Scalable Accountable Byzantine Agreement and Beyond

Pierre Civit*, Daniel Collins, Vincent Gramoli*$, Rachid Guerraoui*,
Jovan Komatovic*, Manuel Vidigueira*, Pouriya Zarbafian!
*EPFL, TTexas A&M University, iUniversity of Sydney, §Redbelly Network

Abstract—No t-resilient Byzantine Agreement (or Reliable
Broadcast) protocol can guarantee agreement among n correct
processes in a non-synchronous network if the actual number
of faulty processes f is > n — 2t. This limitation highlights
the need to augment such fragile protocols with mechanisms
that detect safety violations, such as forensic support and
accountability.

This paper introduces simple and efficient techniques to
address this challenge by proposing a new generic trans-
formation, ABCT+. The transformation leverages two key
primitives: the ratifier and the propagator. By sequentially
composing these primitives with any closed-box Byzantine
Agreement (or Reliable Broadcast) protocol, ABCT produces
a robust counterpart that provides both (adaptively-secure)
forensic support and (1-delayed adaptively-secure) account-
ability. The transformation incurs a subquadratic additive
communication overhead, with only 1 round of overhead for
decision and forensic support, and 2 additional rounds for
detection in case of a safety violation (or O(log(n)) additional
rounds with optimized communication).

The generality of ABCT' offers a compelling gen-
eral alternative to the subquadratic forensic support so-
lution by Sheng et al. (FC’23) tailored to HotStuff-like
protocols, while being more efficient than the (strongly-
adaptively-secure) quadratic ABC accountable transforma-
tion (IPDPS’22, JPDC’23). Moreover, it provides the first
subquadratic accountable Byzantine Agreement (or Reliable
Broadcast) protocols against a (1-delayed) adaptive adversary.

Finally, any subquadratic accountable Reliable Broad-
cast protocol can be integrated into the 7. transformation
(ICDCS’22) to produce an improved variant, 7..,". This new
version compiles any deterministic (and even beyond) protocol
into its accountable counterpart with subquadratic multiplica-
tive communication overhead, significantly improving upon
the original quadratic overhead in 7.,.

1. Introduction

Byzantine agreement (BA) protocols enable a group of
n processes to reach consensus even when f processes
are faulty and can deviate arbitrarily from the protocol.
These protocols are crucial for various distributed systems,
including state machine replication (SMR), blockchain sys-
tems, and secure multi-party computation (MPC). Tradi-
tional BA protocols guarantee consensus as long as the

number of faulty processes is below a certain threshold
t < n/3. However, they fall short in scenarios where this
threshold is exceeded. Typically, due to classic partitioning
arguments [1], no ¢-resilient BA protocol can prevent dis-
agreement during a period of asynchrony if f > n—2t [2],
[3]. This fundamental limit has motivated the community to
introduce mechanisms that, at least, allow detecting faulty
processes which are responsible for disagreements.

Forensic support [4], [5], [6], [7] ensures that in case
of a disagreement, some correct processes will collectively
hold different pieces of information such that when these
pieces are combined, they provide irrefutable proof of
misbehavior by a significant number of faulty processes.
The collective nature of forensic support requires commu-
nication overhead to exchange and combine these pieces
of evidence simply to realize that safety has been violated,
let alone to expose malicious parties. Accountability [8], on
the other hand, is a stronger property. It provides irrefutable
proof of misbehavior directly to every correct process,
without the need to exchange and combine separate pieces
of information'. Recent research has introduced various
mechanisms to achieve these properties, but existing so-
lutions come with notable downsides.

The solution of [5] provides forensic support by relying
on transition certificates to identify nodes that “voted be-
hind their lock” (see Appendix B) in a player-replaceable?
version of HotStuff [13], [14], which leads to forensic
evidence consisting of full transcripts of received messages,
potentially polynomial in . Besides not ensuring account-
ability, this makes dissemination (not considered in [5]) and
verification inherently costly, and no prior method extended
it to an accountable protocol without the linear overhead
of [15], hence superquadratic.

On the other hand, the ABC transformation proposed in
[2], [11] offers a more generic approach to ensure account-
ability, even in the presence of a strongly-adaptive adver-
sary, but suffers from a significant drawback: dissemination
is achieved via all-to-all communication, resulting in ©(n?)
communication complexity. In this scheme, each process
must in particular verify a linear number of signatures,
impeding scalability.

1. The original definition of accountability in [8] involves a judge-based
model. Following [9], [10], [11], [12], we adopt the convention that all
correct judges (i.e., processes) must reach a verdict.

2. We elaborate on this notion in the related work section.

In this paper, we decompose the ABC transformation’s
accountable confirmer further into two new primitives: the
ratifier and the propagator. This apparently innocuous split
yields simpler and stronger observations.

Contributions. Let x and A be computational and statistical
security parameters, respectively. Our contributions are as
follows:

o We define the ratifier, a minimal functionality for
forensic support. Correct processes can use it to
generate forensic evidence. Its simplicity enables an
adaptively-secure one-round implementation, incurring
O(An) message complexity (each message of O(k)
bits), using standard Algorand-style sortition [16] on
top of a VRF setup [17].

Crucially, the ratifier forces the adversary, if it wishes
to cause disagreement, to equivocate at a single,
well-defined round, independent of the compiled pro-
tocol. The resulting evidence is just a compact
multi-signature plus a “proof-of-eligibility”, which is
lightweight to propagate and check, in contrast to [5].

e We define the propagator, a minimal functionality

ensuring the dissemination of certificates to all correct

nodes. Unlike the all-to-all communication of [11],

our propagator achieves subquadratic complexity by

revisiting the ERFlood protocol [18] under the 1-

delayed-adaptive adversary model, where corruption

decisions are postponed just long enough to let in-
transit messages be delivered.

This design required and motivated the notion of

propagation-friendliness, which ensures correctness

and scalability by preventing a fake-certificate flood-
ing attack that would arise in more naive designs. It
also suggests efficient and compact eligibility proofs
via concretely-efficient aggregate lottery functionality,

such as Jackpot [19].

We present two alternative subquadratic implementa-

tions: (1) O()\) per-process message complexity with

O(log(n/\)) expected rounds between a safety vio-

lation and accountable detection; or (2) O(v/n\) per-

process message complexity with 2 rounds to detec-
tion. Each message has size O(Alogn+) when using

Jackpot proofs.

We show that sequentially composing the ratifier and

the propagator yields an accountable confirmer, as for-

malized in [11]. This primitive can then be composed
with any protocol solving an easily accountable agree-
ment task, such as Byzantine Agreement, Reliable

Broadcast, or Consistent Broadcast, using the ABC

transformation. The resulting protocol inherits forensic

support, accountability, and the correctness properties
of the underlying protocol II, with complexity and
security guarantees derived from the ratifier, the prop-
agator, and II itself. This yields the first subquadratic
accountable protocols for Byzantine Agreement (and

Reliable Broadcast, and Consistent Broadcast) as sum-

marized in Table 1.

o We present the ABCT™ transformation within the

Accountable Universally Composable (AUC) frame-
work [20], providing strong compositional guarantees
for the broad class of easily accountable agreement
functionalities, namely the UC abstractions of the
easily accountable agreement tasks introduced in [11].
This class not only includes standard primitives such
as Byzantine Agreement, Reliable Broadcast, and Con-
sistent Broadcast, but also encompasses other spe-
cialized abstractions like one-to-many zero-knowledge
proof, which serves as the zero-knowledge counterpart
of Reliable Broadcast and is occasionally employed in
MPC protocols [21], [22], [23].

o We evaluate the exact constants involved in our com-
plexity analysis to demonstrate the practical feasibility
of our solution. Additionally, we implement in Rust the
cryptographic certificate logic, showing that aggrega-
tion and verification, performed once per decision, can
be executed in under 50 ms, with failure probability
below 2740,

TABLE 1: Comparison of Accountability and Forensic
Detection Schemes. Gen./Acc.: Generality of supported
protocols and whether accountability is ensured (Y/N). ‘SMR’
corresponds to a family of HotStuff-like protocols. Comm.:
Asymptotic communication overhead. Rnd: Round complexity
overhead. ¢,..: Maximum number of faults for which detection is
guaranteed. Detect.: Number of faulty processes that can be held
accountable when ¢ < f < t,... Adapt.: adversary adaptivity —
S/W: strong / weak adaptive (with / without after-the-fact
removal, i.e., the adversary can remove pending messages from
freshly corrupted processes [24]), D: 1-delayed adaptive.

Work | Gen./Acc.| Com. |Rnd tace Detect. | Adapt.

[11] Any/Y [+Q(n?) | +1 n n/3
[15] (O) | “SMR”/Y | +Q(n3) | 4+0 n n/3
[15] (O) | “SMR/Y | xQ(n) | +0 n n/3

(4] None/N | Q(n2) [N/A| 2n/3 | n/3
(5] None/N | o(n?) |N/A| 2n/3 /3
ABCTT | Any/Y | +o(n?) | +1 [n—0O(n)|)\/3

g2nunnn

Applications. ABCT™ is directly applicable to protocols

whose security reduces to underlying easily accountable
agreement tasks, such as those used in scalable and account-
able distributed ledgers [25], state machine replication [26],
[27], bulletin board services [28], [29], and payment sys-
tems [30], [31], [32]. Additionally, Accountable Byzantine
Agreement can also be applied to novel problems such
as rational agreement [33] and variants of the long-lasting
blockchain problem [15], [34], [35], [36].

A complementary line of work focuses on general
transformations that bring accountability to a wide class of
distributed protocols beyond easily accountable agreement
tasks. One of the earliest and most influential contributions
in this direction is PeerReview [37], which provides a
generic accountability layer inspired by the failure detector
paradigm. In PeerReview, accountability is defined as the
permanent suspicion of faulty processes, without producing
externally-verifiable evidence. Later, the 7. transforma-
tion [12] strengthened this notion by providing full account-
ability. In this setting, violations of safety yield publicly

verifiable proofs of misbehavior [8], [38], but at the cost of
a quadratic multiplicative communication overhead.

We observe that the subquadratic accountable Reliable
Broadcast protocols developed in this work can be directly
integrated into 7., to obtain an improved transformation
7T, This variant preserves the same accountability guar-
antees while reducing the communication overhead to sub-
quadratic, as detailed in Table 2. These approaches apply
to a broad class of protocols that do not naturally fall
within the scope of easily accountable agreement tasks.
This includes all deterministic protocols that may invoke
cryptographic primitives, and even more general settings.
Furthermore, previously proposed techniques to preserve
hyper-properties (e.g., privacy, fairness, or unpredictability)
in transformations a la PeerReview [39], [40], [41] can be
naturally adapted to 7)F, mitigating one of the primary

scr
limitations of such generic transformations.

TABLE 2: Comparison of General Accountability
Transformations. Com. denotes the multiplicative
communication overhead; Ext. Ver. indicates whether external
verifiability is supported; Adapt. denotes the corruption model:
S = strongly-adaptive, D = 1-delayed, None = static corruption.

Work Com. Ext. Ver. | Adapt.
PeerReview [37] xo(n?) N None
PeerReview’ [37] | xO(n2) N S

Tser [11] X@(n2) Y S
755 (this) xo(n?) Y D

Roadmap. In §2, we review the related work. §3 defines
the formal system model and the necessary preliminaries.
The ratifier and its implementation are introduced in §4,
followed by the propagator and its implementation in §5.
Both are combined to build the generic ABC*™ compiler in
§6. Generalization to the Universal Composability frame-
work is discussed in §7. §8 conducts an evaluation of our
protocol’s cost. Lastly, §9 concludes the work. We discuss
7 in Appendix A, while full definitions and proofs are

scr

provided in our technical report [42].

2. Related Work

Verifiable Random Functions (VRFs) and Player-
Replaceability. VRFs [17] are cryptographic primitives
that generate unpredictable yet verifiable random values,
enabling efficient leader election. At each step s, processes
use VRFs to determine whether they have been elected as
a leader. If elected, the VRF allows the computation of a
verifiable proof confirming the legitimacy of the election.
In the player-replaceability paradigm [16], [43], [44], a
“classic multicast” protocol, where messages are broad-
casted publicly via a multicast protocol, is divided into steps
that involve either all-to-all communication or leader-to-all
communication. For all-to-all steps, a sublinear committee
is elected using the VRF primitive to represent the group
in communication. Similarly, the leader is elected using the
VRF mechanism, which may sometimes elect more than
one leader without harming the protocol any more than

having a single malicious leader in the original protocol.
To send a message in any round, a player must append
a publicly verifiable proof of eligibility, and any message
without a valid proof is rejected.

While this solution may seem imbalanced (commit-
tee members sending more messages than non-committee
members), the multicast primitive can be implemented us-
ing a probabilistic flooding protocol [45], which can be
made secure against a 1-delayed-adaptive adversary, whose
adaptive corruptions are delayed by at least one causal
message delivery [18], [46], [47]. However, a broadcast
protocol cannot be adaptively-secure with sublinear per-
process communication, as the adversary can always im-
mediately corrupt the neighbors of the message’s source.

Subquadratic Byzantine Agreement. Achieving sub-
quadratic BA against an adaptive adversary in a non-
synchronous network is highly challenging. Unlike in syn-
chrony [48], subquadratic solutions in non-synchronous
networks require a trusted setup [49], which goes beyond
an ideal authentication functionality. This remains true
even when private channels, Common Random Strings
(CRS), and succinct non-interactive arguments of knowl-
edge (SNARKS) are assumed to be freely available [50].
The required trusted setup seems to inherently involve cor-
related private randomness. Consequently, it is no big sur-
prise that all subquadratic solutions in partial synchrony [5],
[14], [16], [24], [50], [51] or full asynchrony [49], [52], [53]
rely on the player-replaceability paradigm on top of a VRF-
setup. These protocols can also be extended to efficiently
handle long input values [54].

Subquadratic Byzantine Reliable Broadcast. As pre-
sented in [49], the VRF-based player-replaceability
paradigm can be applied to Bracha’s double-echo proto-
col [55], [56] to achieve subquadratic adaptively-secure per-
formance. Multicast primitives can be implemented using
the balanced flooding protocol from [18], but at the price
of making the protocol secure against a 1-delayed-adaptive
adversary only. Alternatively, at the cost of only providing
static security, the Contagion protocol [57] achieves similar
guarantees without requiring a VRF setup.

Accountable Byzantine Agreement. It has been observed
that any closed-box BA object can be sequentially com-
posed with an accountable confirmer to achieve account-
able BA [2], [11]. The simplicity of this solution has en-
abled its formal verification within TLA+ [58]. This generic
approach may encourage moving away from specialized
solutions designed for specific BA implementations [4],
[10], [59], [60], [61], even though some optimizations could
avoid the extra round complexity. In this context, [15] pro-
posed a generic transformation applicable to a broad class
of HotStuff-like protocols, achieving accountability without
incurring any latency overhead. However, this comes at the
cost of either a ©(n?) additive communication overhead or
a O(n) multiplicative overhead.

The accountable confirmer requires only one round for
decision (called post-voting in OFlex [62]) and 1 additional

round for the detection of a potential safety violation, and
can be applied to any BA algorithm, regardless of its
validity property [63]. For example, it can be used with
multi-valued validated BA (MVBA) [64], [65], [66], [67],
[68] or agreement on a core set (ACS) [69], [70], [71], [72],
also referred to as asynchronous common subset or vector
consensus. These (accountable) BA variants can then be
employed to implement an (accountable) distributed ledger
object (DLO), where processes agree on a (common prefix
of a) totally ordered set of transactions [25], [26], [27].
Such transactions can represent messages from an atomic-
broadcast primitive or transitions in a state machine, thus
solving state-machine replication (SMR). An accountable
ledger can be further extended with client logic to im-
plement an accountable bulletin board [28], [73], which
is commonly used to describe an auditable ledger, e.g.
supporting the generation of receipts for successful post-
ings [29].

(Accountable) Finality Gadget. The notion of an (ac-
countable) confirmer [2], [11] (see also post-voting in
OFlex [62]) shares similarities with the concept of a fi-
nality gadget, a line of work that was initially defined
in [74] and originated with Casper [75]. Finality gadgets,
also referred to as snap-and-chat protocols [74], provide a
flexible BA mechanism by combining two distinct proto-
cols: one optimized for liveness and the other for safety.
This results in two confirmation rules: a “liveness-focused”
rule and a “safety-focused” rule. Subsequent improvements
to the finality gadget presented in [74] have successively
enhanced the functionality with predictable validity [76]
and accountability [77]. Notably, it was shown in [78] that
accountability implies finality.

Synchronous ID-MPC. The classical impossibility of fair-
ness in secure multi-party computation (MPC) when fewer
than n/2 processes are correct [79] has motivated the
study of synchronous MPC with identifiable abort (ID-
MPC) [80], [81], [82]. This line of work, originally ex-
plored under the notion of covert security [83], [84], cul-
minated in the publicly accountable MPC protocol of [85].
While our setting does not aim to preserve input or output
privacy—a central concern in ID-MPC—we focus on asyn-
chronous systems, where omission-sending faults are indis-
tinguishable from network delays, making reliable detection
fundamentally more difficult. As such, the two lines of
research pursue different goals under different assumptions,
and are thus largely incomparable and orthogonal.

3. Preliminaries

Notations. Notations are summarized in Table 3.

Processes and Network. We consider a static set of n
processes ¥ = {p1,...,pn}. A distributed protocol is
defined as the tuple II = (IIy,...,II,), where protocol
II; is prescribed to process p;. An adversary (elaborated
upon below) can adaptively corrupt processes. Processes
that remain uncorrupted are referred to as correct, and they

TABLE 3: Summary of Notations.

Notation Description

n Number of (#) processes.

f Actual number of failures.

€,0,0 >0 Small constants for Chernoff bounds

t= [n(% —€)]—-1 # tolerated failures (nominal mode)

tolerated failures (degraded mode)

v = ”_ﬁ’i“" Fraction of ensured correct processes.
A Expected size of a committee.
K The computational security parameter.

W;”\ = (% +¢e)(1 — &)X\ | Size of a VRF-quorum.

B;’g‘ =2Wy5 X _(1+ &)X | Size of VRF-quorums’ intersection.

execute their respective state machines as prescribed by the
protocol. Communication occurs over a reliable, authenti-
cated, point-to-point network, meaning that every pair of
correct processes can communicate, and a message sent by
a correct process to another correct process is eventually
delivered. Additionally, the receiver can always identify the
sender. We consider a fully-asynchronous network, without
upper bound on message delays, but our transformation
can apply to (closed-box) protocols that assume partial
synchrony [86], where after some unknown Global Sta-
bilization Time (GST), message delays are bounded by a
known constant.

Adversary. The adversary is modeled as a state machine
that interacts with both the network and the processes.
The adversary is assumed to be computationally bounded
and unable to break the cryptographic primitives intro-
duced later in the protocol. The adversary controls message
scheduling, deciding when messages in transit are delivered.
The adversary can corrupt processes dynamically, with f
denoting the total number of corruptions. If no restriction
is specified, the adversary is adaptive. We also consider
1-delayed-adaptive adversaries [18] (delayed-adaptive for
short), where a corruption decision is delayed by the (un-
kown) maximum time required to deliver a message. Specif-
ically, when a so-far correct process p; sends a message m
to a so-far correct process p;, the adversary cannot corrupt
p; before it receives and potentially forwards m. Corrupted
processes, called Byzantine, are coordinated arbitrarily by
the adversary. An adversary defines a probabilistic space
over the executions of the global system. The probability
is taken over the random coins of the parties, the random
coins of the adversary, and the sampling coins from the
setup distribution.

We introduce two thresholds: an optimistic threshold ¢ €
[0,n(3 —¢€)) for some arbitrarily small constant € € (1),
and a pessimistic threshold t,.. € [0,n — ©(n)]. We note
v = (n — taee)/n, the ratio of processes that is assumed
to be correct even in bad scenarios. The protocol will be
required to solve BA when f < ¢, provide forensic support
for any f, and ensure accountability when f < t,..

Byzantine Agreement. BA protocols allow n processes to
agree on a common value even in the presence of faulty
processes that may behave arbitrarily. The BA’s specifica-
tion is given in the Module 1 presented below.

Module 1 Byzantine Agreement (val, p)

Parameters:

o A validity property val. > Details can be found in [63]
e p: f€[l:n]~— [0,1], the minimum probability of success
Events:

o request propose(v; € Value): a process inputs a value v;

o notification decide(v, € Value): a process outputs a value v.

Properties:

Let f be the actual number of failures. With probability at least p(f),
the following is ensured:

o Termination: All honest processes eventually decide on a value.

o Agreement: No two honest processes decide on different values.
o Validity: Any decided value is valid according to val.

The module is parametrized with a validity property
val and function p. A validity property, formalized in [63],
maps any input configuration, representing the proposals
of the correct processes, with a set of admissible values.
For example, the strong unanimity validity property states
that if all correct processes unanimously propose a common
value, then only that value can be decided. The function p
maps the actual number of failures f with the corresponding
guaranteed probability of success. Let us note that p is non-
increasing and p([(n/3)]) = 0. Classically, p is associated
with a threshold ¢’ < n/3, such that p(t') = 1—0(1), while
nothing is guaranteed for p(t' + 1).

Complexity. We focus on the communication and round
complexities of BA under asynchronous and partially syn-
chronous conditions. For each execution, the bit complexity
refers to the number of bits sent by correct processes,
while the round complexity measures how long the decision
process takes based on message delays. In the partially
synchronous model, the time and bits exchanged before
Global Stabilization Time (GST) are not counted. The
expected bit and round complexities of any BA protocol are
defined as the worst-case expectations over all adversarial
strategies.

Forensic support and accountability. We adopt the
nomenclature of accountability outlined in [8], [20]. In
this framework, the breach of a specific targeted safety
property should result in a verdict, identifying the parties
responsible for the security violation. Verdicts are com-
puted by judges based on pieces of evidence. We focus
exclusively on judges that are fair and public. A public
judge relies solely on publicly verifiable evidence, that
can be published by individual parties, allowing external
observers to access and validate them, thereby enabling
external verifiability [8], [20]. A fair judge produces, with
all but negligible probability, fair verdicts, i.e., verdicts
that do not blame honest parties adhering to the protocol.
Furthermore, we consider individual accountability, where
verdicts take the form dis(D), meaning that all processes
in the set D are deemed dishonest.

Jumping slightly ahead, the judge we consider operates
on two triplets, 71 and 7o, where each m; = (m;, Q;, 0;) for
i € {1,2}. Here, Q; C ¥ represents a subset of processes,
m; is a message, and o; is a valid multi-signature certifying
that all members of (Q; have signed m; (see next section).

If these signatures are valid and m; and ms are conflicting,
meaning they have the same header but different payloads
(referred to as mutant messages in [87]), then the judge
outputs the verdict dis(Q1 N Q2). This verdict is fair, since
a correct process will never sign conflicting messages.

Forensic support ensures that if a specific safety prop-
erty is violated, correct processes possess evidence that,
when presented to a fair judge, leads to the identification
of malicious parties. Accountability strengthens this by
eliminating the need for centralized evidence collection.
Each correct process independently holds self-verifiable
proof, allowing it to act as the judge or directly forward
the proof to any external party (client), who can also serve
as the judge.

Concretely, let II be a distributed protocol equipped
with some output vyield_certificate(s € String) or
generate_proof(s € String), and J a fair judge (for II).
Adapting the presentation of [5], we say that II pro-
vides (m, k, d, J,valid(-))-forensic support for safety prop-
erty P, if the violation of P with f < m implies,
except with negligible probability, the existence of a set
of k honest processes (pj,,...,p;,) that have triggered

yield_certificate(sy), ..., yield_certificate(sy) respectively,
such that J(sy = ... i s) returns a set of (undeniably
malicious) d distinct processes, while valid(s;) = true

for each j € [1..k]. The role of the valid predicate can
be ignored for now, but will take on its full meaning
when we look at the composition of the ratifier and the
propagator. Let us note that this definition does not say how
the pieces of evidence sy, ..., S; are collected by the judge.
We say that IT provides (m, d, J)-accountability for safety
property P, if the violation of P with f < m implies that,
except with negligible probability, every correct process
p; € U eventually triggers generate_proof(s;) such that
J(s;) returns a set of (undeniably malicious) d distinct
processes. We call detection-round complexity, the expected
number of rounds that separate a safety violation from its
detection.

3.1. Cryptographic Primitives

We now present the cryptographic primitives assumed
by our protocol, including hash functions, multi-signature
schemes, verifiable committee sampling, and public key
infrastructure. Let x be the security parameter.

Hash. We assume a collision-resistant hash function hash
that maps any value into a sequence of O(k) bits.

Multi-signature. We assume the existence of a dynamic
accountable non-interactive multi-signature scheme [88],
[89], [90], [91], [92] (DANMSS) defined as a tuple of
polynomial-time algorithms

DANMSS = (setup, kg, sign, cb, ver)

with the following functionalities:
e setup(1®) — pp: On input a security parameter ,
outputs public parameters pp. These parameters are
implicitly provided to all other algorithms.

e kg() — (pk;,sk;): Key generation outputs a fresh
public/secret key pair (pk;, sk;) for signer p;.

o sign(sk;, m) — o;: Signs a message m € {0, 1}P°W(*)
using secret key sk;, yielding a signature o;.

o cb(m, {(pk;,0i)}p.cq) — o/L: Combines a set of
individual signatures from a group of signers G on
the message m into a single signature o, or returns L
if verification fails.

o ver(m, o, {pk; ticq) — {0, 1}: Verifies the (potentially
combined) signature ¢ on message m with respect to
the group G of public keys.

The scheme satisfies the following security guarantees,
except with negligible probability:

o Unforgeability No (PPT) adversary can forge a valid
aggregate signature on a message m under a set of
public keys, unless it queried the signing oracle for
each key.

e Robustness The scheme guarantees correct behavior
in the presence of potentially adversarial signers, as
follows:

1) The verification algorithm ver(m, o;, pk;) accepts
any signature o; honestly produced via sign(sk;, m)
for any i € [n].

2) For any message m and set G of public keys, if
each (pk;, 0;) passes individual verification, then the
combination cb(m, {(pk;, o;) }:ic) outputs a multi-
signature o that is accepted by ver(m, o, {pk; }icc)-

This property ensures that even in the presence of

malicious signers, an honest aggregator can compute

a valid aggregate signature as long as the individual

signatures verify correctly.

Public Key Infrastructure (PKI). We assume a (syn-
chronous) bulletin-board PKI model, where each party in-
dependently generates its private signing key(s) and posts
the corresponding public verification key(s) to a public
bulletin board. The adversary may adaptively corrupt parties
and, upon corruption, may modify their keys based on the
complete public setup, including the verification keys of
honest parties and any available common reference string
(CRS), if present. The synchronous aspect of the bulletin-
board PKI lies in the existence of a fixed time 7, after
which any missing publication is definitively interpreted
as the absence of a key (i.e., mapped to). Hence, any
correct process must publish its public key(s) before 7,
to avoid being excluded. The (synchronous) bulletin-board
PKI model is equivalent to allowing parties to register
arbitrary strings as public keys with the ideal certification
authority Fca [93] before the starting time 7 of the online
protocol.

Verifiable Committee Sampling. Using VRFs and a (syn-
chronous) bulletin-board-PKI, it is possible [50] to imple-
ment (with a confined bias) validated committee sampling
(VCS), which is a primitive that allows processes to elect
committees without communication and later prove their
election. We follow the presentation of Cohen et al. [94].
VCS provides every process p; with a private function
sample; (s, A), which gets a string s (typically the label

of some specific step) and a threshold A € [1 : n] and
returns a tuple (v;,0;), where v; € {true, false} and o;
is a proof (of size O(k)) that v; = sample;(s, A). If
v; = true we say that p; is sampled to the committee
for s and \. The primitive ensures that p; is sampled with
probability A/n. In addition, there is a public (known to all)
function, committee_val(s, A, ,0;), which gets a string s,
a threshold), a process identification 7 and a proof ¢;, and
returns true or false. Finally, we note C(s,\) = {p; €
Usample,;(s,A) € {(true,o)lc € {0,1}*}}. Intuitively,
C(s,) corresponds to the committee (secretly) elected for
step s. Consider a string s. For every p; € U, let (v;, 0;) be
the return value of sample; (s, A). The following is satisfied:
o (Correctness) committee_val(s, A, i, 0;) = v;.
o (Unpredictability) If p; is correct, then it is infeasible
for the adversary to compute sample, (s, \).
« (Unforgeability) It is infeasible to find (v,0) s.t. v #
v; and committee_val(s, A, 4, 0) = true
We fix e € (0, %) and t < (3—€)n. We fix 4, 5 € Q1) as
arbitrarily small posmve constants, which capture deviation
parameters in the relevant Chernoff bounds, and define:
o Wit = (2 +€)(1—0)A: conservative size of a “VRF-
quorum”. X
. Bg’é\ = 2W5™ — (1 + §)A\: conservative size of the
intersection of two VRF-quorums.
For readability, we may write W (resp., B) as shorthand
for Wy~ A (resp., B) when the parameters 0, 9, €, and A
are clear from context
The following results, based on standard Chernoff
bounds, and proven in our technical report [42], represent
VRF-based analogs of quorum system properties:
Theorem 1. Let H(s, \) denote the random variable that
returns the set of (so-far honest) processes p; such that
the sampling event sample;(s, A) is not preceded by
the corruption of p; in the execution, and let C(s,\) =
{pi € Ulsample;(s, A) = (true, *)}, sampled uniformly
at random with expected size \.
o Liveness. With W = (1 — 6)(+ ¢)\, we have:

Pr[|C(s,) NH(s,\)| < W] < exp(—§(2 + 3¢))\)

. Forensws Let Q,Q" C C(s,\) with |Q| = |Q’| =

W Let B = 2W™ — (1+ §)A Then:

£2
d —A
246

The Liveness result shows that if a set C(s,A) is
assigned a task, with overwhelming probability, a “VRF-
quorum” of size W ~ 2X/3 will perform it. This mirrors
the quorum availability property in classic quorum systems.
The Forensic result ensures that if two “VRF-quorums”
perform some task, their intersection will contain =~ \/3
(accountable) processes, providing the analog of quorum
intersection in classic quorum systems.

Pr{lQNQ'| < B] <exp (—

3. Here, Pr represents the worst-case probability over adversarial strate-
gies with up to ¢ adaptive corruptions (no liveness guarantees when f > t).

4. Ratifier

After some (unreliable) BA instance yielding the
(pre)decision v, processes want to answer the question: “Do
we agree that we have the same pre-decided value v?”.
Moreover, we want to ensure forensic support in the event
of disagreement. We capture these requirements through the
ratifier primitive, which is specified in Module 2. Naively,
this can be implemented by a single round of all-to-all
communication where parties sign and broadcast their value
v. However, this incurs quadratic communication overhead,
which is undesirable in large-scale deployments.

Instead, in our protocol, a VRF-sampled committee of
expected size A\ broadcasts a SUBMIT message containing
(a hash of) their signed pre-decided value to all other pro-
cesses. Upon receiving sufficiently many (W ~ 2)/3) valid
SUBMIT messages supporting the (hash of) pre-decision
v, a process can confirm its decision on v and store the
signed messages from a “VRF-quorum” of size W for
future auditing. When a DANMSS scheme [91] is used,
those signatures can be combined into a multi-signature
o, to produce a “VRE-quorum certificate” (hash(v), @, o).
This certificate proves that all the members of @) signed
(the hash of) v. When this is sequentially composed with a
(closed-box) t'-resilient BA protocol, all properties hold as
long as f < min(¢,t’), as guaranteed by the first Chernoff
bound in Theorem 1.

In the event of a disagreement, two processes will
store conflicting certificates (h,@, o) and (h',Q’,c’), for
conflicting (hashes of) values. These two certificates form
undeniable proof of misbehavior against the processes in
Q N Q' that signed conflicting SUBMIT messages. With
overwhelming probability, the number of such provably
guilty processes is approximately /3, as supported by
the second Chernoff bound in Theorem 1. This yields
Theorem 2.

Module 2 Ratifier
Parameters:
o Integer t = [(n (7 —€) —1]
o Predicate(String — {true, false}) valid(-)

Events:

o request submit(v € Value): a process submits a value v;

e notification confirm(v, € Value) a process confirms a value v,

o notification yield_certificate(cert € String) a process outputs a
certificate.
cert will be interpreted as an element of Certificate by the judge
Jrat for the forensic support in case of disagreement

Properties:

o Integrity: For any f € [0 : n], a process cannot confirm a value
that it did not submit.

e Optimistic Convergence: If f < t and all correct process submit
the same value v, every correct process eventually confirms v.

o Validity: A process only yields valid certificates w.r.t. valid(-)

Forensic-Properties:

o Agreement: No two correct processes output different values.
This property does not have to be ensured (if preconditions of
optimistic convergence are not met), but forensic support (defined
in §3) will be then required in case of disagreement.

Algorithm 2 II,,; - Pseudocode (for process p;)

Parameters:
String step

Real A\, ¢, 8 > See parameters in Table 3.

: Local variables:

Dictionary(Processes, Signatures) signatures; < L
Dictionary(Processes, VRFproofs) /' < L

Value predecided; < L

Hash_Value h; < L

R o

9: upon submit(v € Value):

10: (predecided;, h;) < (v, hash(v))

11: (elected;, o) < sample(step, A)

12: if elected;:

13: o < sign;((step, SUBMIT, h;))

14: broadcast (step, SUBMIT, h;, of,07)

15: upon m; = (step, SUBMIT, h],o] ,cr]) is received from process
pj andhj:hi;éj_

16: if committee_val(step, A, j, 0]) A
ver((step, SUBMIT, h;), o J,pk):

17: szgnaturesl[pj] o3

18: ;] + 0§

19: upon |Q| > W§’>‘ with Q = {p; € II, signatures;[p;] # L}:
20: 0@ « cb({step, SUBMIT, h;), {;zakj7 szgnaturesl [pil}ieq)
21: trigger yield_ certlflcate((ste;z)7 hi, Q,09), 7P°%)
Although the proof of eligibility 7°¢ for VRF -quorum Q@ is
disregarded by the judge Jrq¢, it wi]l be utilized by the
propagator subprotocol, as detailed in the next section.
22: trigger confirm(predecided;)

Theorem 2. Let (J,q,valid_full) be the pair judge-
predicate presented in Algorithm 3. The judge J,u:
is fair for II,,; (see Algorithm 2), which implements
the Ratifier module (see Module 2) with t-resiliency,
an expected communication complexity of O(Ank),
and 1 round, and provides (n,2, B Jmt,valid _full)-
forensic support for the agreement property, stating that
no two correct processes confirm two different values.

PROOF SKETCH. First, we prove that the protocol II,,; im-
plements the Ratifier module with ¢-resiliency. The integrity
property is trivial. Assume f < ¢ and Jv € Value, such that
all correct processes trigger submit(v). By Theorem 1, the
probability that fewer than Wg’)‘ so-far correct processes
set their variable elected; to true line 11 is bounded by:
Pr[|C(s,A) N H(s,\)| < W < neg(\). Thus, with
overwhelming probability, at least WG’)‘ correct processes
send a (justified) SUBMIT message for the (hash of) value
v, implying that line 14 is reached by at least I~ A correct
processes. Consequently, with overwhelming probability,
line 17 is reached by every correct process p; at least Wy A
times, leading to the confirmation of v at line 22.

The expected communication complexity is derived as
follows. Let X; be a Bernoulli random variable indicating
whether p; € C(s,A), where Pr[X; = 1] = A/n. Define
VAR ijeH X;. By linearity of expectation, E(Zz) < A.
Therefore, the expected number of correct processes broad-
casting a SUBMIT message at line 14 is < \. Since each
correct VRF-committee’s member broadcasts its SUBMIT

Algorithm 3 Fair judge Jp¢ for IT,,; (see Algorithm 2)

Helper Definition:
We define valid_light the predicate that parses a string as a tu-
ple (step,h,Q,o0) € String x Hash_Value x Set(Process) x
MultiSignature, and returns true if and only if (a) |Q| >
W and (b) o is a valid multi-signature of the message
myp = (step, SUBMIT, h) from the subset @} of processes, s.t.
ver(mp, 0, {pk;}p;cq) returns true. LCertificate denotes the cor-
responding type of strings ¢ such that valid_light(c) = true,
which we call lightweight certificates. If ¢ = (step,h,Q,0) €
LCertificate, we let c.step = step, c.hash = h, and c.quorum =

Q.

We denote by conflict,,: the predicate over pairs of certificates
that returns true if cj.hash # cg.hash and c;.step = ca.step,
and false otherwise. A tuple (c1,c2) € LCertificate? is a proof
of misbehavior if conflictyqi(c1,c2). We denote by Proof the
corresponding type.

A full certificate is a pair (c,7P°¢), such that (1) ¢ =
(step,h,Q,0) € LCertificate, and (2) (c,wP°¢) proves the
eligibility of processes in @ for step step, i.e. we can de-
fine the predicate valid_full that maps pairs of the form
(c,wP°¢) to true if (a) valid_light(c) = true, and (b)
Vp; € c.quorum,committe_val(step, A, j, 7P°¢[p;]) = true.
FCertificate denotes the corresponding type of strings ¢ such that
valid_full(c) = true. If ¢ = (¢, 7P°¢) € FCertificate, we note
C.step = c.step, ¢.hash = c.hash, ¢.quorum = c.quorum,
¢.poe = wP°¢, and c.light = c.

upon input(string € String):
parse string as a proof of misbehavior (c1, c2)
if the parsing has succeeded, i.e. if (c1,c2) € Proof:
return dis(ci.quorum N c2.quorum)
else:
return dis(())

message of size O(k) to all processes, the overall commu-
nication complexity is O(Axn).

Second, for any f < n, the fairness of J,.,; follows di-
rectly from the fact that no correct process signs conflicting
SUBMIT messages.

Third, we prove the forensic support property, for any
f < n. Assume agreement is violated, i.e., there exist two
correct processes p; and p; that have confirmed different
values v; and v;, with v; # v;. The condition in line 19
implies that line 17 was reached by process p; (respectively,
p;) at least Wy * times due to the reception of SUBMIT
messages signed by distinct sets of processes (); (respec-
tively, Q;). Therefore, processes p; and p; have triggered
yield_certificate((c;, *)) and yield_certificate((c;, %)), re-
spectively, with ¢; = (step, hash(v;), Q;,09?) and ¢; =
(step,hash(v;), Qj,0%7). Hence, J,q(ci, c;j) returns Q; N
@Q;, while, by Theorem 1 (Forensic), Pr[|Q; N Q;| <
B{3] < neg(N).

VFinally, for any f < n, if a so-far correct process p;
triggers yield_certificate(¢;), the checks at line 16, and 19
ensure that valid_full(¢;), which concludes the proof. O

5. Propagator

As discussed in §1 and §3, forensic support does not
specify how the judge acquires the necessary pieces of

evidence to detect misbehavior. This task is handled by the
propagator, defined in Module 3. A straightforward imple-
mentation would be for every correct process to broadcast
its certificate, but this leads to quadratic communication
complexity due to the all-to-all broadcast pattern.

Module 3 Propagator

Parameters:
Predicate(String — {true, false}) valid(-)
Predicate(String? — {true, false}) conflict(-, -)

Events:

e request propagate(c) with valid(c) = true: a process propagates
a valid certificate ¢

request generate_proof(m € {0,1}*): a process outputs a proof
of misbehavior.

Accountability-Properties:

o Conflict-freeness: No two correct process processes p;, p; propa-
gate ¢1 and c respectively, such that conflict(cy, c2).
Accountability (defined in §3) will be required in case of violation
of this property.

An alternative might involve leveraging the (Byzantine)
Probabilistic Quorum System property [95, Lemma 4.5].
This lemma states that if two correct processes p; and p;
independently sample two probabilistic quorums (); and
Q;, where |Q;| = |Q;| = Ay/n, and the adversary can
only independently corrupt n — O(n) processes, then with
probability 1—neg(\), Q;NEQ); contains at least one correct
process pg. This process could receive both potentially
conflicting certificates and raise an alarm by broadcasting
the corresponding proof to all parties. While this solution
is simple and appealing, it has a critical drawback: once p;
broadcasts its certificate cert; to ();, the adversary could
(adaptively) corrupt @); before p; receives its own cer-
tificate. Therefore, this propagation method only provides
static security.

Similarly, one might consider electing a VRF-based
committee C responsible for monitoring and disseminat-
ing potentially conflicting certificates. Each process would
forward its confirmed certificate to C, which would then
raise an alert upon detecting a conflict. However, this ap-
proach suffers from the same core limitation. Once a correct
process p; sends its certificate cert; to C, the adversary
could adaptively corrupt all members of C' before another
correct process p; obtains and forwards a conflicting cer-
tificate cert;. In such a case, no honest party ever learns
both certificates, and the inconsistency goes undetected.
Importantly, this vulnerability persists even under a 1-delay-
adaptive adversary. The issue is not merely the speed of
adaptive corruptions, but the lack of a mechanism to ensure
that conflicting certificates are delivered to the monitoring
committee with a fixed temporal gap. Without such syn-
chronization between p; and p;, the adversary can always
exploit timing to maintain plausible deniability.

That said, one might suspect that the problem inherently
admits a quadratic lower bound. Indeed, in the pessimistic
case, where a network partition or adversarial scheduling
causes disagreement, every process must prepare for the
possibility of conflicting certificates. Two correct processes

p; and p;, unaware of each other’s identities, must somehow
reach a third process py, (possibly even p; or p; themselves)
to serve as a relay: a party that receives both certificates and
disseminates proof of disagreement. The challenge is that
such a relay can be corrupted almost immediately (after
just one causal hop) before it sees both certificates. This
suggests that the only robust solution is for every process
to broadcast its certificate to all others, ensuring that there
are sufficiently many (more than ¢,..) honest candidates
available to act as relays, even under aggressive adaptive
corruptions.

The key observation is that, in the nominal case, all
correct processes are expected to confirm the same value.
Thus, their collective flooding of certificates can be highly
optimized: there is no need to forward redundant copies
of the same message. While this optimization is not ap-
parent in a classical broadcast pattern, where the sender
immediately transmits to all peers, it becomes obvious in
a flooding pattern, where each process forwards messages
only to locally sampled neighbors. If a process has already
forwarded a message for (the hash of) a value v, originating
from some source p;, it need not forward the same message
again just because it later sees it endorsed by a different
source p;.

This leads us to employ ITERY | (Algorithm 4), a minor
modification of the flooding protocol Ilgrriooq described
in [18]. The protocol’s pseudocode is simple (though its
analysis is far from trivial): upon receiving a verifiably valid
message m, each party flips a coin for each other process
that decides, with some probability p*, if m should be
relayed to this process. Specifically, the protocol IIgrpiood
ensures that every process relays messages to a different
random subset of processes, whose size follows a bino-
mial law Bin(n — 1,p*). By making this subset large
enough, ITgrpooq guarantees the formation of a connected
Erd6s—Rényi graph with a low diameter.

In ITEH 4, which is based on Ilgrpiood, @ message m
containing a valid certificate c is relayed by process p; only
if it has not already relayed m or another message m’ with
a certificate ¢’ where ¢’.hash = c.hash.

This approach, however, remains vulnerable to a subtle
attack. In the absence of committee eligibility proofs, the
adversary can fabricate ©(n/W) conflicting lightweight
certificates (defined in Algorithm 3), each signed by dis-
joint sets of non-elected signers of size W. These fake
certificates, lacking any overlap, cannot be linked to any
Byzantine process. By flooding the network with such
certificates, the adversary induces a ©(n/W') multiplicative
communication overhead, effectively reverting the protocol
to quadratic complexity. Conversely, if correct processes
refrain from relaying all certificates to reduce load, they risk
omitting a genuinely conflicting pair of honestly generated
certificates, thereby undermining accountability.

Hence, IIZcY , propagates full certificates, where the
corresponding proof of eligibility avoids the aforemen-
tioned attack. More formally:

Definition 1. Let valid be a predicate over strings,
and conflict a predicate over pairs of strings, such
that not being conflicting (conflict(c,c’) = false)
is an equivalence relation. We say that the pair
(valid, conflict) is propagation-friendly with respect
to (J,d) if valid(c;) = wvalid(c2) = true A
conflict(cy, c2) = true implies that the judge J(c1,c2)
returns verdict dis(G) with |G| > d, except with negli-
gible probability.

The propagation-friendliness condition guarantees that
if two apparently valid and conflicting certificates exist,
then they necessarily implicate at least d common signers.
While this property would not hold for lightweight certifi-
cates, it is recovered when full certificates include proofs
of eligibility.

Observe that (valid_full, conflict,4;), defined in Algo-
rithm 3, is propagation-friendly with respect to (J,qs, B;(’S\)
Then, it is easy to see that the analysis of ITZgfl . mirrors
the (non-trivial) analysis of IIgrpiooq from [18].

Algorithm 4 TIZ:E . (p*) - Pseudocode (for process p;)

1: Parameters

2: Real p* > probability of being chosen as a neighbor
3 Judge J

4: Integer d

5: Predicate valid > e.g., valid_full (defined in Algorithm 3)
6: Predicate conflict > e.g., conflictyq: (Algorithm 3)
7 Assert((valid, conflict) is propagation-friendly w.r.t. (J,d))

8: Uses

9 N (p*), the random variable that returns a subset of processes

in ¥, where the inclusion of a process follows the Bernoulli
distribution with expected value p*.

10: Local variables:
11: Set(Messages) relayed + 0

12: upon propagate(c; € FCertificate):
13: send (CERT, ¢;) to processes in Npew,

with Npew & N'(p*)

14: upon m; = (CERT, ¢;) is received from process p;:

15: if valid(c;) = true:
16: if certificates; = 0:

17: certificates; < certificates; U {c;}
18: send (CERT, c;) to processes in Npew,
With Npew & N (p*)

19: if 3ci, € certificates; s.t. conflict(cg, ¢;):

20: broadcast (CONFLICT, (cg, ¢;))

21: upon the reception of (CONFLICT,) s.t. @ € Proof (7 is a valid
proof of misbehavior)
22: trigger generate_proof ()

Definition 2. Let x € {1,2}. A x-scalable parametrization
is a tuple (12, A, L, ace, 7, €,0,0, pz) € N* X R%, st t =
[n(%AJr €)] = 1, taee =n —0O(n), v = (n — taee)/ns
€ 5a5 € Q(l)’ P1 = A/(’Yn)’ P2 = \/le .

Let z € {1,2}. Let para = (n, \, t,tace, Vs € 0,0, Pz)
be a x-scalable parametrization. We say that the tuple
(mcy, rc,, d), representing message complexity, round
detection complexity, and number of dishonest pro-
cesses exposed in case of disagreement, is a x-scalable

tuple w.r.t. para if d =
€)), and:

e ifx =1, mc =
o if x =2, mcy =

ngg =2(1-35-2(5(2+¢) —

O(An/7), and rc; = O(log(yn /X)),

O(n3/%-\/A/7), and rcy = 2.

Theorem 3. Let = € {1,2}. Let para =
(ny A, t, tace, v, €, 0,0, p;) be a x-scalable parametriza-
tion. Let both the Propagator (Module 3) and
ITERFiood(P”) (Algorithm 4) be parameterized by a
pair of predicates (valid, conflict) that is propagation-
friendly with respect to some judge-integer pair (J, d).
Then, IIERH 4 (p*) provides (tqcc, d, J)-accountability
for the propagator’s conflict-freeness property, against a
1-delayed-adaptive adversary. This guarantee holds with
expected round complexity rc,, and expected commu-
nication complexity mc,, such that (mc,, rc,, d) is a -
scalable tuple w.r.t. para, where each message contains
a certificate ¢ verifying valid(c).

PROOF SKETCH. Define the predicate
conflict&valid(ci,c2) to be true if and only if
conflict(cy, c2) = true and valid(cy) = valid(ca) = true.

Assume two distinct correct processes p; and p;
propagate certificates c¢; and co respectively, such that
conflict&valid(cy, o) = true. Let C denote the condi-
tion that no so-far correct process ever passes the check
at line 19. Suppose C does not hold for some so-far
correct process p. Then p will broadcast a message of
the form (CONFLICT,¢, &) with conflict&valid(¢, &) =
true. Since (valid,conflict) is propagation-friendly with
respect to (J,d), each correct process will invoke
generate_proof (¢, ¢’) such that J(¢,¢’) returns a set G of
size at least d, except with negligible probability.

Now assume, for contradiction, that C' holds forever.
Since (valid, conflict) is propagation-friendly, the predicate
conflict(-,-) induces an equivalence relation ~ over cer-
tificates: being non-conflicting is symmetric, reflexive, and
transitive. As a result, at any given time, the set of correct
processes can be partitioned into four disjoint groups:

o GY: processes whose certificates variable is empty;

« G': processes storing a certificate equivalent (i.e., non-
conflicting) to cy;

o G?: processes storing a certificate equivalent to co;

« G3: processes storing a certificate conflicting with both
c1 and cs.

Certificates equivalent to ¢; and cy then propagate in-
dependently, as if under two separate instances of IIgrfiood-
When a process in GO receives ¢y (resp., c2), it joins Gt
(resp., G?). If a process in G2UG? (resp., G UG?) receives
c1 (resp., c2), then the conflict predicate conflict triggers at
line 19, and the condition C' no longer holds. Moreover, if a
process in G (resp., G?) receives a certificate equivalent to
c1 (resp., c2), it has already relayed an equivalent certificate,
faithfully mirroring the propagation behavior of IIgrfiood-

By [18, Theorem 3], a certificate ¢} ~ ¢ (resp.,
¢ ~ cg) will eventually reach a so-far correct process
p € G2 U G? (resp., G' U G?3). When this occurs, p will

pass the check at line 19, contradicting the assumption that
C holds forever. Hence, C' does not hold indefinitely, and
accountability is ensured. To avoid quadratic communica-
tion even when exposing malicious processes, the same
principle applies: a proof of culpability is never relayed
more than once. We omit further details for conciseness.
Now consider the case where no detection occurs (pre-
condition of accountability property is not met). Then no
correct process has received conflicting certificates. In that
case, due to the check at line 17, each process forwards any
given certificate at most once. Thus, the execution mirrors a
run of Ilgrri0od for a single message, even though different
(but non-conflicting) messages may be propagated and the
causal structure may differ. Therefore, both the message
and communication complexities match those of IlgrFiood,
and the latency complexity is no worse. The complexity
bounds follow directly from [18, Theorem 3]. O

6. Putting everything together with ABC*™™

Now, we can sequentially compose the ratifier and the
propagator with any (subquadratic) BA protocol, to obtain
a (subquadratic) BA protocol with additional forensic sup-
port and accountability for agreement. This is specified in
Algorithm 5.

Algorithm 5 ABC*" (p*) - Pseudocode (for process p;)

1: Uses:
2: Byzantine Agreement, 1nstance IIpa
3 Ratifier with (n,2, BS%, Jyat, valid_full) forensic support for

agreement, instance 11,

56’

4: Propagator with (tqcc, B Jmf) accountability for conflict-
freeness, instance (HpgaF’jood (p valld _full, conflictyqt))

5: upon propose(v;, € Value):

6: I1p4.propose(viy)

7: upon I, .decide(vpredecision € Value):

8: Hm.t-Smeit(vpredeclsion

9: upon IT,4.confirm(v, € Value):

10: trigger decide(v,) > achieves BA

11: upon IT,4.yield_certificate(cert € FCertificate):

12: trigger yield_certificate(cert) > achieves forensic support

13: HERy q-input(cert) > can be skipped when requiring only
forensic support [5]

14: upon ITEZE . generate_proof (m € Proof): > achieves
accountability

15: trigger generate_proof(m € Proof) > Jrqt () returns a

verdict against B;’S malicious processes
)

Theorem 4. Let » € ({1,2}. Let para =
(n, K, t, tace, 7, €, 0,0, p;) be a z-scalable parametriza-
tion, and (mc.,, drc,, d) be a z-scalable tuple w.r.t. para.
Let 114 be a protocol that solves Byzantine agreement
with validity property val, probability p(f) of success
under f adaptive corruptions, expected round complex-
ity rc, and expected communication complexity cc. Let
Iz be a protocol obtained by applying ABC™(p,)

(Algorithm 5) to IIp4. The judge J..+ (Algorithm 3) is
a fair judge for 114, which:

e provides (n,2,B;’§‘,Jmt,valid_full)—forensic support
for the agreement ?roperty;

e provides (tacc,Bg’g,Jmt)-accountability against a 1-
delayed adaptive adversary, with detection round com-
plexity drc,;

« solves BA with validity property val, rc = rc+1 round
complexity (for decision), ¢c = cc + mc, - ms’ and
probability p(f) of success under f adaptive corrup-
tions, where p(f) = p(f)(1 — neg(N)) if f < ¢ (and
0 otherwise). Here ms’ is the size of full certificates.

PROOF. Let f be the actual number of corruptions.
First, let us prove the properties of T 4. Protocol gy
guarantees that all correct processes submit the same valid
value v to II,,; with probability p(f) at communication
cost cc and round complexity rc. By Theorem 2, all
correct processes confirm v from II,,; with probability
p(f) = (1 — neg(N\))p(f). This means that all correct pro-
cesses decide the valid value v from 1134 with probability
p, with an additional round and O(Akn) expected commu-
nication. The complexity is obtained from Theorem 2 and
Theorem 3. Second, fairness of J,,; follows directly from
the fact that no correct process signs conflicting submit
messages. Third, let us prove the accountability and the
forensic support property. Assume agreement is violated,
i.e., there exist two correct processes p; and p; that have
decided values v; and v; respectively, such that v; # v;.
This implies that p; and p; have confirmed values v; and
v; respectively from IL,,;. Thus, we can apply Theorem 2,
which implies (i) the forensic property and (ii) that p; and
p; have triggered propagate to IIEgf 4 With conflicting
certificates. Thus, we can apply Theorem 3, which com-
pletes the proof. (|

7. Generalization in the AUC framework

The ABC*™" transformation actually extends to any
(ideally subquadratic) protocol that implements what [11]
refers to as an easily-accountable agreement task. This
class includes, for example, Byzantine Reliable Broadcast,
and Consistent Broadcast (Reliable Broadcast without the
totality property) as used in recent BFT protocols that
decouple block transmission from block ordering [14].

We formalize this generalization in the Accountable
Universally Composable (AUC) framework [20]. Specif-
ically, we show that applying the ABCT" compiler to
any easily-accountable agreement functionality F yields
a protocol that AUC-realizes its accountable counterpart
Fac¢. While the result is stated here, the full proof is
deferred to our technical report [42].

Definition 3. Let F be an ideal functionality providing the
following interface, where each request or notification
may be triggered at most once:

e Request: (propose, sid, ssid, v)
o Notification: (decide, sid, ssid, w)

Here, sid, ssid denote the typical (sub-)session IDs used
in the UC framework. We say that F is an easily
accountable agreement functionality if it satisfies the
following properties:

« Leakage: All proposals (excluding possibly the pay-
load) are leaked to the adversary. Moreover, any value
w decided by a correct process must first be exposed
on the adversarial tape and scheduled by the adversary.

« Agreement: No two correct processes decide on dif-
ferent values.

o Termination: Either of the following holds:

— Totality: If a correct process decides, then all cor-
rect processes eventually decide.

— Partial-Decidability: If it is permissible for a cor-
rect process p not to decide under some environment
behavior 3, then it must also be permissible, under
the same behavior 3, for any subset of correct
processes not to decide.

We define F2°° to be the (m,d, J)-accountable coun-
terpart of F if, in addition to the above interface and
guarantees, F2°¢ exposes a detection interface of the
form:

(detection, sid, ssid, D;, 7;),

where D; is a set of process identifiers and m; is a
proof. The functionality guarantees that if agreement
is violated under fewer than m corruptions, then every
correct process p; eventually triggers such a detection
event, and the (fair and public) [20] judge J(;) returns
the verdict dis(D;) with |D;| > d.

Theorem 5. Let J,.,; be the judge defined in Algorithm 3,
and F2° be the (¢qec, Bg’é\, Jrat)-accountable counter-
part of an easily accountable agreement functionality
Fea (as defined in Definition 3). If P UC-realizes Fea,
then ABCYT(P) UC-realizes F2° with complexity
overhead described in Theorem 4.

8. Evaluation

This section evaluates the practical feasibility of our
protocol by examining the constants and cryptographic
costs that influence performance. Our focus is on the rati-
fier’s liveness and forensic guarantees, as well as the effi-
ciency of quorum certificate aggregation and verification.

Parameters and their role. We denote by A the expected
committee size, and by € € [0,1/3] the “resilience slack”,
meaning that the tolerated fault ratio satisfies ¢ < (3 —€)n.

For a specific instance of the ratifier, let Zp and Zp,
denote the number of elected processes and the number
of elected correct processes, respectively. By construction,
E(Zr) =X and E(Zy) > (% + e

We recall the size of a VRF quorum:

Wit =(1-0) (2+¢)

where & captures the allowed deviation from the expected
value E(Z,) under the corresponding Chernoff bound. If

pr, denotes the target upper bound on the probability of
liveness violation, we require:

pr < Pr[Zp < Wit =Pr[Z, < (1-0)E(ZL)], (1)
which implies:
er_1-0 1
Witz == -2l {). @

Similarly, we recall the conservative lower bound on
the intersection size of two VRF quorums) and Q’:

Byy = 2W5t = (L+9),

where & quantifies the deviation in a Chernoff bound for
Zr. Since

QNQN>1QI+1Q - QUQ'| = 2W”* — Zp,
we get:

PrIQNQ'| < Bygl = PriZp > (1 + DE(Zp)l. ()

which implies:

)\22:|_5oln<l>7 (@]
02 PF

where pr denotes the upper bound on the probability that
the intersection is too small.

Larger values of § and ¢ tighten the Chernoff bounds but
reduce the guaranteed overlap size B;’é\ between quorums.

Therefore, we must ensure that ’
€N 2 <
B(S’S_(Q(l—d)(g—i—e — (149 |Ar>d

for d > 1 (or even 100).

®)

and ideally, we want this overlap to be substantially
large, e.g., Bg"g‘ > 100, which imposes constraints on the

tuple (e, 8,5, \).

Assume we want to bound the probability of a security
violation by pr = py, = 1072 ~ 2749 ynder the assump-
tion that 80% of the processes are correct in the optimistic
case (i.e., 2 4+ ¢ = 0.8), and that at most W;;‘ = 1000
signatures are aggregated during ratification.

A suitable choice of parameters is:

e=2/15=08—2/3

0 = 0.21 (to satisfy (2))

A = 1582 by the definition of Wg’)‘
§ = 0.2 (to satisfy (4))

| B52| = 101 by the definition of B

We do not elaborate on the propagation guarantees, as
they directly follow from Theorem 3 of [18]. For instance,
setting A > 1500 and assuming a degraded mode with
v = 0.01 (i.e., 1% of processes remain correct) yields
a probability pp.q of security violation several orders of
magnitude below 274 ~ 10~'2, even for a system size as

large as n = 10% or n = 10°. For comparison, the current
number of Ethereum validators is around n = 10, In fact,
the probability p,q does not need to be extremely low to
act as a deterrent: to break accountability, the adversary
must commit to delivering two conflicting certificates to
two different processes, without knowing whether the sec-
ond certificate will avoid reaching the process that already
received the first, thus risking detection. This could allow
the use of a smaller statistical security parameter \' < A
for propagation, further reducing communication overhead.

VRF Quorum Certificates. The exact complexity of the
accountable confirmer essentially reduces to the computa-
tion, verification, and propagation of VRF-quorum certifi-
cates built from W committee members.

Each SUBMIT message includes a hash value, a VRF
proof, and a multi-signature. Both the VRF scheme and the
multi-signature scheme can be instantiated using the BLS
signature scheme [96]. As a result, computing a SUBMIT
message is fast: it requires only two BLS signatures and
two hash evaluations (one for the message value and one
for the eligibility check). The size of the message is also
compact: it consists of two BLS signatures and one hash.

During aggregation, for each SUBMIT message of the form
(SUBMIT, h, aim”g, a;‘”'f>,
a process must:
1) Hash the BLS signature o” to check the eligibility
of p;, .
2) Verify the VRF signature o'/,
3) Verify the multi-signature o)"*",
4) Aggregate:
(a) the BLS signature o v ,
(b) the BLS signature o; ",
with the corresponding partial aggregations under con-
struction.

However, verifying BLS signatures is computationally ex-
pensive due to the required pairing operations. This over-
head becomes significant in what we refer to as the pes-
simistic aggregation mode.

Optimizations. To mitigate this cost, we propose an opti-

mization. Instead of immediately verifying each signature,

the aggregator can:

(4’) Perform step (4) as above, while also aggregating:
(c) the public keys of the signers.

Then, instead of performing 2W verifications, the ag-
gregator performs only:

(2’) A single verification of the final aggregated VRF
signature,

(3’) A single verification of the final aggregated multi-
signature.

This approach is what we call the super-optimistic
aggregation mode. However, a single malformed signature
can invalidate the final result, rendering the optimization
ineffective.

To address this, we introduce the optimistic aggregation
mode. In this setting, each signer additionally signs its
SUBMIT message (which includes the two BLS signatures)
using a lightweight, non-aggregated signature scheme such
as EdDSA. The aggregator:

o Aggregates as in the super-optimistic mode,
o Verifies only the efficient signature before accepting
the message.

If f/ faulty processes attempt to corrupt the aggrega-
tion with malformed messages, they will be caught via
their efficient signatures. In blockchain-based systems (e.g.,
based on Proof-of-Stake), this can be coupled with deposit
slashing via proof-of-misbehavior, creating a strong eco-
nomic disincentive against such attacks. Furthermore, by
storing aggregated signatures and public keys in a tree-like
structure, the aggregator can identify the faulty signers in
O(f"log W) BLS verifications.

Finally, a verifier in the propagator component can apply
the same verification technique as the aggregator, reusing
the aggregation structure to validate the quorum certificate
efficiently.

Evaluation. We evaluate the cost of handling VRF-based
quorum certificates, including aggregation, verification, and
communication, through a Rust implementation, using the
Criterion benchmark crate [97], and executed on a Mac-
book Pro (2021) with an Apple M1 processor, 16 GB
of RAM, and MacOS Sequoia 15.0.1. Our implementa-
tion uses the blstrs library [98] with the BLS12-381
curve [99], which provides efficient finite field and elliptic
curve operations for BLS signatures. For non-aggregatable
signatures used in the optimistic aggregation mode, we rely
on the ed25519_dalek library [100]. *

When instantiated with a quorum size of W = 1000
signers:

o The computation of a SUBMIT message takes less than
0.5ms,

o The verification of a full quorum certificate takes ap-
proximately 49ms. Importantly, this verification occurs
only once per decision in the nominal mode, and twice
in case of (detected) safety violation.

o The aggregation time varies depending on the mode:
— Pessimistic mode: 647ms,

— Optimistic mode: 45ms,
— Super-Optimistic mode: 11ms.

A quorum certificate must include a proof of eligibility.
Without it, in the event of a disagreement, the adversary
could fabricate conflicting certificates using non-elected
signers whose intersection is empty, while withholding
honest certificates to save bandwidth.

Including individual eligibility proofs prevents this issue but
increases the certificate size by a factor of W. Importantly,
this does not impact verification time, as explained earlier,

4. our code is available at https://github.com/pcivit/abcpp

but it does raise bandwidth concerns. For instance, with
W = 1000, the W BLS signatures for eligibility account
for roughly 52KB, which is approximately 10% of a typical
Bitcoin block size, i.e. still reasonable in many deployment
contexts. By slightly relaxing the adversarial model to toler-
ate a 3-delayed adaptive adversary, certificate dissemination
can be optimized into a three-step process: (1) first, the
sender transmits only the hash of the certificate; (2) upon
receiving an explicit request, (3) the sender delivers the full
certificate. This approach ensures that in the nominal case,
each correct process receives the full certificate for a given
hash value at most once.

Alternatively, eligibility proofs can be combined into a
single succinct non-interactive argument, which would be
significantly smaller. In particular, given public knowl-
edge of a light certificate ¢ = (s, h, G, o) and the public
keys {pk,}p,cc, the prover wants to prove, in addition to
light_valid(c), that G C C(s, A), i.e., that for all p; € G,
there exists o; such that committee_val(s, A, 4, 0;) = true.
Such a proof could be of size O(x+ W logn) by encoding
the W public keys as indices (since processes can query
these from the PKI). Instead of using a generic STARK
solution, one can use Jackpot [19], a recent and concretely
efficient construction for non-interactive aggregatable lot-
teries. Jackpot offers several advantages in our setting: it is
proven secure in the UC framework; the aggregate proof
consists of only two group elements (approximately 80
bytes when instantiated over BLS12-381); and it supports
fast aggregation and verification, with measured runtimes
below 7ms and 9ms respectively for 1000 signers on very
similar hardware, which aligns with our own benchmarks in
the super-optimistic mode. On the other hand, the construc-
tion relies on the algebraic group model, assumes a ¢-SDH
setup, and requires participants to publish fresh public keys
via the bulletin-board PKI every ¢ lotteries.

9. Conclusion

In this work, we introduced ABC™ ™, a generic trans-
formation that enhances BA protocols with accountability.
By leveraging two key primitives, the ratifier and the propa-
gator, we achieve delayed-adaptively-secure accountability
with subquadratic communication complexity. This trans-
formation is applicable to a wide range of (subquadratic)
BA and Byzantine Reliable Broadcast protocols, offering
the first subquadratic accountable counterparts of these
primitives. Such a subquadratic accountable Byzantine Re-
liable broadcast can be then plugged into the transforma-
tion T of [12], to obtain 7. F, which transforms any
deterministic (and even beyond) distributed protocol into its
accountable counterpart, with a subquadratic multiplicative
communication overhead only.

We conjecture that the aforementioned transformations
can be easily adapted to Proof-of-Stake blockchains with
weighted validators, using weighted VRFs [19], [101] and
weighted flooding [46], [47].

Acknowledgement

This work was supported in part by the Swiss National
Foundation (#40B20_218648 and #200021_215383) and
the Australian Research Council Discovery funding scheme
(project number 2501017309).

References

[1] G. Bracha and S. Toueg, “Resilient consensus protocols,”
in Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada,
August 17-19, 1983, R. L. Probert, N. A. Lynch, and
N. Santoro, Eds. ACM, 1983, pp. 12-26. [Online]. Available:
https://doi.org/10.1145/800221.806706

[2] P Civit, S. Gilbert, V. Gramoli, R. Guerraoui, and J. Komatovic,
“As easy as ABC: optimal (a)ccountable (b)yzantine (c)onsensus is
easy!” J. Parallel Distributed Comput., vol. 181, p. 104743, 2023.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2023.104743

[3] A. Momose and L. Ren, “Multi-threshold byzantine fault
tolerance,” in CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and
E. Shi, Eds. ACM, 2021, pp. 1686-1699. [Online]. Available:
https://doi.org/10.1145/3460120.3484554

[4] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath,
“BFT protocol forensics,” in CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, Y. Kim,
J. Kim, G. Vigna, and E. Shi, Eds. ACM, 2021, pp. 1722-1743.
[Online]. Available: https://doi.org/10.1145/3460120.3484566

[S] ——, “Player-replaceability and forensic support are two sides
of the same (crypto) coin,” in Financial Cryptography and Data
Security - 27th International Conference, FC 2023, Bol, Brac,
Croatia, May 1-5, 2023, Revised Selected Papers, Part I, ser.
Lecture Notes in Computer Science, F. Baldimtsi and C. Cachin,
Eds., vol. 13950. Springer, 2023, pp. 56-74. [Online]. Available:
https://doi.org/10.1007/978-3-031-47754-6\ _4

[6] W. Tang, P. Sheng, R. Ni, P. Roy, X. Wang, G. Fanti, and
P. Viswanath, “Cft-forensics: High-performance byzantine ac-
countability for crash fault tolerant protocols,” arXiv preprint
arXiv:2305.09123, 2023.

[7] Q. You, H. Yang, X. Zhang, X. Jiang, K. Guo, and K. Hu, “Forensic
support for abraham et al.’s bb protocol,” Entropy, vol. 27, no. 5,
p- 504, 2025.

[8] R. Kiisters, T. Truderung, and A. Vogt, “Accountability: definition
and relationship to verifiability,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010,
Chicago, lllinois, USA, October 4-8, 2010, E. Al-Shaer, A. D.
Keromytis, and V. Shmatikov, Eds. ACM, 2010, pp. 526-535.
[Online]. Available: https://doi.org/10.1145/1866307.1866366

9] L. F. de Souza, P. Kuznetsov, T. Rieutord, and S. Tucci
Piergiovanni, “Accountability and reconfiguration: Self-healing
lattice agreement,” in 25th International Conference on Principles
of Distributed Systems, OPODIS 2021, December 13-15, 2021,
Strasbourg, France, ser. LIPIcs, Q. Bramas, V. Gramoli, and
A. Milani, Eds., vol. 217. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2021, pp. 25:1-25:23. [Online]. Available:
https://doi.org/10.4230/LIPIcs.OPODIS.2021.25

[10] P. Civit, S. Gilbert, and V. Gramoli, “Polygraph: Accountable
byzantine agreement,” in 4/st IEEE International Conference on
Distributed Computing Systems, ICDCS 2021, Washington DC,
USA, July 7-10, 2021. 1EEE, 2021, pp. 403—413. [Online].
Available: https://doi.org/10.1109/ICDCS51616.2021.00046

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, and J. Komatovic,
“As easy as ABC: optimal (a)ccountable (b)yzantine (c)onsensus
is easy!” in 2022 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2022, Lyon, France, May 30 -
June 3, 2022. 1EEE, 2022, pp. 560-570. [Online]. Available:
https://doi.org/10.1109/IPDPS53621.2022.00061

P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic,
Z. Milosevic, and A. Seredinschi, “Crime and Punishment in
Distributed Byzantine Decision Tasks,” in 42nd IEEE International
Conference on Distributed Computing Systems, ICDCS 2022,
Bologna, Italy, July 10-13, 2022. 1EEE, 2022, pp. 34-44. [Online].
Available: https://doi.org/10.1109/ICDCS54860.2022.00013

M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and
I. Abraham, “Hotstuff: BFT consensus with linearity and
responsiveness,” in Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, P. Robinson and
F. Ellen, Eds. ACM, 2019, pp. 347-356. [Online]. Available:
https://doi.org/10.1145/3293611.3331591

X. Wang, H. Wang, H. Zhang, and S. Duan, “Pando:
Extremely scalable BFT based on committee sampling,” IACR
Cryptol. ePrint Arch., p. 664, 2024. [Online]. Available:
https://eprint.iacr.org/2024/664

T. Gong, G. F. Camilo, K. Nayak, A. Lewis-Pye, and A. Kate,
“Recover from excessive faults in partially-synchronous BFT
SMR,” IACR Cryptol. ePrint Arch., p. 83, 2025. [Online].
Available: https://eprint.iacr.org/2025/083

J. Chen and S. Micali, “Algorand: A secure and efficient
distributed ledger,” Theor. Comput. Sci., vol. 777, pp. 155-183,
2019. [Online]. Available: https://doi.org/10.1016/j.tcs.2019.02.001

S. Micali, M. O. Rabin, and S. P. Vadhan, “Verifiable random
functions,” in 40th Annual Symposium on Foundations of Computer
Science, FOCS 99, 17-18 October, 1999, New York, NY, USA.
IEEE Computer Society, 1999, pp. 120-130. [Online]. Available:
https://doi.org/10.1109/SFFCS.1999.814584

C. Matt, J. B. Nielsen, and S. E. Thomsen, “Formalizing delayed
adaptive corruptions and the security of flooding networks,”
in Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II, ser.
Lecture Notes in Computer Science, Y. Dodis and T. Shrimpton,
Eds., vol. 13508. Springer, 2022, pp. 400-430. [Online].
Available: https://doi.org/10.1007/978-3-031-15979-4_14

N. Fleischhacker, M. Hall-Andersen, M. Simkin, and B. Wagner,
“Jackpot: Non-interactive aggregatable lotteries,” in Advances in
Cryptology - ASIACRYPT 2024 - 30th International Conference
on the Theory and Application of Cryptology and Information
Security, Kolkata, India, December 9-13, 2024, Proceedings,
Part VI, ser. Lecture Notes in Computer Science, K. Chung and
Y. Sasaki, Eds., vol. 15489. Springer, 2024, pp. 365-397. [Online].
Available: https://doi.org/10.1007/978-981-96-0938-3_12

M. Graf, R. Kiisters, and D. Rausch, “AUC: accountable
universal composability,” in 44th IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, May 2I-
25, 2023. 1EEE, 2023, pp. 1148-1167. [Online]. Available:
https://doi.org/10.1109/SP46215.2023.10179384

R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally
composable two-party and multi-party secure computation,” in
Proceedings on 34th Annual ACM Symposium on Theory of
Computing, May 19-21, 2002, Montréal, Québec, Canada, J. H.
Reif, Ed. ACM, 2002, pp. 494-503. [Online]. Available:
https://doi.org/10.1145/509907.509980

R. Cohen, “Asynchronous secure multiparty computation in
constant time,” in Public-Key Cryptography - PKC 2016 -
19th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,

[23]

[24]

[25]

[26]

[27]

(28]

(29]

[30]

(31]

[32]

(33]

Proceedings, Part I, ser. Lecture Notes in Computer Science,
C. Cheng, K. Chung, G. Persiano, and B. Yang, Eds.,
vol. 9615. Springer, 2016, pp. 183-207. [Online]. Available:
https://doi.org/10.1007/978-3-662-49387-8\ _8

M. Rambaud and A. Urban, “Almost-asynchronous MPC under
honest majority, revisited,” IACR Cryptol. ePrint Arch., p. 503,
2021. [Online]. Available: https://eprint.iacr.org/2021/503

I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Communication Complexity of Byzantine Agreement,
Revisited,” in Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, P. Robinson and
F. Ellen, Eds. ACM, 2019, pp. 317-326. [Online]. Available:
https://doi.org/10.1145/3293611.3331629

A. F. Anta, K. M. Konwar, C. Georgiou, and N. C. Nicolaou,
“Formalizing and implementing distributed ledger objects,”
SIGACT News, vol. 49, no. 2, pp. 58-76, 2018. [Online].
Available: https://doi.org/10.1145/3232679.3232691

J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds.,
vol. 9057. Springer, 2015, pp. 281-310. [Online]. Available:
https://doi.org/10.1007/978-3-662-46803-6_10

——, “The bitcoin backbone protocol: Analysis and applications,”
J. ACM, vol. 71, no. 4, pp. 25:1-25:49, 2024. [Online]. Available:
https://doi.org/10.1145/3653445

M. Graf, R. Kiisters, D. Rausch, S. Egger, M. Bechtold,
and M. Flinspach, “Accountable bulletin boards: Definition and
provably secure implementation,” JACR Cryptol. ePrint Arch., p.
1869, 2023. [Online]. Available: https://eprint.iacr.org/2023/1869

A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias,
“On the security properties of e-voting bulletin boards,” in Security
and Cryptography for Networks - 11th International Conference,
SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, ser.
Lecture Notes in Computer Science, D. Catalano and R. D.
Prisco, Eds., vol. 11035. Springer, 2018, pp. 505-523. [Online].
Available: https://doi.org/10.1007/978-3-319-98113-0_27

M. Camaioni, R. Guerraoui, J. Komatovic, M. Monti, P. Roman,
M. Vidigueira, and G. Voron, “Carbon: Scaling trusted payments
with untrusted machines,” [EEE Trans. Dependable Secur.
Comput., vol. 22, no. 2, pp. 1168-1180, 2025. [Online]. Available:
https://doi.org/10.1109/TDSC.2024.3428617

D. Collins, R. Guerraoui, J. Komatovic, P. Kuznetsov, M. Monti,
M. Pavlovic, Y. Pignolet, D. Seredinschi, A. Tonkikh, and
A. Xygkis, “Online payments by merely broadcasting messages,”
in 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2020, Valencia, Spain, June 29 -
July 2, 2020. 1IEEE, 2020, pp. 26-38. [Online]. Available:
https://doi.org/10.1109/DSN48063.2020.00023

R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and
D. Seredinschi, “The consensus number of a cryptocurrency,”
in Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, P. Robinson and F. Ellen,
Eds. ACM, 2019, pp. 307-316. [Online]. Available: https:
//doi.org/10.1145/3293611.3331589

A. Ranchal-Pedrosa and V. Gramoli, “TRAP: the bait of rational
players to solve byzantine consensus,” in ASIA CCS '22: ACM Asia
Conference on Computer and Communications Security, Nagasaki,
Japan, 30 May 2022 - 3 June 2022, Y. Suga, K. Sakurai, X. Ding,
and K. Sako, Eds. ACM, 2022, pp. 168—181. [Online]. Available:
https://doi.org/10.1145/3488932.3517386

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Lewis-Pye and T. Roughgarden, “Beyond optimal fault
tolerance,” CoRR, vol. abs/2501.06044, 2025. [Online]. Available:
https://doi.org/10.48550/arXiv.2501.06044

A. Ranchal-Pedrosa and V. Gramoli, “ZLB: A blockchain to tolerate
colluding majorities,” in 54th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2024,
Brisbane, Australia, June 24-27, 2024. 1EEE, 2024, pp. 209-222.
[Online]. Available: https://doi.org/10.1109/DSN58291.2024.00032

S. Sridhar, D. Zindros, and D. Tse, “Better safe than sorry:
Recovering after adversarial majority,” CoRR, vol. abs/2310.06338,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.
06338

A. Haeberlen, P. Kouznetsov, and P. Druschel, ‘“Peerreview:
practical accountability for distributed systems,” in Proceedings of
the 21st ACM Symposium on Operating Systems Principles 2007,
SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007,
T. C. Bressoud and M. F. Kaashoek, Eds. ACM, 2007, pp. 175—
188. [Online]. Available: https://doi.org/10.1145/1294261.1294279

R. Kiinnemann, I. Esiyok, and M. Backes, “Automated verification
of accountability in security protocols,” in 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA,
June 25-28, 2019. 1EEE, 2019, pp. 397-413. [Online]. Available:
https://doi.org/10.1109/CSF.2019.00034

M. Backes, P. Druschel, A. Haeberlen, and D. Unruh, “CSAR:
A practical and provable technique to make randomized systems
accountable,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS 2009, San Diego, California, USA, 8th
February - 11th February 2009. The Internet Society, 2009.

M. Backes, D. Fiore, and E. Mohammadi, “Privacy-preserving
accountable computation,” in Computer Security - ESORICS
2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, ser.
Lecture Notes in Computer Science, J. Crampton, S. Jajodia, and
K. Mayes, Eds., vol. 8134. Springer, 2013, pp. 38-56. [Online].
Available: https://doi.org/10.1007/978-3-642-40203-6_3

A. Papadimitriou, M. Zhao, and A. Haeberlen, “Towards privacy-
preserving fault detection,” in Proceedings of the 9th Workshop
on Hot Topics in Dependable Systems, HotDep 2013, Farmington,
Pennsylvania, USA, November 3, 2013, C. Cachin and R. van
Renesse, Eds. ACM, 2013, pp. 6:1-6:5. [Online]. Available:
https://doi.org/10.1145/2524224.2524233

P. Civit, D. Collins, V. Gramoli, R. Guerraoui, J. Komatovic,
M. Vidigueira, and P. Zarbafian, “Scalable accountable byzantine
agreement and beyond,” Cryptology ePrint Archive, Paper
2025/1277, 2025. [Online]. Available: https://eprint.iacr.org/2025/
1277

K. Nayak, “Player Replaceability - Towards Adaptive
Security and Sub-quadratic Communication Simultaneously
(Part D, 2023, https://decentralizedthoughts.github.io/
2023-01-05-player-replaceability-1/.

“Player Replaceability - Towards Adaptive Secu-
rity and Sub-quadratic Communication Simultaneously
(Part 1),” 2023, https://decentralizedthoughts.github.io/

2023-01-05-player-replaceability-11/.

A. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic
reliable dissemination in large-scale systems,” IEEE Trans. Parallel
Distributed Syst., vol. 14, no. 3, pp. 248-258, 2003. [Online].
Available: https://doi.org/10.1109/TPDS.2003.1189583

C. Liu-Zhang, C. Matt, U. Maurer, G. Rito, and S. E. Thomsen,
“Practical provably secure flooding for blockchains,” in Advances
in Cryptology - ASIACRYPT 2022 - 28th International Conference
on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, S. Agrawal and
D. Lin, Eds., vol. 13791. Springer, 2022, pp. 774-805. [Online].
Available: https://doi.org/10.1007/978-3-031-22963-3_26

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[571

(58]

C. Liu-Zhang, C. Matt, and S. E. Thomsen, “Asymptotically
optimal message dissemination with applications to blockchains,”
in Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Zurich, Switzerland, May 26-30,
2024, Proceedings, Part III, ser. Lecture Notes in Computer
Science, M. Joye and G. Leander, Eds., vol. 14653. Springer,
2024, pp. 64-95. [Online]. Available: https://doi.org/10.1007/
978-3-031-58734-4\ _3

V. King and J. Saia, “Breaking the o(n?) bit barrier: Scalable
byzantine agreement with an adaptive adversary,” Journal of the
ACM (JACM), vol. 58, no. 4, pp. 1-24, 2011.

E. Blum, J. Katz, C. Liu-Zhang, and J. Loss, “Asynchronous
byzantine agreement with subquadratic communication,” in Theory
of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part I,
ser. Lecture Notes in Computer Science, R. Pass and K. Pietrzak,
Eds., vol. 12550. Springer, 2020, pp. 353-380. [Online].
Available: https://doi.org/10.1007/978-3-030-64375-1_13

M. Rambaud, “Adaptively secure consensus with linear complexity
and constant round under honest majority in the bare PKI model,
and separation bounds from the idealized message-authentication
model,” IACR Cryptol. ePrint Arch., p. 1757, 2023. [Online].
Available: https://eprint.iacr.org/2023/1757

I. Abraham, K. Nayak, and N. Shrestha, “Communication and
Round Efficient Parallel Broadcast Protocols,” Cryptology ePrint
Archive, 2023.

I. Abraham, E. Chouatt, I. Damgard, Y. Gilad, G. Stern,
and S. Yakoubov, “Asynchronous algorand: Reaching agreement
with near linear communication and constant expected time,”
in Proceedings of the 2025 ACM Symposium on Principles
of Distributed Computing, PODC 2025, Huatulco, Mexico,
June 16-20, 2025. ACM, 2025. [Online]. Available: https:
/leprint.iacr.org/2025/303

S. Cohen, I. Keidar, and A. Spiegelman, “Not a COINcidence:
Sub-Quadratic Asynchronous Byzantine Agreement WHP,” in 34th
International Symposium on Distributed Computing (DISC 2020).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020.

A. Bhangale, C. Liu-Zhang, J. Loss, and K. Nayak, “Efficient
adaptively-secure byzantine agreement for long messages,”
in Advances in Cryptology - ASIACRYPT 2022 - 28th
International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part I, ser. Lecture Notes in
Computer Science, S. Agrawal and D. Lin, Eds., vol.
13791. Springer, 2022, pp. 504-525. [Online]. Available:
https://doi.org/10.1007/978-3-031-22963-3\ _17

G. Bracha, “An Asynchronous [(n-1)/3]-Resilient Consensus
Protocol,” in Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, Vancouver, B. C., Canada,
August 27-29, 1984, T. Kameda, J. Misra, J. G. Peters, and
N. Santoro, Eds. ACM, 1984, pp. 154-162. [Online]. Available:
https://doi.org/10.1145/800222.806743

——, “Asynchronous byzantine agreement protocols,” Inf. Comput.,
vol. 75, no. 2, pp. 130-143, 1987. [Online]. Available:
https://doi.org/10.1016/0890-5401(87)90054-X

R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D. Seredin-
schi, “Scalable byzantine reliable broadcast,” in 33rd International
Symposium on Distributed Computing, DISC 2019, October 14-
18, 2019, Budapest, Hungary, ser. LIPIcs, J. Suomela, Ed., vol.
146. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019,
pp. 22:1-22:16.

Q. Zhao, G. Pirlea, K. Grzeszkiewicz, S. Gilbert, and I. Sergey,
“Compositional verification of composite byzantine protocols,” in
Proceedings of the 2024 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2024, Salt Lake City, UT,
USA, October 14-18, 2024. ACM, 2024. [Online]. Available:
https://doi.org/10.1145/3658644.3690355

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

W. Tang, P. Sheng, R. Ni, P. Roy, X. Wang, G. Fanti,
and P. Viswanath, “Cft-forensics: High-performance byzantine
accountability for crash fault tolerant protocols,” in 6th Conference
on Advances in Financial Technologies, AFT 2024, September
23-25, 2024, Vienna, Austria, ser. LIPIcs, R. Bohme and
L. Kiffer, Eds., vol. 316. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024, pp. 3:1-3:25. [Online]. Available:
https://doi.org/10.4230/LIPIcs.AFT.2024.3

E. Buchman, R. Guerraoui, J. Komatovic, Z. Milosevic,
D. Seredinschi, and J. Widder, “Revisiting tendermint: Design
tradeoffs, accountability, and practical use,” in 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2022, Supplemental Volume, Baltimore, MD, USA,
June 27-30, 2022. 1EEE, 2022, pp. 11-14. [Online]. Available:
https://doi.org/10.1109/DSN-S54099.2022.00014

A. D. Pozzo and T. Rieutord, “Fork accountability in tenderbake,”
in 5th International Symposium on Foundations and Applications of
Blockchain 2022, FAB 2022, June 3, 2022, Berkeley, CA, USA, ser.
OASIcs, S. T. Piergiovanni and N. Crooks, Eds., vol. 101. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022, pp. 5:1-5:22.
[Online]. Available: https://doi.org/10.4230/0OASIcs.FAB.2022.5

J. Neu, S. Sridhar, L. Yang, and D. Tse, “Optimal flexible
consensus and its application to ethereum,” in IEEE Symposium
on Security and Privacy, SP 2024, San Francisco, CA, USA, May
19-23, 2024. 1EEE, 2024, pp. 3885-3903. [Online]. Available:
https://doi.org/10.1109/SP54263.2024.00135

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, and M. Vidigueira,
“On the Validity of Consensus,” in Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing, PODC 2023,
Orlando, FL, USA, June 19-23, 2023, R. Oshman, A. Nolin, M. M.
Halldérsson, and A. Balliu, Eds. ACM, 2023, pp. 332-343.
[Online]. Available: https://doi.org/10.1145/3583668.3594567

H. Cheng, Y. Lu, Z. Lu, Q. Tang, Y. Zhang, and Z. Zhang,
“Jumbo: Fully asynchronous bft consensus made truly scalable,”
arXiv preprint arXiv:2403.11238, 2024.

H. Feng, Z. Lu, T. Mai, and Q. Tang, “Making hash-based mvba
great again,” Cryptology ePrint Archive, 2024.

Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous
consensus as fast as the pipelined BFT,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers, and
E. Shi, Eds. ACM, 2022, pp. 2159-2173. [Online]. Available:
https://doi.org/10.1145/3548606.3559346

Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal
Multi-Valued Validated Asynchronous Byzantine Agreement, Re-
visited,” Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing, pp. 129-138, 2020.

Y. Zhou, Z. Zhang, H. Zhang, S. Duan, B. Hu, L. Wang, and
J. Liu, “Dory: Asynchronous BFT with reduced communication
and improved efficiency,” JACR Cryptol. ePrint Arch., p. 1709,
2022. [Online]. Available: https://eprint.iacr.org/2022/1709

I. Abraham, G. Asharov, A. Patra, and G. Stern, “Perfectly secure
asynchronous agreement on a core set in constant expected time,”
IACR Cryptol. ePrint Arch., p. 1130, 2023. [Online]. Available:
https://eprint.iacr.org/2023/1130

R. Cohen, P. Forghani, J. Garay, R. Patel, and V. Zikas, “Concurrent
asynchronous byzantine agreement in expected-constant rounds,
revisited,” in Theory of Cryptography Conference. Springer, 2023,
pp. 422-451.

S. Das, S. Duan, S. Liu, A. Momose, L. Ren, and V. Shoup,
“Asynchronous consensus without trusted setup or public-
key cryptography,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, CCS 2024,
Salt Lake City, UT, USA, October 14-18, 2024, B. Luo, X. Liao,
J. Xu, E. Kirda, and D. Lie, Eds. ACM, 2024, pp. 3242-3256.
[Online]. Available: https://doi.org/10.1145/3658644.3670327

[72]

(73]

[74]

[751

[76]

[(77]

[78]

[79]

[80]

[81]

[82]

[83]

V. Shoup, “A theoretical take on a practical consensus protocol,”
IACR Cryptol. ePrint Arch., p. 696, 2024. [Online]. Available:
https://eprint.iacr.org/2024/696

M. Graf, R. Kiisters, and D. Rausch, “Accountability in a
permissioned blockchain: Formal analysis of hyperledger fabric,”
in IEEE European Symposium on Security and Privacy, EuroS&P
2020, Genoa, Italy, September 7-11, 2020. 1EEE, 2020, pp. 236—
255. [Online]. Available: https://doi.org/10.1109/EuroSP48549.
2020.00023

J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A
resolution of the availability-finality dilemma,” in 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. 1EEE, 2021, pp. 446-465. [Online].
Available: https://doi.org/10.1109/SP40001.2021.00045

V. Buterin and V. Griffith, “Casper the friendly finality
gadget,” CoRR, vol. abs/1710.09437, 2017. [Online]. Available:
http://arxiv.org/abs/1710.09437

S. Sankagiri, X. Wang, S. Kannan, and P. Viswanath, “Blockchain
CAP theorem allows user-dependent adaptivity and finality,” in
Financial Cryptography and Data Security - 25th International
Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part II, ser. Lecture Notes in Computer
Science, N. Borisov and C. Diaz, Eds., vol. 12675. Springer,
2021, pp. 84-103. [Online]. Available: https://doi.org/10.1007/
978-3-662-64331-0_5

J. Neu, E. N. Tas, and D. Tse, “The availability-accountability
dilemma and its resolution via accountability gadgets,” in Financial
Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, ser.
Lecture Notes in Computer Science, I. Eyal and J. A. Garay, Eds.,
vol. 13411. Springer, 2022, pp. 541-559. [Online]. Available:
https://doi.org/10.1007/978-3-031-18283-9\ _27

——, “Short paper: Accountable safety implies finality,” in Finan-
cial Cryptography and Data Security - 28th International Con-
ference, FC 2024, Curacao Marriott Beach Resort Willemstad,
Curagao, Mars 4-8, 2024, Revised Selected Papers, Part I, ser.
Lecture Notes in Computer Science. Springer, 2024.

R. Cleve, “Limits on the security of coin flips when half the
processors are faulty (extended abstract),” in Proceedings of
the 18th Annual ACM Symposium on Theory of Computing,
May 28-30, 1986, Berkeley, California, USA, J. Hartmanis,
Ed. ACM, 1986, pp. 364-369. [Online]. Available: https:
//doi.org/10.1145/12130.12168

Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure multi-party
computation with identifiable abort,” in Advances in Cryptology
- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, ser.
Lecture Notes in Computer Science, J. A. Garay and R. Gennaro,
Eds., vol. 8617. Springer, 2014, pp. 369-386. [Online]. Available:
https://doi.org/10.1007/978-3-662-44381-1_21

R. Cohen and Y. Lindell, “Fairness versus guaranteed output
delivery in secure multiparty computation,” in Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Fart 1I, ser. Lecture Notes in Computer Science, P. Sarkar and
T. Iwata, Eds., vol. 8874. Springer, 2014, pp. 466—485. [Online].
Available: https://doi.org/10.1007/978-3-662-45608-8_25

“Fairness versus guaranteed output delivery in secure
multiparty computation,” J. Cryptol., vol. 30, no. 4, pp.
1157-1186, 2017. [Online]. Available: https://doi.org/10.1007/
s00145-016-9245-5

Y. Aumann and Y. Lindell, “Security against covert adversaries:
Efficient protocols for realistic adversaries,” in Theory of
Cryptography, 4th Theory of Cryptography Conference, TCC
2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings, ser. Lecture Notes in Computer Science, S. P.
Vadhan, Ed., vol. 4392. Springer, 2007, pp. 137-156. [Online].
Available: https://doi.org/10.1007/978-3-540-70936-7_8

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

——, “Security against covert adversaries: Efficient protocols for
realistic adversaries,” J. Cryptol., vol. 23, no. 2, pp. 281-343, 2010.
[Online]. Available: https://doi.org/10.1007/s00145-009-9040-7

M. Rivinius, P. Reisert, D. Rausch, and R. Kiisters, “Publicly
accountable robust multi-party computation,” in 43rd IEEE
Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022. 1EEE, 2022, pp. 2430-2449. [Online].
Available: https://doi.org/10.1109/SP46214.2022.9833608

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
Presence of Partial Synchrony,” Journal of the Association for
Computing Machinery, Vol. 35, No. 2, pp.288-323, 1988.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith,
“Byzantine fault detectors for solving consensus,” Comput.
J., vol. 46, no. 1, pp. 16-35, 2003. [Online]. Available:
https://doi.org/10.1093/comjnl/46.1.16

A. Boldyreva, “Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature
scheme,” in Public Key Cryptography - PKC 2003, O6th
International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings,
ser. Lecture Notes in Computer Science, Y. Desmedt, Ed.,
vol. 2567. Springer, 2003, pp. 31-46. [Online]. Available:
https://doi.org/10.1007/3-540-36288-6_3

D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, ser.
Lecture Notes in Computer Science, T. Peyrin and S. D. Galbraith,
Eds., vol. 11273. Springer, 2018, pp. 435-464. [Online].
Available: https://doi.org/10.1007/978-3-030-03329-3\ _15

D. Galindo and J. Liu, “Robust subgroup multi-signatures
for consensus,” in Topics in Cryptology - CT-RSA 2022 -
Cryptographers’ Track at the RSA Conference 2022, Virtual
Event, March 1-2, 2022, Proceedings, ser. Lecture Notes in
Computer Science, S. D. Galbraith, Ed., vol. 13161. Springer,
2022, pp. 537-561. [Online]. Available: https://doi.org/10.1007/
978-3-030-95312-6_22

M. Rambaud and C. Levrat, “Practical non-interactive multi-
signatures, and a multi-to-aggregate signatures compiler,” IACR
Cryptol. ePrint Arch., p. 1081, 2024. [Online]. Available:
https://eprint.iacr.org/2024/1081

T. Ristenpart and S. Yilek, “The power of proofs-of-possession:
Securing multiparty signatures against rogue-key attacks,” in
Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,
Proceedings, ser. Lecture Notes in Computer Science, M. Naor,
Ed., vol. 4515. Springer, 2007, pp. 228-245. [Online]. Available:
https://doi.org/10.1007/978-3-540-72540-4_13

R. Canetti, “Universally composable signature, certification, and
authentication,” in [7th IEEE Computer Security Foundations
Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA,
USA. IEEE Computer Society, 2004, p. 219. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24

S. Cohen, I. Keidar, and A. Spiegelman, “Not a coincidence:
Sub-quadratic asynchronous byzantine agreement WHP,” in
34th International Symposium on Distributed Computing, DISC
2020, October 12-16, 2020, Virtual Conference, ser. LIPIcs,
H. Attiya, Ed., vol. 179. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020, pp. 25:1-25:17. [Online]. Available:
https://doi.org/10.4230/LIPIcs.DISC.2020.25

D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright, “Probabilistic
quorum systems,” Inf. Comput., vol. 170, no. 2, pp. 184-206,
2001. [Online]. Available: https://doi.org/10.1006/inc0.2001.3054

D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” Journal of cryptology, vol. 17, pp. 297-319, 2004.

[97] https://docs.rs/criterion/latest/criterion/.
[98] https://docs.rs/blst/latest/blst/.

[99] P. S. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves
with prescribed embedding degrees,” in International conference on
security in communication networks. Springer, 2002, pp. 257-267.

[100] https://docs.rs/ed25519-dalek/latest/ed25519_dalek/.

[101] S. Das, B. Pinkas, A. Tomescu, and Z. Xiang, “Distributed
randomness using weighted vufs,” in Advances in Cryptology
- EUROCRYPT 2025 - 44th Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Madrid, Spain, May 4-8, 2025, Proceedings, Part VII, ser. Lecture
Notes in Computer Science, S. Fehr and P. Fouque, Eds.,
vol. 15607. Springer, 2025, pp. 314-344. [Online]. Available:
https://doi.org/10.1007/978-3-031-91098-2\ _12

[102] A. Haeberlen and P. Kuznetsov, “The fault detection problem,”
in Principles of Distributed Systems, 13th International
Conference, OPODIS 2009, Nimes, France, December 15-
18, 2009. Proceedings, ser. Lecture Notes in Computer
Science, T. F. Abdelzaher, M. Raynal, and N. Santoro, Eds.,
vol. 5923. Springer, 2009, pp. 99-114. [Online]. Available:
https://doi.org/10.1007/978-3-642-10877-8\ _10

[103] H. Attiya and J. L. Welch, Distributed computing - fundamentals,
simulations, and advanced topics (2. ed.), ser. Wiley series on
parallel and distributed computing. Wiley, 2004.

[104] B. A. Coan, “A compiler that increases the fault tolerance
of asynchronous protocols,” IEEE Trans. Computers, vol. 37,
no. 12, pp. 1541-1553, 1988. [Online]. Available: https:
//doi.org/10.1109/12.9732

[105] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On
the (limited) power of non-equivocation,” in Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing,
ser. PODC ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 301-308. [Online]. Available:
https://doi.org/10.1145/2332432.2332490

[106] C. Ho, D. Dolev, and R. van Renesse, “Making distributed
applications robust,” in Principles of Distributed Systems, 11th
International Conference, OPODIS 2007, Guadeloupe, French
West Indies, December 17-20, 2007. Proceedings, ser. Lecture
Notes in Computer Science, E. Tovar, P. Tsigas, and H. Fouchal,
Eds., vol. 4878. Springer, 2007, pp. 232-246. [Online]. Available:
https://doi.org/10.1007/978-3-540-77096-1_17

Appendix A.
771 scalable general accountability.

SCT

When determining how to address arbitrary Byzantine
behaviors (whether to mask, detect, or punish them) it is
natural to classify these behaviors [12], [102]. Essentially,
faults can be categorized into two types: omission faults,
where a party fails to send a message that should be sent,
and commission faults, where a party sends something
it should not. Commission faults can further be divided
into two subcategories: equivocation, where a party makes
contradictory statements that a correct process could not
simultaneously make, and evasion, where a party sends
messages without having received the corresponding input
messages. Importantly, it has been proven that if a protocol
is t-resilient, then violating safety requires at least ¢ + 1
commission failures from distinct Byzantine parties [12]. In
other words, an attack cannot significantly exploit omission
failures to evade detection after the fact.

There exists a well-studied simulation [56], [103],
[104], [105], [106], traditionally attributed to Bracha [56],
[103], of crash failures on top of Byzantine failures, based
on reliable-broadcast [56]. In a nutshell, such a simulation
can be viewed as a module # that (1) connects the net-
working layer to a crash-resilient algorithm II, and (2) only
allows “benign” executions to reach II by not forwarding
any message from the networking layer to II unless the
sender’s valid behavior has already been established. As a
result, all Byzantine processes appear to II as if they have
crashed. More concretely, messages are sent via a secure-
broadcast primitive, which guarantees that for each correct
process p;, all correct processes agree on a total order of
the messages broadcast by p;. Throughout the protocol,
correct processes ’simulate’ the behavior of other correct
processes: they possess the necessary knowledge of the
initial state, update the simulated state at each step, and
to be accepted, each new message must be a legitimate
output of p;’s prescribed protocol, applied to the simulated
behavior up to that point.

It has been observed that Bracha’s simulation, as re-
ferred to here, can be adjusted to ensure that evasion faults
are masked (i.e., their effects are neutralized) regardless of
the number of Byzantine failures, leaving only equivocation
faults as a potential threat to safety [12]. Consequently,
since reliable broadcast can tolerate up to [n/3] —1 Byzan-
tine failures, it follows that any t.-crash-resilient protocol
can be automatically compiled into a protocol that tolerates
up to min(t., [n/3] — 1) Byzantine failures [103, Chapter
12], [56]. Moreover, by using an accountable version of
the reliable broadcast primitive, a t.-crash-resilient protocol
can also be automatically compiled into an accountable
protocol tolerating up to min(t,, [n/3] — 1) Byzantine
failures [12]. The transformation described above, while
general, incurs a multiplicative communication overhead,
that is proportional to the communication complexity of
the underlying Byzantine Reliable Broadcast primitive.

Any subquadratic Byzantine Reliable Broadcast pro-
tocol [49], [57], can be transformed using the ABCtTT
compiler into a subquadratic accountable version. This
accountable version can then be integrated into the 7.,
transformation to produce 7.1}, an enhanced version that
compiles any deterministic protocol into its accountable
counterpart with subquadratic communication overhead, in-
stead of the quadratic overhead in 74.,.

Additional techniques [39], [40], [41] can further extend
the applicability of such transformations when preserving
hyperproperties (e.g., privacy, fairness) is required.

Appendix B.
Technical comparison with prior works

This section provides the missing technique-level com-
parison. We first discuss the player-replaceable forensic
support of Sheng et al. [5], before contrasting it with the
ABC compiler [2], [11].

B.1. Player-Replaceable Forensic Support

We begin by recalling the deterministic HotStuff-style
forensic argument of Sheng et al. [4], then explain why this
property collapses under player replaceability, and finally
describe how the transition certificates (TCs) introduced by
the same authors are intended to repair it [5].

Deterministic BFT Forensics. HotStuff-like protocols
progress through a sequence of views, each led by a desig-
nated process driving a (pipelined) certified gradecast. In
each view v, the leader promotes a proposal block b. When
allowed by the local locking mechanism, replicas emit
partially signed votes supporting the proposal. Aggregating
at least n—t such votes yields a quorum certificate (QC),
a multi-signature certifying (v,b) (along with additional
metadata). Votes occur at different levels (e.g., prepare,
pre-commit, commit), each representing a higher level of
“grade” or confidence. Once a commit QC is received,
a replica finalizes the corresponding block b. This QC is
built from a quorum Q.om, Whose correct members must
already have obtained a locked QC for the same block b
and view v. To unlock from b to a conflicting block ¥,
a member of (.o, must observe a higher-view lock QC
for /. Meanwhile, members of .., are prohibited from
voting for any block conflicting with the one they are locked
on. With static committees, f < ¢ < n/3, and quorum size
n—t, classical quorum intersection guarantees agreement.
For forensic support, suppose process p; finalizes b in
view v via Qeom, While a conflicting block b’ is finalized
later in view v’ > v+2. Then there exists a minimal view
v* € [v+1, '] with a lock QC, built from a quorum Q. .
for some block b* conflicting with b. If each vote includes
the justifying view vj,s (the view of the highest lock QC the
voter knows), the minimality of v* implies v;,s < v. Hence,
G2 Q1 ek N Qcom designates replicas that locked on b at
view v yet later voted for b* conflicting with b, thereby
violating the locking rule. Every member of G is therefore
guilty. Moreover, when f < n—t, the QC at view v* is
observed by some correct replica ¢* among the first quorum
that extends b*. Together, p; and ¢* hold irrefutable signed
evidence of misbehavior by G.

In this deterministic setting, fairness (no false accu-
sation) holds even if f later exceeds the completeness
threshold ?,.., whereas completeness (the ability to identify
a target number of culprits) requires f < t,cc < n—t—1.
The ABC compiler achieves the optimal case t,.. = n.

Player-Replaceable BFT Forensics. HotStuff is player-
replaceable: per-view leaders and per-round committees
are sampled using a VRF. In the terminology of [5],
each view decomposes into three consecutive rounds. Each
round consists of a (sampled) leader-to-all proposal step,
followed by a (sampled) committee-to-all vote step. As
in HotStuff, a sampled leader proposes a block b. Col-
lecting at least 5 = (%W votes from the round’s com-
mittee yields a quorum certificate QC,. for b. When three
consecutive QCs are formed, the head block is finalized

directly (and its ancestors indirectly). In the deterministic

setting, the classical forensic argument identifies culprits via
the intersection of two large, fixed quorums, for example
Qcom N @), Under player replaceability, however, the
commit QC for b and the conflicting lock QC for b*
are produced by independently sampled committees. As
a result, Qcom N @), 18 typically empty, so the simple
deterministic overlap argument no longer applies.

To address this, Sheng er al. [5] introduce transition
certificates (TCs). During the subquadratic committee-to-
all vote step (rather than a committee-to-leader step), com-
mittee members broadcast their freshest locked@C'. Each
replica must not enter round r+1 until it has collected
ty such lock reports from verifiably elected committee
members, forming the fransition certificate TC[r]. This
certificate is generated and disseminated at every round by
the sampled processes. For fault levels up to f < n(% —€),
this echoing mechanism is claimed to ensure that at least
one honest lock extending the freshest QC is included in
every correct replica’s TC[r+1] before it advances. Infor-
mally, this keeps all correct replicas’ freshest lockedQC
aligned within one round. Hence, if a block b is finalized
at round r via a quorum Q.on,, While a later chain first
diverges at some minimal round r* 2j+2 under the votes
of quorum @y, the members of @} , can be deemed
faulty. Indeed, the locked QC associated with b’s finaliza-
tion should have appeared among the ¢y lock reports in
some transition certificates between rounds r and r*. Thus,
any member of @} , who voted for a conflicting block
effectively voted behind its lock.

B.2. ABC

The ABC compiler introduced two main contributions:
(1) the accountable confirmer object, which can be se-
quentially composed with any easily accountable agreement
task; and (2) a quadratic implementation resilient against a
strongly adaptive adversary, for ¢t < n/3 and t,.. = n.

The implementation follows a classical all-to-all com-
munication pattern. In the first round, processes broadcast
their partially signed (pre-)decisions. Retrospectively, this
phase implicitly realizes what we now formalize as the rat-
ifier functionality, albeit at quadratic communication cost,
even though adapting it to a player-replaceable setting is
conceptually straightforward. After collecting partial sig-
natures from a standard quorum, processes confirm their
decision and enter a second all-to-all phase, during which
they exchange signatures corresponding to potentially con-
flicting decisions. In hindsight, this second phase imple-
ments what we now define as the propagator functionality,
again at quadratic cost.

The ABC*™ compiler does not introduce new sophis-
ticated mathematical tools, but refines ABC by adapt-
ing subquadratic all-to-all gossiping to accountable certifi-
cate propagation. It replaces the quadratic all-to-all phases
of [2], [11] with subquadratic counterparts that preserves
the same accountable guarantees.

Appendix C.
Meta-Review

The following meta-review was prepared by the pro-
gram committee for the 2026 IEEE Symposium on Security
and Privacy (S&P) as part of the review process as detailed
in the call for papers.

C.1. Summary

This work studies the forensic support and account-
ability problem in Byzantine agreement (BA) in non-
synchronous networks in the excessive fault setting. The
authors propose a generic transformation that transforms
any BA or reliable broadcast protocol into their counterpart
with adaptively secure forensic support and accountability.
The transformation consists of a ratifier that generates
cryptographic evidence of misbehavior and a propagator
that disseminates the evidence, while maintaining sub-
quadratic communication complexity and adding three (or
O(logn) for optimized communication complexity) addi-
tional rounds of communication.

C.2. Scientific Contributions

Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

The paper provides a valuable step forward in an es-
tablished field. The authors provide a generic compiler
that adds forensic support and accountability to Byzantine
Agreement protocols while incurring a sub-quadratic com-
munication overhead. In practice, the transformation is use-
ful for protocols with many participants, e.g., blockchains.

C.4. Noteworthy Concerns

The transformation is more relevant for systems with
a larger number of validators / participants, otherwise the
transformation degrades to quadratic communication com-
plexity.

Appendix D.
Response to the Meta-Review

While the transformation indeed consists of both a
ratifier and a propagator, processes can (and must) decide
as soon as they receive the output from the ratifier. Hence,
the latency overhead with respect to the decision itself
is only one additional round. The propagator’s rounds do
not affect decision latency in the nominal case; they only
determine, in the degraded case, the delay between an
inevitable disagreement and its eventual detection.

