
As easy as ABC: Optimal (A)ccountable
(B)yzantine (C)onsensus is easy!

Pierre Civit
Sorbonne University, CNRS, LIP6

pierre.civit@lip6.fr

Seth Gilbert
NUS Singapore

seth.gilbert@comp.nus.edu.sg

Vincent Gramoli
University of Sydney, EPFL

vincent.gramoli@sydney.edu.au

Rachid Guerraoui
École Polytechnique Fédérale de Lausanne (EPFL)

rachid.guerraoui@epfl.ch

Jovan Komatovic
École Polytechnique Fédérale de Lausanne (EPFL)

jovan.komatovic@epfl.ch

Abstract—It is known that the agreement property of the
Byzantine consensus problem among n processes can be
violated in a non-synchronous system if the number of faulty
processes exceeds t0 = ⌈n/3⌉ − 1 [10], [19]. In this paper, we
investigate the accountable Byzantine consensus problem in
non-synchronous systems: the problem of solving Byzantine
consensus whenever possible (e.g., when the number of faulty
processes does not exceed t0) and allowing correct processes
to obtain proof of culpability of (at least) t0 + 1 faulty
processes whenever correct processes disagree. We present
four complementary contributions:
1) We introduce ABC: a simple yet efficient transformation

of any Byzantine consensus protocol to an accountable
one. ABC introduces an overhead of only two all-to-
all communication rounds and O(n2) additional bits in
executions with up to t0 faults (i.e., in the common case).

2) We define the accountability complexity, a complex-
ity metric representing the number of accountability-
specific messages that correct processes must send. Fur-
thermore, we prove a tight lower bound. In particular, we
show that any accountable Byzantine consensus protocol
incurs cubic accountability complexity. Moreover, we
illustrate that the bound is tight by applying the ABC
transformation to any Byzantine consensus protocol.

3) We demonstrate that, when applied to an optimal Byzan-
tine consensus protocol, ABC constructs an accountable
Byzantine consensus protocol that is (1) optimal with
respect to the communication complexity in solving
consensus whenever consensus is solvable, and (2) op-
timal with respect to the accountability complexity in
obtaining accountability whenever disagreement occurs.

4) We generalize ABC to other distributed computing prob-
lems besides the classic consensus problem. We charac-
terize a class of agreement tasks, including reliable and
consistent broadcast [5], that ABC renders accountable.

I. Introduction
Ensuring both safety (“nothing bad ever happens”) and

liveness (“something good eventually happens”) of a wide
variety of distributed Byzantine problems is impossible if
the number of Byzantine processes exceeds a certain pre-
defined threshold [19]. This limitation motivated researchers
to investigate accountable variants of these problems [9],
[23]. The accountable variant of a problem P consists in (1)
solving problem P under the appropriate assumptions (e.g.,
whenever the number of Byzantine processes does not exceed

the threshold), and (2) allowing all correct participants to
detect some fraction of culprits if the safety of problem P is
violated. Accountability in distributed systems is important
since it discourages bad behaviors. If some malicious behavior
is guaranteed to result in apprehension and punishment,
malicious processes are much less likely to carry out an
attack in the first place, thus strengthening the security.
This paper focuses on obtaining accountability in Byzan-

tine consensus protocols that operate in non-synchronous
systems. The Byzantine consensus problem [19] is defined
among n processes while tolerating up to t0 = ⌈n/3⌉ − 1
Byzantine (malicious) processes. A process initially proposes
a value and eventually decides a value such that the following
properties hold:

• (Liveness) Termination: All correct processes eventually
decide.

• (Safety) Agreement: All correct processes decide the
same value.

• (Safety) Validity: If all correct processes propose the
same value, only that value can be decided by a correct
process.

The conjunction of the aforementioned properties can
only be ensured if the number of faulty processes does not
exceed t0 [19]. If faulty processes indeed overpopulate the
system, any of these properties might be violated. This work
focuses on cases when a violation of the agreement property
occurs. Specifically, we take a closer look at the accountable
Byzantine consensus problem. A process initially proposes
and later decides a value (as in the Byzantine consensus
problem) and detects some faulty processes. Formally, the
accountable Byzantine problem is solved if and only if the
following properties are ensured:

• Termination: If the number of faulty processes does not
exceed t0, then all correct processes eventually decide.

• Agreement: If the number of faulty processes does not
exceed t0, then all correct processes decide the same
value.

• Validity: If the number of faulty processes does not
exceed t0 and all correct processes propose the same
value, only that value can be decided by a correct

process.
• Accountability: If two correct processes decide different
values, then every correct process eventually detects
at least t0 + 1 faulty processes and obtains proof of
culpability of all detected processes.

Importantly, only disagreement triggers accountability: if
correct processes do not decide, accountability is not ensured.

A. Contributions

The contributions of the paper are fourfold:
1) We present a generic and simple transformation - ABC

– that enables any Byzantine consensus protocol to
obtain accountability. Additionally, our transformation
is efficient: it introduces an overhead of only two all-
to-all communication rounds and O(n2) exchanged bits
of information in all executions with up to t0 faulty
processes (i.e., in the common case).
ABC owns its simplicity and efficiency to the obser-
vation that the composition presented in Algorithm 1
solves the Byzantine consensus problem. Indeed, if the
number of faults does not exceed t0, all correct pro-
cesses eventually decide the same value from Byzantine
consensus (line 3). Therefore, all correct processes even-
tually receive n−t0 matching confirm messages (line 5)
and, thus, decide (line 6). The critical mechanism, which
is illustrated in Algorithm 1, is that faulty processes
must send conflicting confirm messages in order to
cause disagreement. Hence, whenever correct processes
disagree, an exchange of received confirm messages is
sufficient to obtain accountability.

Algorithm 1 Intuition Behind ABC Transformation
1: function propose(v) do
2: ▷ bc is any Byzantine consensus protocol
3: v′ ← bc.propose(v)
4: broadcast [confirm, v′]
5: wait for [confirm, v′] from n− t0 processes
6: return v′

2) We define the accountability complexity, a novel
complexity metric representing the number of
accountability-specific messages that correct processes
must send. Furthermore, we prove a tight lower bound
on the accountability complexity. In particular, we show
that any accountable Byzantine consensus protocol
incurs cubic accountability complexity. Moreover, we
illustrate that the bound is tight by applying our ABC
transformation to any Byzantine consensus protocol.

3) We demonstrate that when applied to an optimal
(with respect to the communication complexity) Byzan-
tine consensus protocol, ABC produces an accountable
Byzantine consensus protocol that is (1) optimal with
respect to the communication complexity in solving
consensus whenever consensus is solvable, and (2) op-
timal with respect to the accountability complexity in
obtaining accountability whenever disagreement occurs.

4) We show that ABC is not limited to Byzantine consen-
sus. Specifically, we define a class of easily accountable
agreement tasks and we demonstrate that generalized
ABC transformation provides accountability for such
tasks. Important distributed problems, like Byzantine
reliable [6] and Byzantine consistent [6] broadcast, fall
into the class of easily accountable agreement tasks.

B. Related Work
The work on accountability in distributed systems was pi-

oneered in [17]. The authors presented PeerReview, a generic
accountability layer for distributed systems. Importantly,
PeerReview does not allow correct processes to irrefutably
detect faulty processes in non-synchronous environments,
i.e., faulty processes might be suspected forever, but never
irrefutably detected. Therefore, PeerReview does not suffice
for accountability in non-synchronous Byzantine consensus
protocols. Some of these authors initiated the formal study
of Byzantine failures in the context of accountability [18].

Recently, with the expansion of blockchain systems, the
interest in accountable distributed protocols resurfaced once
again. Polygraph [9], the first accountable Byzantine consen-
sus protocol, was introduced by Civit et al. The Polygraph
protocol is based on the DBFT consensus protocol [11] used
in blockchains [12], tolerates up to n faulty processes in
achieving accountability and has the communication com-
plexity of O(n4) in the common case, where n denotes the
total number of processes. It is worth observing that Poly-
graph worsens the communication complexity of the (binary-
value version) DBFT base protocol by an O(n) multiplicative
factor. Casper [4] is another system designed around the goal
of obtaining accountability in blockchains, while Trap [22]
combines accountability with game theory to increase the
Byzantine fault tolerance of blockchains.

Most recently, authors of [23] investigated the possibility
of obtaining accountability in protocols based on PBFT [7]
in scenarios in which the system is not severely corrupted.
Specifically, they present variants of PBFT [7] and Hot-
Stuff [25] that achieve accountability; however, they allow
for accountability only if up to 2n/3 processes are faulty,
which implies that their “accountability threshold” is lower
than the one of Polygraph. The commonality between the
discussed prior work is employing sophisticated mechanisms
for obtaining accountability. Indeed, the prior work achieves
accountability with the help of non-trivial modifications
applied to the base consensus protocol.

In contrast, we take a fundamentally different approach
that allows us to treat the base consensus protocol as a “black
box”, thus obtaining simpler and more efficient accountable
Byzantine consensus protocols. Table I compares accountable
Byzantine consensus protocols obtained by ABC with the
existing alternatives.1

Roadmap: We present the system model in §II. We devote
§III to our ABC transformation. Specifically, we first intro-

1We purposefully omit the accountability complexity metric from Table I
since we are the first to design accountable protocols around this metric.

Base Consensus
Protocol

Communication Complexity
of the Base Consensus Protocol

Communication Complexity
of the Accountable Variant

in the Common Case
Accountability
Threshold Paper

PBFT [7] O(n4) Ω(n4) 2n/3 Sheng et al. [23]
HotStuff [25] O(n3) Ω(n3) 2n/3 Sheng et al. [23]

Binary DBFT [11] O(n3) O(n4) n Civit et al. [9]
Multivalue DBFT [11] O(n4) O(n4) n Civit et al. [9]

Any X X n this paper

TABLE I: Overview of the main properties of existing accountable Byzantine consensus protocols. The authors of [23], when presenting
accountable variants of PBFT and HotStuff, do not give details of incorporated view synchronization mechanisms; hence, communication
complexities of these accountable protocols given in the table do not take into account the complexity of synchronization mechanisms.

duce the novel accountable confirmer problem (§III-A), the
crucial building block of ABC. Then, we present ABC and
prove its correctness (§III-B). In §III-C, we demonstrate that
ABC suffices for obtaining optimal accountability complexity
in accountable Byzantine consensus protocols. In §IV, we dis-
cuss the applicability of ABC to various variants of Byzantine
consensus protocols and propose an alternative definition
of the accountability complexity metric. We define easily
accountable agreement tasks and prove the applicability of
generalized ABC to such tasks in §V. Finally, we conclude
the paper in §VI.

II. Model
We consider a system with a set {P1, ..., Pn} of n processes

that communicate by exchanging messages through a point-
to-point network. The system is non-synchronous: there is
no bound that always holds on message delays and relative
speed of processes. Non-synchronous systems include (1)
asynchronous systems, where the bound does not exist, and
(2) partially synchronous systems [15], where the bound
holds only eventually. All the results given in the present
paper assume a non-synchronous system.
Each process is assigned its local protocol. A local protocol

of a process defines steps to be taken during a run of
the system. The collection of all local protocols assigned to
processes is a distributed protocol (or simply a protocol).
A subset of all processes might be faulty: these processes

may arbitrarily deviate from their local protocol, i.e., we
consider the Byzantine failure model. If a process is not
faulty, the process is correct. We assume that every message
sent by a correct process to a correct process is eventually
received, i.e., we assume that communication is reliable.
Moreover, we assume that the order of message receptions
is controlled by a computationally bounded adversary.
An execution is a single run of the system, i.e., it is a

sequence of sending and receiving events, as well as the
internal events of processes. Since disagreement can occur
only if two (or more) correct processes exist, we do not
consider executions with less than two correct processes. The
actual number of faulty processes in an execution is denoted
by t. Finally, the power set of a set X is denoted by P(X).

a) Cryptographic Primitives: We assume an idealized
public-key infrastructure (PKI): each process is associated with
its public/private key pair that is used to sign messages and

verify signatures of other processes. A message m signed
with the PKI private key of a process Pi is denoted by mσi

.
Additionally, we assume a (k, n)-threshold signature

scheme [20], where k = n − t0. In this scheme, each
process holds a distinct private key, and there exists a single
public key. Each process Pi can use its private key to
produce a partial signature of a message m by invoking
ShareSigni(m). Moreover, a partial signature tsignature
of a message m produced by process Pi could be ver-
ified by ShareVerify i(m, tsignature). Finally, set S =
{tsignaturei} of partial signatures, where |S| = k and,
for each tsignaturei ∈ S, tsignaturei = ShareSigni(m),
could be combined into a single digital signature by invoking
Combine(S); a combined digital signature tcombined of
message m could be verified by Verify(m, tcombined). In
the paper, we assume that the cost of obtaining the threshold
signature scheme [1] is amortized and, thus, negligible.
Crucially, we assume that the PKI private key of a correct

process is never revealed (irrespectively of the number of
faulty processes in the system). Therefore, if a message m
is signed with the PKI private key of a process Pi and Pi

is correct, then the message m was certainly sent by Pi.
Conversely, if the number of faulty processes exceeds t0, the
threshold private key of a process can be revealed, and a
partial signature of a correct process might be forged.

b) Proof of Culpability: A set Σ of messages properly
signed with the PKI private key of a process Pi is proof
of culpability of Pi if and only if there does not exist an
execution of the system where (1) Pi sends all the messages
from the Σ set, and (2) Pi is correct. Since the PKI private
key of a correct process is never revealed (as opposed to
the threshold private key of a correct process that might
be revealed if the number of faults exceeds t0), proof of
culpability of a correct process can never be obtained.

c) Communication Complexity: In this work, as in many
in distributed computing [2], [24], we care about the com-
munication complexity. To this end, we define authenticators
and words. An authenticator is either a partial signature or
a signature. A word contains a constant number of authen-
ticators and values, and each message contains at least one
word. Finally, the communication complexity of a protocol is
the maximum number of words sent in messages by correct
processes across all possible executions.

d) Accountability Complexity: The accountability com-
plexity is a novel complexity metric designed for measur-
ing the accountability-specific performance of protocols. We
define the accountability complexity since the communica-
tion complexity is not a suitable metric for measuring the
performance of accountable Byzantine consensus protocols
in the degraded case (i.e., when the number of faults ex-
ceeds t0). Indeed, Polygraph and accountable variants of
PBFT and Hotstuff, presented in [23], suffer from infinite
communication complexity in the degraded case: Byzantine
processes force correct processes to constantly execute “one
more round”, thus constructing an infinite execution where
correct processes never decide.
Let us formally define the accountability complexity. Let

abc be a protocol solving accountable Byzantine consensus. A
messagem is an accountability-specific message if there exists
an execution in which a correct process Pi obtains proof of
culpability Σ of a process Pj , where m ∈ Σ. Intuitively, a
message is accountability-specific if it can be used as (a part
of) proof of culpability of its sender.
Next, we define the accountability complexity of an exe-

cution e. Let a correct process Pi forward an accountability-
specific message m, where Pi is not the original sender of
m, in e. Then, this action counts as one unit towards the
accountability complexity of e. Importantly, if Pi forwards
X > 1 accountability-specific messages “together” (i.e., in
the same message), the action counts as X units towards the
complexity of the execution. The accountability complexity
of abc is the maximum accountability complexity across all
possible executions, i.e., across all executions with at least
two correct processes. In a nutshell, the accountability com-
plexity represents the number of messages correct processes
exchange “thinking” that exactly those messages might be
crucial for proving culpability of faulty processes.

III. ABC Transformation
This section presentsABC, our transformation that enables

any Byzantine consensus protocol to obtain accountability.
We first introduce the accountable confirmer problem and
give its implementation (§III-A). Then, we construct our
ABC transformation around accountable confirmer (§III-B).
Finally, §III-C proves that ABC suffices for achieving optimal
accountability complexity.

A. Accountable Confirmer

The accountable confirmer problem is a distributed prob-
lem defined among n processes. The problem is associated
with parameter t0 = ⌈n/3⌉ − 1 emphasizing that some
properties are ensured only if the number of faulty processes
does not exceed t0.2 The accountable confirmer exposes the
following interface: (1) request submit(v) - a process submits
value v; invoked at most once; (2) indication confirm(v′) -
a process confirms value v′; triggered at most once; and (3)
indication detect(F, proof) - a process detects processes from

2Recall that t0 is the number of faults tolerated in Byzantine consensus.

the set F such that |F | ≥ t0 +1 and proof represents proof
of culpability of all processes that belong to F ; triggered at
most once. The following properties are ensured:

• Terminating Convergence: If the number of faulty pro-
cesses does not exceed t0 and all correct processes
submit the same value, then that value is eventually
confirmed by all correct processes.

• Agreement: If the number of faulty processes does not
exceed t0, then no two correct processes confirm differ-
ent values.

• Validity: The value confirmed by a correct process was
submitted by a correct process.

• Accountability: If two correct processes confirm different
values, then every correct process eventually detects
at least t0 + 1 faulty processes and obtains proof of
culpability of all detected processes.

Terminating convergence ensures that, if (1) the number of
faults does not exceed t0, and (2) all correct processes submit
the same value, then all correct processes eventually confirm
that value.3 Agreement stipulates that no two correct pro-
cesses confirm different values if the system is not corrupted
(even if submitted values of correct processes differ). Validity
ensures that any confirmed value is submitted by a correct
process. Finally, accountability ensures detection of t0 + 1
faulty processes by every correct process whenever correct
processes confirm different values.

a) Intuition: We now give intuition behind our solution
of the accountable confirmer problem. Once a correct process
submits its value, it broadcasts a signed message containing
the submitted value. Then, the process waits for n − t0
messages containing the same value. Once this happens, the
process (1) confirms the value, and (2) broadcasts the received
n− t0 messages to all processes in the system.
This simple algorithm ensures terminating convergence

since, when there are up to t0 faults and all correct processes
submit the same value, all correct processes eventually re-
ceive n−t0 messages containing the submitted value; thus, all
correct processes confirm the value. As for the accountability
property, if two correct processes disagree, every correct
process eventually receives two conflicting sets of n − t0
messages. Every process whose messages belong to both sets
is faulty as no correct process submits multiple values.

b) Implementation: The implementation (Algorithm 2) of
the accountable confirmer problem builds upon the presented
intuition. It takes advantage of threshold signatures (see §II)
in order to achieve quadratic communication complexity in
the common case (i.e., in executions with up to t0 faults).

Each process initially broadcasts the value it submitted in
a submit message (line 18): the submit message contains
the value and a partial signature of the value. Moreover,
the entire message is signed with the PKI private key of
the sender. Once a process receives such a submit message,
the process (1) checks whether the message is properly

3Note that it is not guaranteed that any correct process confirms a value
if correct processes submit different values (even if the number of faulty
processes does not exceed t0).

signed (line 6), (2) verifies the partial signature (line 20),
and (3) checks whether the received value is equal to its
submitted value (line 20). If all of these checks pass, the
process stores the received partial signature (line 22) and
the entire message (line 23). Once a process stores partial
signatures from (at least) n−t0 processes (line 25), the process
confirms its submitted value (line 27) and informs other
processes about its confirmation by combining the received
partial signatures into a light certificate (line 28). The role
of threshold signatures in our implementation is to allow
every light certificate to contain a single signature (rather
than n − t0 = O(n) signatures), thus obtaining quadratic
overall communication complexity if t ≤ t0.
Once a process receives two conflicting light certificates

(line 33), the process concludes that correct processes might
have confirmed different values. If the process has already
confirmed its value, the process broadcasts the set of (at least)
n−t0 properly signed [submit, v, ∗] messages (line 34), where
v is the value confirmed (and submitted) by the process; such
a set of messages is a full certificate for value v. Finally, once a
process receives two conflicting full certificates (line 39), the
process obtains proof of culpability of (at least) t0 +1 faulty
processes (line 42), which ensures accountability. Indeed,
each full certificate contains n−t0 properly signed messages:
every process whose messages belong to the conflicting full
certificates is faulty and these messages represent proof of
its misbehavior. Recall that no faulty process ever obtains
the PKI private key of a correct process.

Accountable Confirmer - Definitions for Algorithm 2
1) A combined digital signature tsig is a valid light certificate for
value v if and only if Verify(v, tsig) = ⊤.

2) A set S of properly signed [submit, v, ∗]σ∗ messages is a valid
full certificate for value v if and only if:

a) |S| ≥ n− t0
b) Each message m is sent (i.e., signed) by a distinct process.

3) Let tsigv be a valid light certificate for value v and let tsigv′

be a valid light certificate for value v′. tsigv conflicts with tsigv′

if and only if v ̸= v′.

4) Let Sv be a valid full certificate for value v and let Sv′ be a
valid full certificate for value v′. Sv conflicts with Sv′ if and only
if v ̸= v′.

5) Let (m1,m2) be a pair of messages properly signed by the
same process Pi. (m1,m2) is proof of culpability of Pi if and
only if:

a) m1 = [submit, v, share1]σi

b) m2 = [submit, v′, share2]σi

c) v ̸= v′.

Theorem 1. Algorithm 2 solves the accountable confirmer
problem with:

• O(n2) communication complexity in the common case,
and

• at most O(n3) submit messages forwarded by correct
processes.

Proof. We start by proving the terminating convergence
property. Indeed, if t ≤ t0 and all correct processes submit
the same value v, then the rule at line 25 eventually triggers
at every correct process. Since every correct process confirms
only the value it has submitted (line 27), the property is
satisfied by Algorithm 2.

We prove agreement by contradiction. Let a correct process
Pi confirm a value v, let another correct process Pj confirm a
value v′ ̸= v and let t ≤ t0. Hence, Pi (resp., Pj) has received
n − t0 submit messages for value v (resp., v′). Given that
t0 < n/3, the number of processes that have sent the submit
messages for both values must be greater than t0. Therefore,
there are more than t0 faulty processes, which contradicts the
fact that t ≤ t0. Thus, the agreement property is ensured.
Validity follows from the fact that each correct process

confirms only the value it has submitted (line 27).
We now prove accountability. Let a correct process Pi

confirm a value v and let another correct process Pj confirm
a value v′ ̸= v. The rule at line 33 is eventually triggered
at each correct process that confirms a value. Once the
rule is triggered at Pi and Pj , these processes broadcast
their full certificates to all processes (line 34). Eventually,
the rule at line 39 is triggered at each correct process,
which ensures accountability. Indeed, every process whose
submit messages belong to both conflicting full certificates
is detected; moreover, such a process is indeed faulty since
no correct process submits different values, implying that no
correct process ever sends different submit messages.
Finally, we prove the claimed complexity:
• If t ≤ t0, the communication complexity of the algo-
rithm is quadratic because (1) light certificates are sent
only once and they contain a single signature, and (2)
no correct process broadcasts a full certificate.

• Each correct process forwards O(n) submit messages
in each full-certificate message it sends (line 34).
Therefore, each correct process forwards O(n2) submit
messages, which implies that (at most) O(n3) submit
messages are forwarded by all correct processes.

The theorem holds.
B. ABC: Byzantine Consensus + Accountable Confirmer =
Accountable Byzantine Consensus

We now present our ABC transformation (Algorithm 3),
the main contribution of our work. ABC is built on the
observation that any Byzantine consensus protocol paired
with accountable confirmer solves the accountable Byzantine
consensus problem. Specifically, we prove that Algorithm 3
solves the accountable Byzantine consensus problem, which
implies that ABC indeed enables Byzantine consensus pro-
tocols to obtain accountability.

Theorem 2. Let bc be a Byzantine consensus protocol with
the communication complexity Xbc . Let abc be a protocol
obtained by applying ABC (Algorithm 3) to bc. Then, abc
solves the accountable Byzantine consensus problem with (1)
max (Xbc , O(n2)) communication complexity in the common
case, and (2) O(n3) accountability complexity.

Algorithm 2 Accountable Confirmer - Code for Process Pi

1: Implements:
2: Accountable Confirmer, instance ac
3: Uses:
4: Best-Effort Broadcast [5], instance beb ▷ Simple broadcast without any guarantees if the sender is faulty.
5: Rules:
6: 1) Any submit message that is not properly signed is discarded.
7: 2) Rules at lines 25, 33 and 39 are activated at most once.
8: upon event ⟨ac, Init⟩ do
9: valuei ← ⊥
10: confirmed i ← false
11: fromi ← ∅
12: lightCertificatei ← ∅
13: fullCertificatei ← ∅
14: obtainedLightCertificatesi ← ∅
15: obtainedFullCertificatesi ← ∅
16: upon event ⟨ac,Submit | v⟩ do ▷ Pi submits a value
17: valuei ← v
18: trigger ⟨beb,Broadcast | [submit, v,ShareSigni(v)]σi⟩
19: upon event ⟨beb,Deliver |Pj , [submit, value, share]σj ⟩ do
20: if ShareVerifyj(value, share) = ⊤ and value = valuei and Pj /∈ fromi then
21: fromi ← fromi ∪ {Pj}
22: lightCertificatei ← lightCertificatei ∪ {share}
23: fullCertificatei ← fullCertificatei ∪ {[submit, value, share]σj}
24: end if
25: upon |fromi| ≥ n− t0 do
26: confirmed i ← true
27: trigger ⟨ac,Confirm | valuei⟩ ▷ Pi confirms a value
28: trigger ⟨beb,Broadcast | [light-certificate, valuei,Combine(lightCertificatei)]⟩ ▷ Combine any n− t0 partial signatures
29: upon event ⟨beb,Deliver |Pj , [light-certificate, valuej , lightCertificatej]⟩ do
30: if lightCertificatej is a valid light certificate for valuej then
31: obtainedLightCertificatesi ← obtainedLightCertificatesi ∪ {[light-certificate, valuej , lightCertificatej]}
32: end if
33: upon certificate1, certificate2 ∈ obtainedLightCertificatesi where certificate1 conflicts with certificate2

and confirmed i = true do
34: trigger ⟨beb,Broadcast | [full-certificate, valuei, fullCertificatei]⟩
35: upon event ⟨beb,Deliver |Pj , [full-certificate, valuej , fullCertificatej]⟩ do
36: if fullCertificatej is a valid full certificate for valuej then
37: obtainedFullCertificatesi ← obtainedFullCertificatesi ∪ {fullCertificatej}
38: end if
39: upon certificate1, certificate2 ∈ obtainedFullCertificatesi where certificate1 conflicts with certificate2 do
40: proof ← extract proof of culpability of (at least) t0 + 1 processes from certificate1 and certificate2

41: F ← the set of processes detected via proof
42: trigger ⟨ac,Detect |F, proof ⟩ ▷ Pi detects faulty processes

Proof. Consider an execution where t ≤ t0. All correct
processes eventually decide the same value v from Byzan-
tine consensus at line 9 (by termination and agreement of
Byzantine consensus). Moreover, if all correct processes have
proposed the same value (line 7), then the proposed value
is indeed v (ensured by validity of Byzantine consensus).
Terminating convergence of accountable confirmer ensures
that all correct processes eventually confirm v (line 11)
and decide from accountable Byzantine consensus (line 12).
Hence, Algorithm 3 satisfies termination, agreement and
validity. Since the communication complexity of accountable
confirmer in the common case is O(n2) (by Theorem 1), the
communication complexity of abc in the common case is
max (Xbc , O(n2)).

If correct processes disagree (i.e., decide different values at

line 12), then these processes have confirmed different values
from accountable confirmer (line 11). Thus, accountability
is ensured by Algorithm 3 since accountability is ensured
by accountable confirmer, i.e., every correct process even-
tually detects faulty processes from accountable confirmer
(line 13). Finally, all accountability-specific messages that are
forwarded are the submit messages of accountable confirmer
(see Algorithm 2). Given that (at most) O(n3) submit mes-
sages are forwarded by correct processes (by Theorem 1), the
accountability complexity of Algorithm 3 is O(n3).

Finally, we explicitly note that ABC does not worsen
the communication complexity of any Byzantine consensus
protocol. It is well-known that any protocol that solves the
Byzantine consensus problem incurs quadratic communica-
tion complexity due to the lower bound set by Dolev et

Algorithm 3 ABC Transformation - Code For Process Pi

1: Implements:
2: Accountable Byzantine Consensus, instance abc

3: Uses:
4: ▷ Byzantine consensus protocol to be transformed
5: Byzantine Consensus, instance bc
6: Accountable Confirmer implemented by Algorithm 2,

instance ac
7: upon event ⟨abc,Propose | proposal⟩ do ▷ Proposal
8: trigger ⟨bc,Propose | proposal⟩
9: upon event ⟨bc,Decide | decision⟩ do
10: trigger ⟨ac,Submit | decision⟩
11: upon event ⟨ac,Confirm | confirmation⟩ do
12: trigger ⟨abc,Decide | confirmation⟩ ▷ Decision
13: upon event ⟨ac,Detect |F, proof ⟩ do
14: trigger ⟨abc,Detect |F, proof ⟩ ▷ Detection

al. [14]. Therefore, every Byzantine consensus protocol re-
tains its complexity after our transformation (by Theorem 2).

Corollary 1. Let bc be a Byzantine consensus protocol with
the communication complexity Xbc . Let abc be a protocol ob-
tained by applying ABC to bc. Then, abc solves the Byzantine
consensus problem with the communication complexity Xbc .

C. ABC Suffices For Optimal Accountability

This subsection proves that any distributed protocol that
solves the accountable Byzantine consensus problem incurs
cubic accountability cost.
Let abc be a distributed protocol that solves the account-

able Byzantine consensus problem among n processes. If
up to t0 = ⌈n/3⌉ − 1 processes are faulty, abc ensures
termination, agreement and validity; if disagreement occurs,
each correct process eventually detects at least t0 + 1 faulty
processes (and obtains proof of culpability of all detected
processes). Without loss of generality, let n = 3t0 + 1.
The proof of the lower bound relies on the classical “parti-

tioning” argument introduced in [15]. We start by separating
processes that execute abc into three disjoint groups: (1)
group A, where |A| = t0, (2) group B, where |B| = t0 + 1,
and (3) group C , where |C| = t0. Given that abc solves the
accountable Byzantine consensus problem, the following two
executions exist:
1) e1: All processes from the group C are faulty and

silent throughout the entire execution. Moreover, all
processes from the A ∪ B set propose a value v. Since
|C| = t0, abc ensures that all processes from the A∪B
set eventually decide the same value v (because of the
validity property) by some global time t1.

2) e2: All processes from the group A are faulty and silent
throughout the entire execution. Moreover, all processes
from the B ∪ C set propose a value v′ ̸= v. Since
|A| = t0, abc ensures that all processes from the B ∪C
set eventually decide the value v′ ̸= v (because of the
validity property) by some global time t2.

We can devise another execution e, where:

• Processes from the group A and processes from the
group C are correct, whereas processes from the group
B are faulty. Moreover, all processes from the group A
propose v, and all processes from the group C propose
v′ ̸= v.

• Processes from the group B behave towards processes
from the group A as in execution e1 and processes from
the group B behave towards processes from the group
C as in e2. Moreover, if an event ϵ has occurred at global
time tϵ in e1 or e2, then ϵ occurs at the same time tϵ in
execution e.

• All messages between processes from groups A and C
are delayed until time max (t1, t2).

Execution e is indistinguishable from execution e1 to pro-
cesses from the group A, which implies that all processes
from A decide value v by time t1. Similarly, all processes
from the group C decide value v′ ̸= v by time t2.
Finally, we denote by partitioningExecution the prefix of

execution e up to time T = max (t1, t2). Observe that the
following holds for partitioningExecution :

• All processes from the group A decide v in
partitioningExecution .

• All processes from the group C decide v′ ̸= v in
partitioningExecution .

• No message is exchanged between any two processes
(a ∈ A, c ∈ C).

We are now ready to prove the cubic lower bound on the
accountability complexity.

Theorem 3. The accountability complexity of abc is Ω(n3).

Proof. We build the proof upon partitioningExecution .
Namely, partitioningExecution is convenient for proving the
cubic lower bound since correct processes (i.e., processes
from the A ∪ C set) cannot obtain proof of culpability of
any process in partitioningExecution . Indeed, faulty pro-
cesses (i.e., processes from the group B) appear correct in
partitioningExecution to all processes from the A ∪ C set.
Our goal is to create an execution α as a continuation

of partitioningExecution such that each correct process
c ∈ C forwards a quadratic number of accountability-
specific messages in α. We fix a process a ∈ A. In α,
only processes {a} ∪ C are correct; all other processes are
faulty. Moreover, processes from the group B are silent
after partitioningExecution (i.e., after time T) and messages
between processes from the {a} ∪ C set are delayed.
Consider any process c ∈ C . There exists some time T1 >

T by which c has forwarded t0 + 1 = O(n) accountability-
specific messages to a process a1 ∈ A\{a}. Indeed, c cannot
distinguish the current execution from the one in which
(1) a1 and c are the only correct processes, (2) they have
disagreed, and (3) a1 does not receive any message from any
process s, where s ̸= c and s ̸= a1, in the continuation
of partitioningExecution (i.e., after time T): as a1 does
not receive messages from processes other than a1 and c
after time T , a1 is required to satisfy accountability, and a1
cannot construct proof of culpability of any process given the

messages received in partitioningExecution (i.e., by time T),
process c must “help”. However, process c cannot distinguish
the execution until time T1 from the one in which (1) a1 is
faulty, (2) only processes a2 ∈ A \ {a, a1} and c are correct
and they have disagreed, and (3) no process other than c
“helps” a2 to satisfy accountability. Thus, there exists some
time T2 > T1 by which c has forwarded O(n) accountability-
specific messages to a2 as well (besides forwarding O(n)
accountability-specific messages to a1). As we are able to
“replicate” the aforementioned logic for all processes from
the A \ {a} set, process c forwards |A \ {a}|(t0 + 1) =
(t0 − 1)(t0 + 1) = O(n2) accountability-specific messages
in α.
Given that (1) all processes from the A\{a} set can behave

towards each process c ∈ C in the way explained above,
and (2) messages among processes from the {a} ∪ C set
are delayed for “sufficiently long”, every process from the
C set forwards O(n2) accountability-specific messages in α.
Since |C| = t0 = O(n), the accountability complexity of α is
Ω(n3), which concludes the proof of the lower bound.

Given that ABC enables any Byzantine consensus protocol
to obtain accountability with O(n3) accountability complex-
ity (by Theorem 2), ABC suffices for optimal accountability
with respect to the accountability complexity.
We conclude the subsection by stating the following result.

Corollary 2. Let bcopt be a Byzantine consensus protocol
with the optimal communication complexity Xopt , where
Xopt ≥ O(n2) (due to [14]). Let abcopt be a protocol obtained
by applying ABC to bcopt . The following holds for abcopt :
1) abcopt solves the Byzantine consensus problem with the

optimal communication complexity Xopt .
2) abcopt obtains accountability with the optimal account-

ability complexity O(n3).

IV. Discussion

In this section, we first discuss the applicability of ABC to
Byzantine consensus protocols satisfying different variants
of the validity property (§IV-A). Secondly, we provide an
alternative definition of the accountability complexity and
briefly discuss it (§IV-B).

A. Different Variants of the Validity Property

The (accountable) Byzantine consensus problem (as defined
in §I) specifies the validity property, which ensures that if
all correct processes propose the same value, then only that
value could be decided by a correct process. In the literature,
there are many variants of the validity property; the one
we use is traditionally called strong validity. Throughout the
rest of this subsection, we refer to “our” validity property as
strong validity. Other most notable variants of the validity
property include:

• Weak Validity: If all processes are correct and if a correct
process decides value v, then v is proposed by a (correct)
process [3], [21], [25].

• External Validity: A value decided by a correct process
satisfies a predefined valid predicate [6].

Traditionally, the external validity property is accompanied
by an additional validity property (e.g., [6]) to avoid trivial
solutions in which all correct processes immediately decide
a predefined valid value.
First and foremost, the correctness of ABC does not de-

pend on a specific variant of the validity property. In other
words, if a Byzantine consensus protocol bc satisfies weak
(resp., external) validity, then abc, where abc is obtained by
applying ABC to bc, is an accountable Byzantine consensus
protocol satisfying weak (resp., external) validity.
However, does ABC preserve its ability to provide optimal

accountability (with respect to the accountability complexity)
if applied to a Byzantine consensus algorithm satisfying
weak or external validity (rather than strong validity we
considered throughout the paper)? In other words, is there
an accountable Byzantine consensus protocol satisfying weak
or external validity with the accountability complexity less
than O(n3)? Unfortunately, the answer is negative.
Namely, any accountable Byzantine consensus protocol

satisfying weak validity has Ω(n3) accountability complex-
ity.4 In order to prove this claim, it suffices to show
that partitioningExecution (defined in §III-C) is possible
as the argument presented in the proof of Theorem 3 can
then be used to illustrate the cubic lower bound. To this
end, we prove that executions e1 and e2 (used to “build”
partitioningExecution in §III-C) are possible.

Theorem 4. Let abc be an accountable Byzantine consensus
protocol satisfying the weak validity property. Then, executions
e1 and e2 (defined in §III-C) are possible.

Proof. Without loss of generality, we prove that e1 is a pos-
sible execution. By contradiction, suppose that e1 execution
is impossible. Therefore, processes from the A∪B set decide
a value v∗ ̸= v in the described execution. However, there
exists another execution e′1 such that (1) all processes are
correct, (2) all processes propose v, (3) all processes from
the A ∪ B set observe the same environment as in e1 until
time t1, and (4) communication between groups A ∪ B and
C is delayed until t1. Hence, executions e1 and e′1 are
indistinguishable to processes from A∪B until time t1, which
implies that a correct process a ∈ A ∪ B decides v∗ ̸= v in
e′1. Thus, the weak validity property of abc is violated in e′1.
The contradiction is reached and the theorem holds.

Since executions e1 and e2 can be constructed (by Theo-
rem 4), partitioningExecution is possible. Hence, the proof
of Theorem 3 shows that abc, an accountable Byzantine con-
sensus protocol satisfying weak validity, has Ω(n3) account-
ability complexity. More generally, all accountable Byzantine

4As we have already mentioned, if external validity is not accompanied
by another validity property, there exists a simple algorithm that “always”
(i.e., irrespectively of the number of faults) solves Byzantine consensus. That
is the reason we do not consider accountable Byzantine consensus protocols
satisfying solely external validity.

consensus protocols that allow partitioningExecution to
exist have Ω(n3) accountability complexity.
B. Accountability Complexity: Alternative Definition
As already mentioned in §II, accountable Byzantine con-

sensus protocols may have infinite communication com-
plexity in executions with more than t0 faulty processes.
This is why the communication complexity metric is not
suitable for such corrupted executions. However, we could
measure the number of bits exchanged by correct processes
after they have become aware that the ongoing execution is
corrupted (i.e., that it contains more than t0 faulty processes).
Solving consensus in corrupted executions is not required by
the definition of the problem (see §I). Therefore, all efforts
towards solving consensus can be dropped upon a realization
that the ongoing execution is corrupted, implying that only
“accountability-related” work must be done hereafter.
Let us formally introduce the awareness-based accountabil-

ity complexity, a possible alternative to the definition given
in §II. A correct process Pi becomes aware that the ongoing
execution e is corrupted if and only if no execution e′ exists
such that (1) Pi behaves in e′ as it behaves in e, and (2)
e′ contains up to t0 faulty processes. Intuitively, a correct
process becomes aware that the current execution is “bad”
(i.e., contains more than t0 faulty processes) if no “good” (i.e.,
with up to t0 faults) execution is possible given the process’
ongoing behavior.
Next, we define the awareness-based accountability com-

plexity of an execution e with t0 < t < n − 1 (recall that
we do not consider executions with more than n− 2 faults).
Let wi(e) denote the number of words sent in messages by
a correct process Pi in e after Pi has become aware that
e is corrupted; if Pi never becomes aware that e is cor-
rupted, then wi(e) = 0. The awareness-based accountability
complexity of e is the sum of wi(e), for every process Pi

correct in e. Furthermore, the awareness-based accountability
complexity of an accountable Byzantine consensus protocol
is the maximum awareness-based accountability complexity
across all executions with more than t0 (and less than n−1)
faulty processes. Lastly, the complexity of an accountable
Byzantine consensus protocol abc could be seen as a pair
(cc(abc), ac(abc)), where cc(abc) denotes the communica-
tion complexity of abc in the common case (i.e., in executions
with up to t0 faulty processes) and ac(abc) denotes the
awareness-based accountability complexity of abc.
Our ABC transformation introduces cubic awareness-

based accountability complexity as the communication com-
plexity of accountable confirmer (see Algorithm 2) is O(n3)
in the degraded case.5 Specifically, if bc solves the Byzantine
consensus problem with Xbc communication complexity,
then the complexity of abc, where abc is obtained by ap-
plying ABC to bc, is (Xbc , O(n3)).

5Our ABC transformation needs to be slightly modified to always ensure
cubic awareness-based accountability complexity. Namely, once a correct
process becomes aware that the ongoing execution is corrupted, it stops
executing the original Byzantine consensus protocol and executes solely the
accountable confirmer protocol.

V. Generalized ABC Transformation
We have shown that ABC enables Byzantine consensus

protocols to obtain accountability. This section generalizes
ourABC transformation and defines its applicability. Namely,
we specify a class of distributed computing problems named
easily accountable agreement tasks and we prove that gener-
alized ABC enables accountability in such tasks.
We introduce agreement tasks in §V-A. Then, we define the

class of easily accountable agreement tasks (§V-B) and prove
the correctness of generalized ABC transformation applied
to such agreement tasks (§V-C).

A. Agreement Tasks
Agreement tasks represent an abstraction of distributed

input-output problems executed in a Byzantine environment.
Specifically, each process has its input value. We assume that
“⊥” denotes the special input value of a process that specifies
that the input value is non-existent. A process may eventually
halt; if a process halts, it produces its output value. The “⊥”
output value of a process means that the process has not
yet halted (and produced its output value). We denote by Ii
(resp., Oi) the input (resp., output) value of process Pi. We
note that some processes might never halt if permitted by
the definition of an agreement task. We provide the formal
explanation in the rest of the subsection.
An agreement task A is parameterized with the upper

bound tA on number of faulty processes that are tolerated. In
other words, the specification of an agreement task assumes
that no more than tA processes are faulty in any execution.
Any agreement task could be defined as a relation between

input and output values of processes. Since we assume that
processes might fail, we only care about input and output
values of correct processes. Hence, an agreement task could
be defined as a relation between input and output values of
correct processes.
An input configuration of an agreement task A is νI =

{(Pi, Ii) with Pi is correct}, where |νI | ≥ n − tA: an input
configuration consists of input values of all correct processes.
Similarly, an output configuration of an agreement task is
νO = {(Pi, Oi) with Pi is correct}, where |νO| ≥ n − tA:
it contains output values of correct processes. We denote by
θ(νO) = |{Oi | (Pi, Oi) ∈ νO ∧ Oi ̸= ⊥}| the number of
distinct non-⊥ values in the νO output configuration.

Finally, we define an agreement task A as tuple
(I,O,∆, tA), where:

• I denotes the set of all input configurations of A.
• O denotes the set of all output configurations of A such
that θ(νO) ≤ 1, for every νO ∈ O.

• ∆ : I → 2O , where νO ∈ ∆(νI) if and only if the
output configuration νO ∈ O is valid given the input
configuration νI ∈ I .

• tA ≤ ⌈n/3⌉−1 denotes the maximum number of faulty
processes the task assumes.

As seen from the definition, correct processes that halt
always output the same value in agreement tasks. Moreover,
we define agreement tasks to tolerate less than n/3 faults.

Without loss of generality, we assume that ∆(νI) ̸= ∅,
for every input configuration νI ∈ I . Moreover, for every
νO ∈ O, there exists νI ∈ I such that νO ∈ ∆(νI).
We note that some problems that are traditionally con-

sidered as “agreement” problems do not fall into our clas-
sification of agreement tasks. For instance, Byzantine lattice
agreement [13] or k-set agreement [8] are not agreement
tasks per our definition since the number of distinct non-⊥
values that can be outputted is greater than 1.

Solutions: We say that a distributed protocol ΠA solves an
agreement task A = (I,O,∆, tA) if and only if, in every
execution with up to tA faults, there exists (an unknown)
time TD such that νO ∈ ∆(νI), where νI ∈ I denotes the
input configuration that consists of input values of all correct
processes and νO ∈ O denotes the output configuration that
(1) consists of output values (potentially ⊥) of all correct
processes, and (2) no correct process Pi with Oi = ⊥ updates
its output value after TD .

Finally, we say that a distributed protocol ΠA
A solves an

agreement task A = (I,O,∆, tA) with accountability if and
only if the following holds:

• A-Solution: ΠA
A solves A.

• Accountability: If two correct processes output different
values, then every correct process eventually detects
at least tA + 1 faulty processes and obtains proof of
culpability of all detected processes.

B. Easily Accountable Agreement Tasks
Fix an agreement task A = (I,O,∆, tA). We say that A

is an easily accountable agreement task if and only if one of
the following conditions is satisfied:
1) “All-or-None-Decidability”: There does not exist νO ∈ O

such that (Pi, Oi ̸= ⊥) ∈ νO and (Pj , Oj = ⊥) ∈ νO ;
or

2) “Partial-Decidability”: For every νI ∈ I such that there
exists νO ∈ ∆(νI), where (Pi, Oi = v ̸= ⊥) ∈ νO and
(Pj , Oj = ⊥) ∈ νO , the following holds:

for every c ∈ P({Pi | (Pi, Ii) ∈ νI}),∃ν′O ∈ ∆(νI),

where ∀Pi ∈ c : (Pi, Oi = v) ∈ ν′O and
∀Pj ∈ {Pk | (Pk, Ik) ∈ νI} \ c : (Pj , Oj = ⊥) ∈ ν′O.

“All-or-None-Decidability” characterizes all the problems
in which either every process halts or none does. For
instance, Byzantine consensus [19] and Byzantine reliable
broadcast [5] satisfy “All-or-None-Decidability”.
On the other hand, some agreement tasks permit that some

processes halt, whereas others do not. We say that these tasks
satisfy “Partial-Decidability” if and only if it is allowed for
any subset of correct processes to halt (and output a value).
Note that “Partial-Decidability” covers the case where no
correct process ever halts. Byzantine consistent broadcast [5]
is the only agreement task we are aware of that satisfies
“Partial-Decidability” (in the case of a Byzantine sender).
However, the significance of Byzantine consistent broadcast
(e.g., for implementing cryptocurrencies [16]) motivated us
to consider the “Partial-Decidability” property.

Algorithm 4 Generalized ABC Transformation - Code For
Process Pi

1: Implements:
2: Agreement Task A With Accountability,

instance a−A
3: Uses:
4: ▷ Protocol to be transformed
5: Protocol that solves agreement task A, instance ΠA
6: Accountable Confirmer, instance ac
7: upon event ⟨a−A, Input | input⟩ do ▷ Input
8: trigger ⟨ΠA, Input | input⟩
9: upon event ⟨ΠA,Output | output⟩ do
10: trigger ⟨ac,Submit | output⟩
11: upon event ⟨ac,Confirm | confirmation⟩ do
12: trigger ⟨a−A,Output | confirmation⟩ ▷ Output
13: upon event ⟨ac,Detect |F, proof ⟩ do
14: trigger ⟨a−A,Detect |F, proof ⟩ ▷ Detection

C. Correctness of Generalized ABC Transformation

We now prove the correctness of our generalized ABC
transformation (Algorithm 4). First, we show that Algo-
rithm 4 solves an easily accountable agreement task A if
A satisfies “All-or-None-Decidability”.

Lemma 1. Let A = (I,O,∆, tA) be an easily accountable
agreement task that satisfies “All-or-None-Decidability”. Al-
gorithm 4 solves A.

Proof. If no correct process ever outputs a value at line 9,
then no correct process confirms any value from accountable
confirmer (because no correct process submits any value to
accountable confirmer at line 10). Hence, no correct process
produces any output at line 12, which concludes the proof
in this scenario.

Otherwise, each correct process eventually outputs a value
at line 9. Moreover, all correct processes output the exact
same value v (since A is an agreement task). Therefore, all
correct processes submit the same value v to accountable
confirmer (line 10). By terminating convergence of account-
able confirmer, all correct processes eventually confirm value
v (line 11) and output it (line 12). Once this happens, the
agreement task A is solved, which concludes the lemma.

Now, we prove that Algorithm 4 solves an easily account-
able agreement task A if A satisfies “Partial-Decidability”.

Lemma 2. Let A = (I,O,∆, tA) be an easily accountable
agreement task that satisfies “Partial-Decidability”. Algo-
rithm 4 solves A.

Proof. Let νI denote a specific input configuration of A. We
consider two cases:

• If no or all correct processes output a value at line 9,
the proof is identical to the proof of Lemma 1.

• Otherwise, there exists a correct process that outputs a
value v at line 9 and another correct process that does
not output any value at line 9. Since A is an agreement
task, any correct process that outputs a value at line 9

outputs the value v. Moreover, any correct process that
outputs a value at line 12 outputs the value v (ensured
by validity of accountable confirmer). Finally, once the
system stabilizes at time TD (the system stabilizes at
time TD if and only if no correct process Pi with Oi = ⊥
updates its output value after TD), the fact that any
subset of correct processes could halt and that all halted
processes output v implies that Algorithm 4 solves A.

The lemma holds.

Finally, we are ready to prove that Algorithm 4 solves A
with accountability, where A is an easily accountable agree-
ment task, which means that generalized ABC is correct.

Theorem 5. Let A = (I,O,∆, tA) be an easily accountable
agreement task. Algorithm 4 solves A with accountability.

Proof. Algorithm 4 satisfies A-solution by Lemmas 1 and 2.
Furthermore, Algorithm 4 ensures accountability because of
the fact that accountable confirmer ensures accountability
and tA ≤ t0. Thus, the theorem holds.

VI. Conclusion
We presented ABC, a generic and simple transformation

that allows Byzantine consensus protocols to obtain account-
ability. Besides its simplicity, ABC is efficient: it is sufficient
to obtain an accountable Byzantine consensus protocol that is
(1) optimal (with respect to the communication complexity)
in solving consensus whenever consensus is solvable, and
(2) optimal (with respect to the accountability complexity)
in obtaining accountability whenever disagreement occurs.
Finally, we show that ABC can easily be generalized to
other agreement problems (e.g., Byzantine reliable broadcast,
Byzantine consistent broadcast). Future work includes (1)
designing similarly simple and efficient transformations for
problems not covered by the generalized ABC transforma-
tion, like Byzantine lattice and k-set agreement problems, and
(2) circumventing the cubic accountability complexity bound
using randomization techniques.

Acknowledgments

This work is supported in part by the Australian Research
Council Future Fellowship funding scheme (#180100496), and
by Singapore MOE Grant MOE2018-T2-1-160.

References
[1] Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., and

Tomescu, A. Reaching Consensus for Asynchronous Distributed Key
Generation. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC) (2021), pp. 363–373.

[2] Abraham, I., Malkhi, D., and Spiegelman, A. Asymptotically Optimal
Validated Asynchronous Byzantine Agreement. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing (PODC)
(2019), pp. 337–346.

[3] Buchman, E., Kwon, J., and Milosevic, Z. The latest gossip on BFT
consensus. Tech. Rep. 1807.04938, arXiv, 2018.

[4] Buterin, V., and Griffith, V. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

[5] Cachin, C., Guerraoui, R., and Rodrigues, L. Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[6] Cachin, C., Kursawe, K., Petzold, F., and Shoup, V. Secure and
Efficient Asynchronous Broadcast Protocols. In Proceedings of the
Annual International Cryptology Conference (CRYPTO) (2001), Springer,
pp. 524–541.

[7] Castro, M., and Liskov, B. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI) (1999), p. 173–186.

[8] Chaudhuri, S. More Choices Allow More Faults: Set Consensus Prob-
lems In Totally Asynchronous Systems. Information and Computation
105, 1 (1993), 132–158.

[9] Civit, P., Gilbert, S., and Gramoli, V. Brief Announcement: Poly-
graph: Accountable Byzantine Agreement. In Proceedings of the
34th International Symposium on Distributed Computing (DISC) (2020),
vol. 179 of LIPIcs, pp. 45:1–45:3.

[10] Civit, P., Gilbert, S., and Gramoli, V. Polygraph: Accountable Byzan-
tine agreement. In Proceedings of the IEEE 41st International Conference
on Distributed Computing Systems (ICDCS) (2021), pp. 403–413.

[11] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. DBFT: Efficient
Leaderless Byzantine Consensus and its Application to Blockchains.
In Proceedings of the IEEE 17th International Symposium on Network
Computing and Applications (NCA) (2018), pp. 1–8.

[12] Crain, T., Natoli, C., and Gramoli, V. Red Belly: A Secure, Fair and
Scalable Open Blockchain. In Proceedings of the 42nd IEEE Symposium
on Security and Privacy (SP) (2021), pp. 466–483.

[13] de Souza, L. F., Kuznetsov, P., Rieutord, T., and Tucci Piergiovanni,
S. Accountability and Reconfiguration: Self-Healing Lattice Agreement.
In Proceedings of the 25th International Conference on Principles of
Distributed Systems (OPODIS) (2021), pp. 25:1–25:23.

[14] Dolev, D., and Reischuk, R. Bounds on information exchange for
Byzantine Agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–
204.

[15] Dwork, C., Lynch, N., and Stockmeyer, L. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[16] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., and Seredin-
schi, D.-A. The Consensus Number of a Cryptocurrency. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC) (2019), pp. 307–316.

[17] Haeberlen, A., Kouznetsov, P., and Druschel, P. PeerReview: prac-
tical accountability for distributed systems. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP) (2007), ACM,
pp. 175–188.

[18] Haeberlen, A., and Kuznetsov, P. The Fault Detection Problem.
In Proceedings of the 13th International Conference on Principles of
Distributed Systems (OPODIS) (2009), Springer, pp. 99–114.

[19] Lamport, L., Shostak, R., and Pease, M. The Byzantine Generals
Problem. In Concurrency: the Works of Leslie Lamport. 2019, pp. 203–
226.

[20] Libert, B., Joye, M., and Yung, M. Born and raised distributively: fully
distributed non-interactive adaptively-secure threshold signatures with
short shares. Theor. Comput. Sci. 645 (2016), 1–24.

[21] Milosevic, Z., Hutle, M., and Schiper, A. Unifying Byzantine Con-
sensus Algorithms with Weak Interactive Consistency. In Interna-
tional Conference On Principles Of Distributed Systems (OPODIS) (2009),
Springer, pp. 300–314.

[22] Pedrosa, A. R., and Gramoli, V. Trap: The Bait of Rational Players
to Solve Byzantine Consensus. In Proceedings of the 17th ACM
Asia Conference on Computer and Communications Security (ASIACCS)
(2022).

[23] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. BFT
Protocol Forensics. In Computer and Communication Security (CCS)
(2021).

[24] Spiegelman, A. In Search for an Optimal Authenticated Byzantine
Agreement. In Proceedings of the 35th International Symposium on
Distributed Computing (DISC) (2021), pp. 38:1–38:19.

[25] Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., and Abraham,
I. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (PODC) (2019), pp. 347–356.

