Another part of this research [22] discusses the probabilistic
guarantees of proof-of-work systems and the deterministic
guarantees of Byzantine fault tolerance. The proof-of-work
consensus is compared to Byzantine agreement protocols
along two axes, scalability and performance, where proof-
of-work consensus protocols are considered as scalable but
inefficient while Byzantine agreement protocols are considered
as efficient but not scalable. For example, Bitcoin scales
beyond 1000 nodes while achieving a performance lower than
100 transactions per second with a high latency, whereas
standard Byzantine fault tolerant protocols achieve more than
10,000 transactions per second but scale only to tens of nodes.

Multiple attacks to Bitcoin share the “solo-mining” tech-
nique we used to illustrate the Blockchain anomaly in
Ethereum. Some attacks assume that the merchant accepts
transactions before they are confirmed [25], [26], [27]. Other
attacks assume the merchant to accept transactions that are
confirmed once [28]. According to our definition none of these
transactions are however “committed”, hence these attacks
cannot be considered anomalies. The Blockchain anomaly
affects transactions that are committed (or k + 1 times con-
firmed).

Even though more than half of the mining power was
controlled by the adversary to illustrate a simple scenario to
reproduce the Blockchain anomaly, it is important to notice
that the Blockchain anomaly is different from the 51-percent
attack. First, note that the smart contract solution we proposed
in Section V cannot fix the 51-percent attack. More generally,
the blockchain anomaly could occur with n nodes with all
attackers owning totally a q-th of the mining power if each
correct node mines at a rate of q/n blocks every block
propagation delay.

Some solutions to the Blockchain anomaly could be easily
implemented in Ethereum. As an example, logical clocks is
a well-known technique to order causally-related events in a
distributed system [13]. A logical clock could be used to order
two transactions issued by the same peer, simply associating
messages to sequence numbers using a monotonically increas-
ing counter at each peer. As this cannot be used for dependent
transactions issued by different peers, one could use a special
flag when issuing a transaction to inform the miners to either
ignore the transaction or to mine it within the same block as its
precedent dependent transaction. Designing the reward model
to incentivize the miners to follow this protocol is out of the
scope of this paper. Other technique to perform a transaction
as soon as other were performed were used to enhance the
scalability of Bitcoin [29].

Some solutions immune to the Blockchain anomaly also
exist. PeerCensus [30] was proposed as an algorithm with two
components: one to execute a Byzantine agreement protocol
on top of Bitcoin with a simple voting system and another
to minimize the effect of Sybil attacks during these votes.
The latter component makes it difficult for an attacker to
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create multiple identities so as to outnumber the votes with
its own votes. Using this technique PeerCensus strengthens
the guarantees of Bitcoin and resolves immediately the forks,
hence avoiding the Blockchain anomaly.

Although the Paxos anomaly was not considered a prob-
lem in the original design of Paxos [10], this scenario was
informally stated as an anomaly during the design of the
Zookeeper distributed coordination service [6], due to the en-
gineers needing to implement conditional concurrent requests:
Zookeeper organizes nodes into a tree structure and it was
desirable for the additions of a parent node and its child to
be made concurrent. The child addition depended naturally
on the success of the parent addition. Note that for other
applications that do not need concurrent dependent requests
Paxos is sufficient [31]. A major difference between the Paxos
and the Blockchain anomalies is that if consensus is reached
with Paxos, the index of the decision cannot change while
the Blockchain anomaly precisely stems from the fact that the
index of a decided transaction, or the order of its block in the
chain, can change.

VII. CONCLUSION

In this paper, we demonstrate empirically the presence of
the Blockchain anomaly in proof-of-work blockchain sys-
tems. Named after the Paxos anomaly, it prevents a user of
mainstream blockchain systems from executing a conditional
transaction, a transaction that should only execute in the
current observable committed state or a later state of the
system. A possible way to avoid the anomaly could be to
write smart contracts rather than transactions, yet it adds to
the level of complexity.

Our conclusion is that blockchain systems are difficult to
use properly. This observation should discourage users from
using blockchain systems unless they fully understand the
underlying design principles and the guarantees they offer.
Besides the prominent blockchain systems we have discussed,
namely Bitcoin and Ethereum, there exist many alternatives.
Exploring the alternatives that exclusively offer deterministic
guarantees for private chains is part of future work.
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