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Abstract—Typical blockchain nodes replicate the execution
of requests, which include native transfers and smart contract
executions. With the shift of the Web towards Web3, modern
blockchains suffer from congestion which prevents them to handle
user requests. Recent studies showed that modern blockchains per-
form poorly or lose requests of realistic Decentralized Application
(DApp) workloads, impairing the shift towards Web3.

In this paper, we present Smart Redbelly Blockchain (SRBB)
which handles realistic DApp workloads. SRBB improves
blockchain performance with (1) Transaction Validation and
Propagation Reduction, (2) caching optimizations and (3) fast
block execution. SRBB outperforms Algorand, Avalanche, Diem,
Ethereum, Quorum and Solana when deployed over 5 continents
and under the realistic workloads of NASDAQ, Uber and FIFA
using the DIABLO benchmark suite. Next, we decouple SRBB
that improves the peak throughput of SRBB for the NASDAQ
workload by 33% and reduces its latency by 20%.

Index Terms—Blockchain, Performance, Decoupling, Security

I. INTRODUCTION

The Redbelly Blockchain [15] led to unprecendented perfor-
mance: First, Redbelly scales to a geo-distributed network of a
thousand machines because it combines the block proposals of
all validators into a superblock instead of imposing the block
of a single validator to the system [23]. Second, Redbelly
prevents double spending despite arbitrary network delays by
featuring a formally verified leaderless consensus protocol
known as Democratic Byzantine Fault Tolerance (DBFT) [9].
Although this made blockchain consensus protocols scal-
able [25], Redbelly was limited by the Unspent Transaction
Output (UTXO) [28]. More specifically, since the UTXO model
uses multiple transaction outputs (i.e., UTXOs) from previous
transactions as inputs of new transactions, the tracking of
multiple UTXOs becomes complex when implementing smart
contract logic [37].

In this paper, we present the provably secure Smart Redbelly
Blockchain (SRBB) that copes with this problem. As its
name indicates, SRBB builds upon the Redbelly Blockchain
innovations, including its superblock and its formally verified
consensus protocol, but extends it to support Solidity “Smart”
contracts, hence offering compliance with the largest ecosystem
of Decentralised Applications (DApps) that was originally
developed for Ethereum [38]. Combining the performance and
security of the Redbelly Blockchain with DApps makes SRBB
an ideal blockchain to trade high value real world assets on
Web3. One may think that the combination of Redbelly and
the Ethereum Virtual Machine (EVM) is sufficient to combine
the security and performance with the expressiveness needed
by Web3, however, there are two limitations:

Decoupled blockchains What is decoupled Purpose
Hyperledger Fabric [7] (1) Ordering and execution

(2) Submits transactions in
two rounds for ordering
and execution.

Modularity

PRISM [36] Decouples blocks into sep-
arate chains

Performance

SRBB-dec (our decoupling) Consensus and execution Performance

TABLE I: Blockchains with decoupled architectures.

1) Redundant validations. In modern blockchains [38],
[22], [39], [13], [11], [1], including Ethereum, validators
compete to get their block appended. To guarantee that a
transaction will be included, each validator has to validate
and propagate every transaction individually (and within
a block), which incurs unnecessary overhead. To cope
with this problem, SRBB combines proposed blocks into
an agreed superblock and avoids having each validator
propagate and validate every single transaction before
inclusion in a block.

2) Resource limitation. Redbelly benefits from some mem-
ory optimisations that are possible with the UTXO model
to obtain high throughput. In particular, it consumes as
many UTXO as possible to keep the UTXO table in
memory. By contrast, the EVM consumes more memory,
CPU and storage I/O to execute bytecode and exchange
messages. To minimize resource usage, we optimise the
EVM to produce SRBB VM and decoupled the role
of executing bytecode (SRBB VM) from the role of
sending messages (consensus) in a variant of SRBB we
call SRBB-dec.

These challenges are the reasons to extend substantially
Redbelly and the EVM.

First, SRBB solves the aforementioned Redundant Valida-
tions problem by a transaction validation and propagation
reduction mechanism. More specifically, SRBB does not
propagate every transaction to all validators like in Ethereum.
As a result, with n validators each transaction is validated
only by the sole validator that receives it individually and
then it is validated by each of the n validators right before
the block that contains it gets executed by each validator. In
Section VII we explain that SRBB does not impact a client’s
wait time for a transaction to be committed within a block
despite not propagating transactions initially. Second, we solve
the Resource Limitation problem in two steps. Initially we
optimize the EVM to produce SRBB VM. SRBB consisting
of SRBB VM and the previously mentioned transaction
validation and propagation reduction mechanism, outperforms
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Algorand [22], Avalanche [32], Diem [6], Ethereum [38],
Quorum [13] and Solana [39] for three DIABLO benchmarks
(NASDAQ, Uber and FIFA) [24]). Next, and as depicted in
Table I, we decouple the node roles in SRBB to SRBB VM and
consensus to produce SRBB-dec [34] such that each validator
is split into a node running the consensus protocol and a
node running the SRBB VM. This decoupling differs from
Hyperledger Fabric [7] and PRISM [36] and improves the peak
throughput of realistic DApp workloads (Section VI).

The remainder of this article is organized as follows.
Section II presents the background and the problem. Sec-
tion III presents Smart Redbelly Blockchain that addresses the
redundant validation and resource limitation problem. We then
extend Smart Redbelly Blockchain to SRBB-dec in Section IV
to further address the resource limitation problem through
decoupling. Sections V and VI present the evaluations of SRBB
and SRBB-dec respectively. In Section VII we discuss the
potential drawbacks of SRBB and SRBB-dec. In Section VIII
we present our related work and in Section IX we conclude.

II. BACKGROUND

A. Nodes, blocks and transactions
We consider a distributed set of nodes that act either as a

client, sending requests, or a validator, offering the blockchain
service. (Note the distinction with the commonly used Geth
clients that can also act as validators.) Validators that follow
the blockchain protocol are called correct whereas those that
deviate are called Byzantine. A client owns a private key and
stores its digital assets in accounts, each comprising an address
or the public key associated with the client’s private key and a
balance representing the amount on this account.

A transaction is a request that can be of three types: native
transfer, smart contract upload, and smart contract invocation.
A native transfer has a sender address a, a receiver address b,
and an amount being transferred from a to b. Every transaction
is associated with a nonce, a counter indicating the number of
transactions ever sent from the same address. Two transactions
conflict if they access the same data (e.g., smart contract
variable) and one transaction is a write request [5].

A block is a batch of transactions. The validators execute
blocks consisting of transactions submitted by clients. Upon
executing each transaction in a block, validators update the
balances of the sender and receiver addresses according to the
amount of assets specified in the transaction. This is known as
updating the blockchain state. The validators finally append the
executed blocks to a chain of blocks known as the blockchain.

The notion of gas is used to reward validators based on
their efforts to execute transactions. Each transaction, based
on the type and amount of operations it contains, is associated
with a gas value. The validator are rewarded for executing a
transaction with its transaction fee, expressed as the product
of the gas value and the current gas price [38] that usually
depends on the network congestion.

B. Properties of a blockchain system
A blockchain system must ensure liveness and safety as

previously stated by Garay et al. [21] as well as the classic
validity property [17]:

Definition 1 (Blockchain System): A distributed set of
validators implement a blockchain system if they maintain
a sequence of transaction blocks such that the following
properties hold:

• Liveness: if a correct validator receives a valid transaction,
then this transaction is eventually reliably stored in the
block sequence of all correct validators.

• Safety: the two chains of blocks maintained locally by
two correct validators are either identical or one is a prefix
of the other.

• Validity: each block appended to the blockchain of each
correct validator is a set of valid and non-conflicting
transactions.

The safety property does not require correct validators to
share the same chain because one validator may already have
received the latest block before another. Note that, as in classic
definitions of liveness [21], [12], our liveness property does not
guarantee a client transaction is included in the blockchain: if a
client sends its transactions exclusively to Byzantine validators
then these Byzantine validators may ignore it.

C. The redundant validation problem

The problem of many blockchains, like Algorand [22],
Ethereum [38], Polkadot [11], Quorum [13], Solana [39] and
Tezos [1] to name a few, is that their validators try to validate
each transaction twice in an eager and a lazy validations.

Eager validation. An eager validation occurs when a validator
receives a transaction either from another validator or a client.
A validator then answers the following question regarding a
transaction:

1) Is the transaction properly signed?
2) Does the sender account have sufficient funds to cover

the specified payments to a receiver?
3) Is the transaction out of order (i.e., is the transaction

sequence number too low or too high compared to the
last received transaction from the same sender)?

4) Is there sufficient gas or is the transaction fee large
enough to execute the transaction?

5) Is the transaction oversized?
If the eager validation of a transaction succeeds, the validator
pushes the transaction to a pending queue in the transaction
pool making eligible for inclusion ina block. The validator
then propagates the valid transaction to downstream peers (i.e.,
its connected validators) that have not yet seen the transaction,
eventually propagating the valid transaction throughout the
network and having it eagerly validated at every validator. If
the eager validation fails, validators drop the invalid transaction.

Lazy validation. Lazy validation occurs before the transactions
in a block are executed and checks the sequence number of the
transaction, whether the sender account has sufficient balance
to send funds to the receiver, and the availability of gas to
execute the transaction. Thus, lazy validation is less time-
consuming than eager validation because the validity checks are
comparatively less. Typically, lazy validation excludes signature
and size checks.
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Imposing a single block vs. combining multiple blocks.
The crux of the problem is that, in these blockchains (e.g.,
Algorand [22], Ethereum [38], Polkadot [11], Quorum [13],
Solana [39] and Tezos [1]), every validator is incentivised to
impose its block to the rest of the system. To guarantee that a
transaction gets included in the imposed block, the protocol
requires this transaction to be propagated to as many validators
as possible. This increases the chance that the transactions gets
written to the blockchain.

Without the initial transaction propagation, a client’s trans-
action may not be included in a block for some time if the
validator directly receiving the transaction from the client is not
selected to propose a block for an immediate consensus round.
In contrast, even when the initial transaction propagation is
removed on SRBB, a client’s transaction can be immediately
included in a block as SRBB’s consensus decides all the blocks
proposed by distinct validators into one larger superblock.

In the rest of this paper, we will show how to implement a
blockchain system (Definition 1) without the initial propagation
and eager validation of transactions (Section III-F). The idea
is to reach a consensus on a superblock that combines the
blocks of multiple validators so that transactions do not need
to be propagated outside blocks. In our evaluation (Section V),
we show the congestion impacts of this problem through
transaction losses and performance degradation (throughput
drop and latency increase) in modern blockchains under realistic
DApp workloads.

D. The resource limitation problem

Decentralized applications, or DApps for short, are increas-
ingly popular at allowing users to trade services transparently,
peer-to-peer and without transferring ownership. In Q1 2023
DappRadar saw a 9% Q/Q growth rate of decentralized
applications (DApps) totaling 17,564 DApps across all chains
compared to Q4 2022.1 These DApps are, however, plagued
by the low throughput of the Ethereum blockchain capping at
∼15 transactions per second (TPS) [14]. Even without forcing
miners to resolve a crypto-puzzle to obtain a proof-of-work,
the proof-of-stake version of Ethereum, called “The Merge”,
does not increase the throughput and the proof-of-authority
alternative of Ethereum delivers ∼80 TPS [27]. Ethereum
already experienced congestion due to DApps [18] and its
capacity is inherently too low to support a marketplace demand
of 83 TPS [20]. Similar problems affect blockchains with
different virtual machines as well. In particular, Solana was
suspected to suffer DoS attacks because Solana is leader-based
and its leader was overwhelmed by requests that slowed down
the system2. It is thus crucial to better manage resources to
offer multiple DApps through Web3.

III. SMART REDBELLY BLOCKCHAIN (SRBB)

In this section, we present SRBB, a permissionless
blockchain that prevents the redundant validation and propa-
gation of transactions. SRBB integrates a novel Transaction

1https://www.alchemy.com/blog/web3-developer-report-q1-2023.
2https://cryptopotato.com/solana-network-suffers-another-reported-ddos-

attack.

Validation and Propagateion Reduction (TVPR) to prevent
the redundant validation and propagation of transactions. In
addition, SRBB is compatible with the largest ecosystem of
DApps, optimally resilient against Byzantine failures, and
supports real DApp workloads like NASDAQ, Uber, and FIFA
(Section V).

First, we present our assumptions followed by the TVPR.
Second, we present the transaction life cycle of SRBB followed
by the SRBB Virtual Machine (VM) implementation. Finally,
we prove SRBB implements a Blockchain System (Def 1).

A. Assumptions

a) Partially Synchronous Model: Our network consists of
a set of n validators that are well-connected. As consensus can-
not be solved in the asynchronous setting, we assume partially
synchronous communications similar to prior work [19]. In
practice, we cope with partially synchronous communications
by increasing timeouts [17].

b) Byzantine Model: We assume that out of n SRBB
validators, at most f are Byzantine where f < n/3 (consensus
is unsolvable in this model if f ≥ n/3). The maximum
number of Byzantine validators is thus t = ⌈n/3⌉ − 1
such that f ≤ t. Byzantine validators can act arbitrarily
like proposing conflicting blocks, and invalid transactions. In
general, any behavior that deviates from the blockchain protocol
is considered a Byzantine behavior.

c) Threat Model: Several blockchains [26], [40], [4],
[33] reconfigure their committee of n validators every epoch
(i.e., a pre-specified unit of time) to prevent a majority of the
committee from being bribed by a slowly-adaptive adversary.
A slowly-adaptive adversary is defined as a malicious entity
that can bribe validators progressively (not instantaneously)
and only between epochs (not during an epoch) such that
the total corrupted validators is f where f < n/3 at any
time [40]. As n validators cannot reach consensus if f ≥ n/3
validators are corrupted through bribery, the assumption of a
slowly-adaptive adversary prevents consensus disagreements
and double spending attacks. Therefore, we assume that the
adversary is slowly-adaptive similar to prior works [26], [40],
[29].

B. Membership and committee reconfiguration

SRBB is a permissionless blockchain where (1) any node
can join or leave the network and (2) any node has a chance to
become a validator based on a periodic election process if they
stake a certain amount of tokens. This membership approach
of periodically rotating validators prevents an exclusive set of
nodes from always being validators, providing a permissionless
environment similar to Algorand [22]. An SRBB node can
be (1) a client that sends transactions and reads the state of
the blockchain (2) a validator that participates in consensus,
executes transactions, and keeps a full state of the ledger to
service clients, or (3) a candidate that is willing to become a
validator [30].

Initially, SRBB is bootstrapped with an initial set of
validators pre-defined in the genesis block. Any candidate
wants to be a validator in the future and must first express

https://www.alchemy.com/blog/web3-developer-report-q1-2023
https://cryptopotato.com/solana-network-suffers-another-reported-ddos-attack
https://cryptopotato.com/solana-network-suffers-another-reported-ddos-attack
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Fig. 1: The modern blockchain protocol and TVPR modification
are represented graphically at a high level.

interest by depositing tokens (e.g., a pre-defined sum of native
coins) in a reconfiguration smart contract. SRBB periodically
elects a committee of validators from the set of candidates.
During this election, the current set of validators elect the
next set of validators using the reconfiguration smart contract.
The details of the validators of a committee are registered in
the smart contract after an election outcome and each SRBB
validator gets to know of other validators in the committee
through an event emitted by the reconfiguration smart contract.
This periodic reconfiguration of SRBB validators makes it
hard for a slowly-adaptive adversary to bribe sufficiently many
validators to control the election.

The requirement to deposit tokens to be a candidate mitigates
the risk of Sybil attacks. In particular, it makes it costly for
a single user to control a large number of candidates. The
reconfiguration can offer proportionality and non-dictatorship
in the governance as can be found in social choice theory.
Detailing the steps of this reconfiguration process is out of the
scope of this paper and can be found elsewhere [33].

C. TVPR (Transaction Validation and Propagation Reduction)

In TVPR, instead of validators eagerly validating and propa-
gating transactions received from other validators individually,
validators only eagerly validate transactions received directly
from clients. These validated transactions are then included
in blocks and broadcast to all validators. In other words, we
remove step (3) in Figure 1 of the classic blockchain protocols
where validators individually propagate transactions among
themselves. To this end, we remove line 10 of Alg. 1 to
prevent validators from propagating transactions outside blocks.
This way, not all validators eagerly validate each transaction.
As a result, in SRBB only one validator (the one receiving
the transaction for the first time) eagerly validates it – other
validators simply validate it only after receiving it within
a block. This is in contrast with classic blockchains whose
validators all eagerly validate every single transaction before the
transaction gets included in a block. In Section V-B, we present
the throughput improvement, latency reduction and transaction
loss reductions of integrating TVPR to SRBB when compared
to other modern blockchains. The potential drawbacks of TVPR
are deferred to the discussion (Section VII).

Algorithm 1 The Smart Redbelly Blockchain protocol
1: State:
2: blockchain , an array of blocks, initially:
3: blockchain[0] = genesis-block
4: P is the set of transactions in the txpool pending queue

5: receive(t): � t received from neighbors or directly from clients
6: if eager-validate(t) then � if eager validation succeeds
7: if t ̸∈ blockchain and t ̸∈ P then � t not present
8: P← P ∪ {t} � add t to txpool pending queue
9: if TTL of t not exceeded then

10: propagate(t) � SRBB omits this classic step

11: propose():
12: bi ← create-block-with(Q) � create a block bi from Q ⊂ P
13: blockQueue ← blockQueue.append(bi) � append to queue
14: P← P \ Q � remove transactions from txpool
15: bi ← blockQueue[0 ] � get first element from block queue
16: propagate(bi ) � propagate block via rb-broadcast

17: Upon reception of B for index k s.t. B←
⋃j

i=1 bi:� delivered blocks
18: B∗ ← consensus(B) � exec. cons. and decide B∗ s.t. B∗ ⊆ B
19: for all bi ⊂ B∗ starting from i = 1 do
20: for t ∈ bi do
21: err ← execute(t)
22: if err ̸= null then
23: bi ← bi \ {t} � remove invalid t from bi
24: if bi ̸= null then � bi has transactions
25: blockchain[k ] = bi � insert to permanent chain
26: k++
27: blockQueue.remove(B∗) � remove decided blocks from queue

28: execute(t):
29: err ← lazy-validate(t) � lazy validation
30: if err ̸= null then return err

31: Sr, err ← ApplyTransaction(t ,Si ) � apply t on state Si

32: return err

D. Transaction life cycle of SRBB

We now present the transaction life cycle of SRBB. An
SRBB node consists of the SRBB VM and SRBB consensus.
The SRBB VM is built upon Geth and integrates with TVPR.
SRBB consensus uses the DBFT consensus protocol [15]
combined with the superblock optimization of RBBC [17].
We omit the details of the consensus protocol, as the DBFT
algorithm and its integration into the Redbelly blockchain
design can be found in the literature [15], [17]. A transaction
submitted by a client to SRBB goes through the stages below:

Reception. The client creates a properly signed transaction and
sends it to at least one SRBB validator where the transaction
is eagerly validated (Alg. 1, line 6). If the eager validation
fails, the transaction is discarded. Otherwise, the transaction is
kept in a pending queue in the transaction pool (Alg. 1, line 8).
Once the size of the transaction pool pending queue reaches
a threshold (pre-defined in the configuration), a validator
creates a block bi and adds it to a block queue (Alg. 1,
line 13). Subsequently, the transactions used to create the
block are removed from the transaction pool pending queue
P. Next, the validator fetches the first block from the block
queue (Alg. 1, line 15) and propagates it to all validators
(Alg. 1, line 16). Note that, unlike other blockchains, SRBB
does not propagate transactions individually. Instead, SRBB
simply includes transactions in blocks and propagates blocks
to the network, hence implementing our TVPR solution. For
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each index of the blockchain, every correct SRBB validator
propagates a block bi s.t. i is the ID of the SRBB validator
and i ∈ Z+. These blocks are propagated via reliable
broadcast [10].

Consensus. Upon receiving a set of blocks B =
⋃j

i=1 bi
from validators j ≤ n, a validator starts executing the DBFT
consensus protocol [15], [9] (Alg. 1, line 18) as outlined in
Alg. 2, and decides the next superblock B∗. Upon deciding
the superblock, the validator sends it to the SRBB VM for
execution (Alg. 1, lines 19-26). The decided blocks in the
superblock are removed from the block queue (Alg. 1, line 27).
All undecided blocks are kept in the block queue to be included
in future consensus rounds. The consensus proceeds to the next
round after a superblock is decided, and starts propagating a
block again from the front of the block queue via reliable
broadcast, if not already propagated (Alg. 1, lines 15-16). Note
that the only similarity between SRBB and RBBC [17] is this
consensus protocol. RBBC does not support the execution of
smart contracts or DApps and does not feature TVPR.

Commit. An SRBB VM, upon receiving the superblock B∗,
takes a block bi at a time from B∗, iterates through its
transactions (Alg. 1, line 20), and attempts to execute them
(Alg. 1, line 21). In the execution process, first, the SRBB
VM lazily validates the transaction (Alg. 1, line 29). If a
transaction’s lazy validation succeeds, the SRBB VM attempts
to apply the transaction to the current blockchain state (Alg. 1,
line 31). A state transition for executing a transaction only
occurs if the transaction is valid and non-conflicting. Since
lazy validation is not as strict as eager validation (Section II),
a transaction may pass the lazy validation but still be invalid.
The SRBB VM, like modern blockchains, handles such cases
by throwing an exception without transitioning to another state
(Alg. 1, line 32). More specifically, during transaction execution,
the SRBB VM rechecks other validity criteria not present
in the lazy validation (e.g., transaction signature verification,
transaction size limit), and throws an exception if any criterion
is not met.

Algorithm 2 The SRBB consensus protocol
1: B← {b1, b2, ...bi} � reliably delivered blocks
2: blocks ← ∅ � blocks delivered from rbbroadcast are stored here in line 8
3: index ← 0 � consensus round
4: blockQueue ← ∅ � pending blocks to propose to consensus
5: consensus(B):
6: decCount ← 0, decBlocks ← 0
7: for all block ∈ B do
8: blocks[i ]← block� add rb-broadcast blocks to list s.t. i is sender ID
9: decBlocks[i ]← b-cons-propose(i , true) � props. to binary cons.

10: wait until ∃i : b-cons-decide(i) is true � till binary cons. decided
11: for j from 0 to n do
12: if blocks[j ] == ∅ then
13: decBlocks[j ]← b-cons-propose(j , false)

14: if decBlocks[j ] == true then decCount ← decCount + 1

15: wait until decCount == n
16: superblock ← ∅
17: for i from 0 to n do
18: if decBlocks[i ] == true then
19: superblock ← superblock ∪ blocks[i ]� combine decided blocks
20: return superblock

If either the lazy validation fails or applying the transaction

fails, then the transaction is deemed invalid. In this scenario,
the SRBB VM discards the invalid transaction from the block
bi (Alg. 1, line 23) and moves on to the next transaction in the
block. Later, bi is appended to the blockchain (Alg. 1, line 25)
and the SRBB VM moves to the next block in the superblock.
The SRBB VM follows the same procedure to process the
subsequent blocks in the superblock until all the valid blocks
are written in the blockchain.

E. SRBB VM implementation

The SRBB VM results from optimizing the Geth EVM
and integrating TVPR to prevent redundant eager validation
and propagation of transactions. We now present all these
optimizations.

TVPR implementation. We integrated TVPR into the EVM by
disabling the initial individual transaction propagation among
validators. This way the first SRBB node receiving transactions
from clients, eagerly validates and includes the transactions
in blocks before propagating them, in blocks, to the network.
One might think that SRBB allows the execution of invalid
transactions because a transaction is eagerly validated by
only one SRBB validator and then lazily validated at each
SRBB validator prior to being executed, and because the lazy
validation is not as strict as the eager validation. Note that
the reduction of transaction validations does not cause the
execution of invalid transactions in SRBB. Instead in the case
of invalid transactions, the SRBB execution throws an exception.
More precisely, a transaction is valid only if (i) the transaction
is properly signed, (ii) its size does not exceed a limit, (iii)
its nonce is the next sequence number, (iv) its gas cost is
covered by the sender balance, (v) its transferred amount is
covered by the sender balance. The lazy validation checks
(iii), (iv), (v) whereas the execution checks (i) and (ii). The
Geth implementation3 which SRBB builds upon, raises an
ErrInvalidSig exception if (i) is not satisfied. The VM,
even in its original release, raises an overflow or exceptions
if (ii) is not satisfied.4 Thus, even if an invalid transaction is
lazily validated due to the fewer number of checks, the SRBB
VM execution will perform additional checks to ensure that
no invalid transactions are executed.

In order to implement TVPR, we had to change the intricate
parts of the original Geth implementation, which required a
deep dive into the implementation details of Ethereum. In total,
we changed 161 lines of code. These changes included: (1)
disabling the event that notifies the successful eager validation
of each transaction to the function that broadcasts transactions
individually and (2) disabling functions that handle individual
transactions received from peers. Our implementation of SRBB
VM that encapsulates TVPR can be found at [31]. Note that
since we developed SRBB VM, the official implementation of
Geth has changed. To the best of our knowledge, none of these
changes have impacted the relevance or the guarantees of TVPR.

3L635 of https://github.com/ethereum/go-ethereum/blob/master/core/types/
transaction.go of commit c4a6621

4L187-219 of https://github.com/ethereum/go-ethereum/blob/master/core/
vm/interpreter.go, and https://github.com/ethereum/go-ethereum/blob/master/
core/vm/errors.go.

https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go
https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/interpreter.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/interpreter.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/errors.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/errors.go
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This is because after reducing eager validations, if an invalid
transaction bypasses the lazy validation, the execution attempts
to execute the invalid transaction and throws an exception
if any remaining invalidity is found, without transitioning to
another state.

SRBB VM support for fast-paced consecutive blocks. Since
the DBFT consensus protocol is fast, it creates and delivers
superblocks at high frequency to the SRBB VM. As Geth does
not expect to receive blocks at such a high frequency, it raises an
exception outlining that consecutive block timestamps are iden-
tical, which never happens in a normal execution of Ethereum.
This equality arose because Geth encodes the timestamp of
each block as uint64, not leaving enough space for encoding
time with sufficient precision. Geth typically reports an error
when consecutive timestamps are identical, due to a strict
check that compares the parent block timestamp to the current
block timestamp in go-ethereum/consensus/ethash/consensus.go:
header.Time < parent.Time. We changed the original check to
header.Time <= parent, which allowed for fast-paced executions
of consecutive blocks.

Caching optimizations. We cached the block body that
contains the transactions committed on the blockchain. A trans-
action is considered final once the client receives the receipt
of the transaction from the blockchain. When retrieving the
receipt of transactions initially, the EVM fetches transactions
from the block body in the LevelDB. These transactions are
then used to retrieve the transaction receipts. We cache the
block body to speed up the return of the transaction receipt
to the client, and hence, speed up transaction finality. We also
cached the transaction receipts. Once a transaction receipt is
fetched by a client, the EVM caches them to help fast retrieval
of those receipts if queried again. However, this does not speed
up the first time the receipt is retrieved. Therefore, we decided
to cache receipts after transaction execution prior to writing
receipts to the key value data store.

F. Proofs of correctness of SRBB

Here we present the proofs of correctness of SRBB. First,
we prove that SRBB is a Blockchain System (Section 1) as
defined in Def. 1.

Theorem 1: SRBB satisfies the properties of a Blockchain
System.

Proof : We prove that each property of Def. 1 is preserved:
1) Liveness: As a result of removing line 10 of Alg. 1 in

SRBB, transactions are no longer propagated individually
to the network among validator peers and eagerly
validated at each SRBB validator. However, correct
validators still create blocks including valid transactions,
and propagate them to peers (Alg. 1, line 16). Thus,
every correct SRBB validator receives a set of blocks B
propagated by correct SRBB validators at index k (Alg. 1,
line 17). An SRBB VM decides a set of blocks B∗ s.t.
B∗ ⊆ B (a superblock) and stores the valid transactions in
these decided blocks on the blockchain (Alg. 1, lines 18-
25). While the decided blocks are removed from the
block queue (Alg. 1, line 27), undecided blocks are kept

in the SRBB block queue to be included in future blocks.
These transactions are eventually re-included in a future
decided block by correct SRBB validators and stored in
the blockchain. Thus, every transaction received by a
correct SRBB validator is eventually stored in the block
sequence of all correct SRBB validators.

2) Safety: The preservation of safety is proved by contra-
diction. If none of the two chains of blocks maintained
locally by any two correct SRBB validators v1 and v2 is a
prefix of one another, it means the superblock B∗ decided
at index k (Alg. 1, line 18) of v1 and the superblock B∗′

decided at index k of v2 are different. This results in two
different transaction executions (Alg. 1, line 21) for v1
and v2. However, this is a contradiction because any two
correct SRBB validators v1 and v2 should decide on the
same superblock at index k due to consensus guarantees
of DBFT [15] (Alg. 1, line 18). Thus, any two validators
v1 and v2 should store the same block b at index k of
the chain (Alg. 1, line 25). Therefore, any two correct
validators should maintain locally an identical chain of
blocks or a chain where one is a prefix of another (i.e.,
because blocks do not get decided, executed, and stored
at the same time in all SRBB validators) resulting in the
same execution. Thus, through proof by contradiction,
SRBB achieves safety.

3) Validity: Due to the consensus protocol, all correct SRBB
validators decide on the same superblock B∗ at index k
(Alg. 1, line 18). If each block bi in the superblock B∗ has
a valid set of transactions, it is appended to the blockchain
(Alg. 1, lines 20-25). Thus, each block appended to the
blockchain of each correct SRBB validator is a set of
valid non-conflicting transactions.

IV. SRBB-DEC: DECOUPLED SRBB

In this section, we present SRBB-dec, a version of SRBB that
decouples the consensus (Consensus System) from the SRBB
VM (Replicated State Machine) to better allocate resources
across disjoint machines.

Just as before, we assume that there are n SRBB-dec
participants such that at most f are Byzantine where f < n/3.
However, we consider that each participant runs two machines,
one dedicated to play the SRBB VM role and another dedicated
to play the consensus role. Hence, in the remainder we consider
m = 2n nodes in the system.

A. Architecture

The layered architecture of SRBB-dec is depicted in Figure 2
with an SRBB VM Replicated State Machine node at the
top, and a consensus node at the bottom. The communication
between the consensus node and the SRBB VM node is
event-based and implemented with gRPC. Although the event-
based communication adds some communication overhead, the
execution of the consensus node and the SRBB VM of SRBB-
dec on separate machines offers greater modularity and, as we
will show in Section VI, better performance than SRBB.
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Fig. 2: The architecture of SRBB-dec. ➊ A client sends a
transaction to some Smart Redbelly Blockchain VM node
(SRBB VM), ➋ at each replica, the web3.js server eagerly
validates transactions and sends them to the transaction pool
that ➌ sends a block to the consensus client. ➍ The consensus
client proposes it to the consensus protocol. Upon reception
of a new block from the consensus client, ➎ the consensus
server in the consensus node propagates it through the network
using reliable broadcast [16]. Remote consensus nodes start
participating in the same instance (if not done yet) upon reliably
delivering this proposed block. ➏ When the consensus outputs
some acceptable blocks, all of these blocks are combined into
a superblock ➐. The VM client sends this superblock to the
SRBB VM (SEVM) by invoking commit, the VM server upon
receiving the superblock sends the block to be executed and
stores it in the data store ➑.

B. The transaction lifecycle of SRBB-dec

Since SRBB-dec is the decoupled version of SRBB, there
are slight variations in their architecture and their transaction
lifecycle. The SRBB VM and consensus are decoupled in
SRBB-dec across two machines, thus communications occur
between the consensus instance and the state machine instance.
For these RPC calls, we added some components to SRBB-
dec’s system architecture. The lifecycle of a transaction in
SRBB-dec goes through the stages below:

Reception. The client creates a properly signed transaction
and sends it to at least one SRBB VM node. Once a request
containing the signed transaction is received ➊ by the JSON
RPC server of SRBB VM, the eager validation starts. If the
validation fails, the transaction is discarded. If the validation
succeeds, the transaction is added to the transaction pool ➋.
Unlike modern blockchains where the transaction is propagated
to all validators increasing the number of eager validations,
SRBB-dec includes transactions in blocks directly from the
transaction pool. This is because SRBB-dec includes TVPR
from SRBB. Once a threshold of transactions has been received,
the SRBB VM serializes blocks created from the transaction
pool and sends them to the consensus client ➌.

Consensus. Once the consensus client receives a proposed
block, it sends the corresponding byte array to the consensus
system by invoking the propose([]byte) method using
gRPC ➍. Upon receiving this byte array, the consensus server
starts a new instance of consensus using the new block (if
it is not currently part of another consensus instance) and
reliably broadcasts the block to the network of consensus
nodes ➎. Otherwise, it adds the new block to the block queue
waiting for the current consensus instance to terminate. The
consensus execution then invokes a binary consensus instance
for each reliably delivered block. The output of the binary
consensus instance indicates the indices of acceptable blocks
➏ as detailed before in Alg. 2, line 18. The consensus system
creates a superblock with all acceptable blocks (Alg. 2, line 19)
and sends it to the VM client ➐. The VM client sends the
superblock to the SRBB VM (a.k.a. SEVM [30]) via gRPC by
invoking the commit([]byte) method.

Commit. When the superblock is received by the VM server
on SRBB VM (or SEVM), the superblock is first deserialized
using JSON unmarshalling. Subsequently, the superblock is
passed on to the execution module of the SRBB VM ➐. The
execution of transactions in SRBB-dec is identical to SRBB.
The SRBB VM lazily validates and executes transactions by
iterating through every block in the superblock and every
transaction in each block (Section III-D). Finally, the SRBB
VM appends each block to the ledger in the datastore ➑.

V. EVALUATION OF SMART REDBELLY BLOCKCHAIN

In this section, we evaluate SRBB and its optimizations
and compare it to 6 other modern blockchains when deployed
across 200 machines spread over 5 continents.

We evaluated SRBB using the DIABLO benchmark suite [24]
that evaluates blockchains against realistic workloads by
sending pre-signed transactions. We used the realistic DApp
workloads of NASDAQ, Uber, and FIFA that span 3, 2 and 3 min-
utes, respectively (https://github.com/lebdron/minion/tree/aec).
NASDAQ (peak request rate of 19800 TPS and average request
rate of 168 TPS) uses a real trace of Apple, Amazon, Facebook,
Microsoft, and Google stock trades executed on a DApp, Uber
(peak request rate of 900 TPS and average request rate of
852 TPS) uses a real trace from the mobility service Uber
executed on a DApp and FIFA (peak request rate of 5305 TPS
and average request rate of 3483 TPS) uses a real workload
from the soccer world cup executed on a DApp. For the DApp
workload experiments, we used 200 validators spanning 10
AWS regions and 5 continents, namely: Bahrain, Cape Town,
Milan, Mumbai, N. Virginia, Ohio, Oregon, Stockholm, Sydney,
and Tokyo. For all DApp benchmarks, we used the same AWS
c5.2xlarge EC2 instances (8 vCPUs, 16 GiB RAM which mimic
the resources of a modern computer) as DIABLO [24].

A. Rationale for machine selection

The c5.2xlarge AWS instance type was consistently used
throughout all benchmarks for two reasons. First, to make all
results comparable within our paper and with DIABLO [24].
Second, to make the evaluations encompass a wide range of
blockchains as some blockchains require specific CPU and

https://github.com/lebdron/minion/tree/aec
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memory requirements (e.g., Solana) that cannot be met with
smaller AWS instances.

In summary, all experimental parameters were the same as
the ones used in DIABLO [24] for realistic DApp evaluation.
Similar to the DIABLO DApp evaluations [24], all workloads
were evaluated with one full experimental iteration.

Throughout this section, our evaluation focuses on the
throughput, latency and transaction loss of blockchains which
are indicators of blockchain congestion. The throughput is
the number of transactions committed per second as observed
by the client. The latency of a transaction is the difference
between the transaction send time and the transaction commit
time (i.e., the time at which a client receives sufficiently many
confirmation ACKs for a sent transaction) as seen by the
sending client. The transaction loss is the number of dropped
transactions. With more congestion, a blockchain throughput
drops, and its latency and its number of lost transactions
increase.

In summary, SRBB reached a maximum average throughput
of ~2000 TPS for realistic DApp workloads. SRBB outper-
formed the 6 modern blockchains (by achieving a higher
throughput and fewer transaction losses) for the realistic DApp
workloads of NASDAQ, Uber, and FIFA [24]. Moreover, SRBB
was the only of these blockchains to not lose transactions for the
realistic DApp workloads of NASDAQ and Uber, and commit
over 98% of transactions for the demanding workload of FIFA.
The higher throughput, lower latency, and fewer transaction
losses of SRBB compared to modern blockchains validate our
hypothesis that SRBB reduces blockchain congestion.

B. Comparison with other blockchains
Figures 3 and 4 depict the performance of 6 modern

blockchains (i.e., Algorand, Avalanche, Libra-Diem, Ethereum
Proof-of-Authority, Quorum IBFT and Solana) compared to
SRBB and EVM+DBFT. EVM+DBFT is a naive smart contract
supported version of RBBC that combines the Ethereum VM
with the superblock optimized DBFT consensus but does not
have TVPR and RPM. The evaluation of EVM+DBFT is
included to show that the performance benefit of SRBB comes
in part from TVPR as a naive combination of the superblock
optimization and the DBFT consensus of RBBC would not be
sufficient.

We used the real DApp workloads of NASDAQ, Uber, and
FIFA used in the DIABLO blockchain benchmarking suite [24]

for our evaluation. Evaluating all blockchains in existence
against SRBB would not be realistic. We used the 6 modern
blockchains evaluated in DIABLO [24] for comparison against
SRBB because DIABLO reported a thorough evaluation of these
blockchains under realistic DApp workloads [24]. To make the
comparison fair, we used the same configuration parameters
as used in DIABLO [24] when evaluating SRBB.

Note that some blockchains did not yield an average latency
or throughput value for certain workloads (e.g., 0 TPS and
0 s latency) because the transaction costs exceeded their
budget [24] or they crashed due to the high load.

Figure 3 presents the average throughput in the y-axis and
transaction commit percentage as a value at the top of the
bar for the NASDAQ, Uber and FIFA workloads, depicted,
respectively, by N, U and F in Figure 3 for brevity. SRBB is
the only blockchain that commits 100% of the transactions
for the NASDAQ and Uber workloads. SRBB also commits
98% of transactions for the demanding FIFA workload where
no other blockchains commit more than 47% of transactions.
SRBB reaches average throughputs of 167 TPS, 828 TPS,
and 1808 TPS for the NASDAQ, Uber and FIFA workloads,
respectively, which are the highest average throughputs for all
evaluated blockchains. Figure 4 shows the average latencies
for the (N,U,F) workloads. SRBB yields the least average
latency among all evaluated blockchains for both the NASDAQ
and Uber workloads with average latencies of 6.6 and 3.9
seconds, respectively. For the FIFA workload, SRBB yields
an average latency of 64 seconds. This slightly higher average
latency of SRBB over Avalanche, Diem and Solana in the
FIFA workload is due to SRBB committing 98% of the
transactions as opposed to only 2% or fewer transaction
commits in the other blockchains. All 6 modern blockchains
yield throughputs lower than 900 TPS and latencies higher than
20 seconds. These performances are much lower compared
to their claimed performances [24]. This indicates a major
performance degradation.

Interestingly, SRBB multiplies the average throughput by
55×, divides the latency by 3.5×, and reduces transaction
losses considerably compared to EVM+DBFT. This shows that
TVPR is responsible for higher performance and reduction in
transaction losses.



9

Fig. 5: The Optimized handling of the superblock in SRBB
and non-optimized handling of the superblock

C. Superblock handling at the SRBB VM

At each index of the blockchain, the SRBB VM typically
executes many more transactions per consensus instance than
Ethereum. This is due to a single consensus instance outputting
a superblock which contains potentially as many blocks as
SRBB validators. Due to this long execution of transactions,
the SRBB VM consumes high CPU. Typically, high CPU
usage slows down the processing of transactions in the SRBB
VM, which results in the increase of pending transactions
stored in-memory. Once a threshold of pending transactions is
reached, we observe transaction drops due to the transaction
pending queue overflowing. Also, when the memory usage
is high, the SRBB VM flushes tries to disk to save memory,
which also produces a lot of inputs/outputs (IO). This was
evident in our superblock implementation. We observed that
processing a superblock with a total of 15,000 transactions,
would lead to losing transactions requests even on a reasonably-
provisioned AWS instance featuring 16 GB RAM and 4 vCPUs
(Figure 5). As a solution we made the SRBB VM fully process
one proposed block of the superblock at a time allowing
it to alternate frequently between CPU-intensive (verifying
signatures and performing transaction executions) and memory-
intensive (state writes) and IO-intensive (transaction writes)
tasks. Due to this optimized handling of the superblock, we will
see in the next section that our SRBB-dec does not experience
bottlenecks as the number of nodes increases (cf. Figure 8).

VI. EVALUATION OF SRBB-DEC

In this section we compare SRBB-dec with SRBB and
present the scalability of SRBB-dec on demanding workloads.

A. SRBB-dec vs SRBB

Below we compare the performance of SRBB-dec and SRBB.
We deployed 200 c5.2xlarge (8 vCPUs, 16 GiB of memory)
geo-distributed machines spanning the 10 AWS regions on 5
continents used in the previous section, namely: Bahrain, Cape
Town, Milan, Mumbai, São Paulo, Ohio, Oregon, Stockholm,
Sydney, and Tokyo. The difference with the previous section
is that these 200 machines of SRBB-dec consisted of 100
consensus nodes and 100 SRBB VM nodes. Due to the nature
of the SRBB-dec, instead of deploying 20 SRBB nodes per
region as in the previous section, we deployed 10 consensus
nodes and 10 SRBB VM nodes per region, hence mimicking
100 participants with two machines each. Note that the total
numbers of machines used to run both blockchains were kept
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Fig. 6: The throughput over time of SRBB-dec (The decoupled
version of SRBB) and SRBB for the NASDAQ workload.

equal to ensure as much resources were used for both to obtain
a fair comparison. We elaborate more on the fairness of this
evaluation as a part of our discussion section (Section VII).

Fig. 6 shows the throughput over time for SRBB-dec and
SRBB. SRBB-dec reaches a throughput of 4000 TPS whereas
SRBB reaches a throughput of ~3000 TPS. Thus, SRBB-dec
improves the throughput of SRBB by 33% for the same number
of machines.
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Fig. 7: The cumulative distribution function (CDF) of latencies
of SRBB-dec and SRBB for the NASDAQ workload.

Figure 7 shows the Cumulative Distributed Function (CDF)
latencies of SRBB-dec and SRBB. We observe that SRBB-dec
commits 100% of the transactions within 12 seconds whereas
SRBB takes 15 seconds to commit 100% of the transactions.

B. Scalability of SRBB-dec

To evaluate the scalability of SRBB-dec, we deployed SRBB-
dec on SRBB VM nodes of type c5.2xlarge with 8 vCPUs,
16 GiB of memory, and consensus nodes of type c5.4xlarge with
16 vCPUs and 32 GiB of memory. The chosen 10 regions in 5
continents were Canada, London, Mumbai, Oregon, Paris, São
Paulo, Singapore, Stockholm, Sydney and Tokyo. Each SRBB
VM node received a burst workload of 1500 native payment
transactions concurrently at a rate of 1500 TPS. As previously
mentioned, each participant was considered to execute both a
consensus node and an SRBB VM node.

Figure 8 depicts the average throughput without end-to-
end encryption (w/o TLS) and with encryption (with TLS)
for SRBB-dec. As we execute SRBB-dec with an increasing
number of nodes, we start our experiment with 20 machines
spread evenly in the 10 AWS regions and add machines by
groups of 20 evenly spread in the 10 AWS regions until we
reach 200 machines (i.e., 100 participants). We observe that
the throughput increases as we increase the number of nodes
from 1100 TPS at 20 machines to 2038 TPS at 200 machines,
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demonstrating the scalability of SRBB-dec in a geo-distributed
setting. The curve flattens out at large scale between 140 and
200 nodes, indicating that the gain obtained in throughput
by adding more machines becomes lower and lower. This is
due to an increase in the number of machines consuming the
available bandwidth. Finally, we observe, as expected, that the
TLS encryption comes at a cost. However, this overhead is
negligible in comparison to the overall performance as the peak
average throughput with TLS (1960 TPS) is only 4% lower
than the peak average throughput without TLS (2038 TPS).

Fig. 8: The average throughput of SRBB-dec w/ and w/o TLS

Figure 9 shows the latency of transactions for SRBB-dec in
the aforementioned geo-distributed environment as the number
of nodes increases. We observe that the latency increases
with the number of nodes. We also observe similar minimum
latencies across all system sizes but the 99th percentile indicates
that some requests can take much longer especially at large
scale: the transactions take less than 10 seconds to execute on
up to 40 nodes while they take less than 40 seconds to execute
on 200 nodes. It is important to note that these latencies can
be viewed as the time for a transaction to become final: thanks
to our deterministic byzantine fault tolerance consensus [15],
transactions are committed (and thus final) as soon as the
consensus ends and the superblock is executed and appended to
the chain. This differs from classic blockchains [38], [28] whose
consensus is reached after the block is appended and after more
“block confirmations” occur. Interestingly, the latency increase
does not prevent the throughput of SRBB-dec from scaling
as seen by Fig. 8. This is due to the superblock optimization:
As more machines participate, more blocks get proposed and
running consensus takes more time, which increases the latency,
however, the number of transactions decided per consensus
instance also increases, which provides scalability.

VII. DISCUSSION

A. Censorship of transactions

In classic blockchains (e.g., Ethereum) if a validator
decides not to include a transaction in its new block, this
transaction may eventually be included in another block
by another validator, due to transactions being propagated
to all validators. This prevents censorship. With SRBB,

Fig. 9: The percentile latencies of SRBB-dec

since there is no individual transaction propagation among
validators, if a Byzantine validator decides not to include a
transaction from a client in its new block, the transaction
becomes censored. While introducing a load balancer [35]
can mitigate this problem by increasing the probability of
sending a transaction to a correct validator, note that it
does not prevent SRBB to implement a Blockchain System
(Def.1). As in other blockchains, the ideal solution to this
censorship is to have clients resending their transaction to
different validators if it does not get included in the blockchain.

B. Applicability of TVPR to other blockchains

In contrast to SRBB, implementing TVPR on modern
blockchains can be problematic. Due to removing propaga-
tion of transactions among validators through TVPR, the
first validator receiving a transaction should include it in a
block for the transaction to be eventually executed. If the
first validator receiving a transaction is resource constrained
and has a low probability of creating blocks, it will rarely
imposes its own block. Thus, a client can expect to wait a
long time for its transaction to be included in a block. To
prevent this drawback, clients may submit transactions to
the most resourceful validators and hence reduce the time
for its transaction to be included. However, these resourceful
validators could progressively become overloaded.

In contrast, with SRBB, despite having TVPR, clients do
not have to wait a long time for their transactions to be
included in a block. This is because, in SRBB, all validators
regardless of being resource-constrained or resourceful can
combine their proposed blocks in each consensus round into
a superblock [17]. More specifically, since SRBB uses the
Redbelly superblock optimization [17] (Section III-D) there
is not necessarily a single validator winning each consensus
round. Every validator gets to include a block in the decided
superblock per consensus round if every validator proposes a
block. Thus, a transaction sent by a client to any validator will
be included in the superblock in the same consensus iteration
or the next (e.g., with 1000 validators, a client does not have to
wait for 1000 iterations before its transaction gets included in a
block as all 1000 validators can propose blocks per consensus
round and include their block in the decided superblock).
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C. Removing eager validations completely

Several works like Hyperledger Fabric [7] and PRISM [8]
completely remove eagerly validating transactions. However,
unlike SRBB, these two blockchains do not remove the
initial transaction propagation as in our TVPR solution. The
complete removal of transaction eager validations increases
the chances of DoS attacks on the blockchain through spam
transactions consuming network bandwidth. This is because
there is no validator initially validating the transactions, leaving
the potential for spam transactions to be submitted to the system.
In contrast, SRBB’s validators eagerly validate transactions
received directly from clients.

D. Fault tolerance of SRBB-dec

For SRBB-dec to achieve the same fault tolerance as SRBB,
the consensus node and the SRBB VM node should be
considered as belonging to the same participant (i.e., entity)
such that f < n/3 participants are Byzantine where the total
number of participants are n. A limitation with decoupling
is if we consider the SRBB VM nodes and consensus nodes
separately then the fault tolerance will be much lower than
SRBB. This is because the consensus node alone as a separate
entity can only tolerate a third of its nodes failing and with
the addition of failures from SRBB VM nodes, SRBB-dec will
have a lower fault tolerance (i.e., inability to recover from a
little number of failures).

E. Additional resource usage

Decoupling can increase resource usage. With SRBB, a
single user can use a single machine to join as a SRBB validator
whereas with SRBB-dec a single user requires two machines
to execute a consensus and an SRBB VM node separately.

F. SRBB vs SRBB-dec comparison fairness

Although in our evaluation we compare SRBB’s performance
to SRBB-dec, one may argue such a comparison is not fair. We
used the same number of total machines when comparing
the performance of SRBB and SRBB-dec to ensure that
decoupling itself helps performance rather than an increase in
the number of machines that increases the processing power. In
particular, one might argue that to compare SRBB-dec to SRBB
fairly, the consensus nodes in the SRBB-dec should equal
the nodes of SRBB if consensus is the bottleneck. However,
we see that SRBB-dec’s consensus scales as the number of
consensus nodes and SRBB VM nodes increase (Fig. 8), thus
showing that the consensus protocol is not the bottleneck.
Our comparison is merely to show that SRBB decoupling can
improve performance with the same resources.

G. Communication overhead in SRBB-dec

In SRBB-dec, the SRBB VM communicates with consensus
nodes via gRPC. Unlike SRBB, this introduces a communication
overhead between the two decoupled components. However,
as observed by SRBB-dec’s better performance over SRBB,
the benefits of better management of resources offered through

separation of concerns with the decoupled architecture out-
weighs the communication overhead of gRPC. This is because
separation of concerns through decoupling allows (1) fine-
tuning the execution implementation for CPU and consensus
implementation for memory and (2) better parallelism between
execution and consensus.

H. Adapting the decoupled architecture to other blockchains

The decoupled architecture presented in SRBB-dec splits
the consensus and execution layers. Thus, the overarching
idea of sending block proposals from the execution layer to
consensus, and committed blocks from consensus to execution
through RPC can be adapted to work with any blockchain,
including proof-of-work blockchains. The challenge, however,
is the threat model. Once the consensus and execution are
decoupled into separate nodes, new assumptions on the number
of Byzantine nodes must be made to ensure state consistency.

VIII. RELATED WORK

Classic blockchains. By design, Ethereum’s EVM redundantly
validates and propagates transactions: More specifically, every
transaction is eagerly validated at every validator redundantly
and these transactions are redundantly propagated via the
network and in blocks. Quorum [13], Binance Smart Chain
(BSC) [2] and Cardano [3] blockchains all port the EVM as
the state replication machine and thus have the same redundant
eager validation and propagation of transactions problem.

Algorand [22] also suffers from the redundant eager valida-
tion and transaction propagation problem as it gossips transac-
tions in the network and each transaction is eagerly validated at
every validator. These transactions are redundantly propagated
again in blocks. Similarly, Polkadot [11], Solana [39], and
Tezos [1] suffer from the same problem despite introducing
other optimizations in their state machine replica.

Avalanche [32], due to its snowman consensus protocol, does
not propagate blocks but only transactions. Thus, it suffers
from redundant eager validation of transactions but not from
the redundant propagation of transactions.

Decoupled blockchains. Decoupling has been used in various
forms in blockchains for varying purposes [8], [7]. For example,
PRISM [8] decouples blocks into separate chains to improve
performance of the longest chain rule. Hyperledger Fabric [7]
decouples transaction ordering and execution using separate
order nodes and peer nodes to order transactions facilitating
different ordering services (i.e., consensus protocols) to be
plugged into the system. Similar to Fabric, we decouple our
consensus and execution to produce SRBB-dec. However,
unlike Fabric the main motivation behind our decoupling
is to enhance blockchain performance rather than to offer
flexibility in using a customized consensus protocol. Fabric
and SRBB-dec are inherently different in their architecture.
More specifically, (1) Fabric follows a UTXO model whereas
SRBB-dec follows a balance model (2) Fabric’s client nodes
submit transactions for execution and for consensus in two
separate rounds whereas SRBB-dec simply submits transactions
to the SRBB VM.
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IX. CONCLUSION

In this paper, we deconstructed Smart Redbelly Blockchain
(SRBB), the extension of the Redbelly Blockchain [17] to
support arbitrary programs. This extension required the devel-
opment of a complete new system that executes large blocks
of smart contracts. We first removed the redundant transaction
propagation, hence reducing the number of cryptographic
verifications. We then optimised our solution by decoupling two
roles played by blockchain validators, solving consensus and
executing smart contracts, to obtain SRBB-dec. Our results
show that SRBB outperforms Algorand, Avalanche, Diem,
Ethereum, Quorum and Solana when deployed over 5 continents
and under the realistic workloads of NASDAQ, Uber and
FIFA using the DIABLO [24] benchmark suite. Moreover,
the additional decoupling optimization that leads to SRBB-
dec improves the peak throughput of SRBB for the NASDAQ
workload by 33% and reduces its latency by 20%.
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